MITSUBISH
 ELECTRIC

Position Board
SSCNETIII/H Interface

MR-MC200/MR-MC300 Series
Position Board
User's Manual (Details)

-MR-MC210
-MR-MC211
-MR-MC220U3
-MR-MC220U6
-MR-MC240
-MR-MC241
-MR-MC341

SAFETY PRECAUTIONS
 (Please read these instructions before using this equipment.)

Before using this product, please read this manual and the relevant manuals introduced in this manual carefully and pay full attention to safety to handle the product correctly.
These precautions apply only to this product.
In this manual, the safety instructions are ranked as "DANGER" and "CAUTION".

Depending on circumstances, procedures indicated by $\widehat{\$}$ CAUTION may also be linked to serious results.
In any case, it is important to follow the directions for usage.
Please save this manual to make it accessible when required and always forward it to the end user.

For Safe Operations

1. Prevention of electric shocks

〔. DANGER

- Never open the front case or terminal covers of the servo amplifier while the power is ON or the unit is running, as this may lead to electric shocks.
- Never run the unit with the front case or terminal cover of the servo amplifier removed. The high voltage terminal and charged sections will be exposed and may lead to electric shocks.
- Never open the front case or terminal cover of the servo amplifier at times other than wiring work or periodic inspections even if the power is OFF. The insides of the position board and servo amplifier are charged and may lead to electric shocks.
- Completely turn off the externally supplied power used in the system before mounting or removing the position board, performing wiring work, or inspections. Failing to do so may lead to electric shocks.
- When performing wiring work or inspections, turn the power OFF, wait at least ten minutes, and then check the voltage with a tester, etc. Failing to do so may lead to electric shocks.
- Be sure to ground the controller incorporating the position board, servo amplifier and servo motor. (Ground resistance : 100Ω or less) Do not ground commonly with other devices.
- The wiring work and inspections must be done by a qualified technician.
- Wire the units after installing the position board, servo amplifier and servo motor. Failing to do so may lead to electric shocks or damage.
- Never operate the switches with wet hands, as this may lead to electric shocks.
- Do not damage, apply excessive stress, place heavy things on or sandwich the cables, as this may lead to electric shocks.
- Do not touch the position board, servo amplifier or servo motor terminal blocks while the power is ON, as this may lead to electric shocks.
- Do not touch the built-in power supply, built-in grounding or signal wires of the position board and servo amplifier, as this may lead to electric shocks.

2. For fire prevention

©CAUTION

- Install the position board, servo amplifier, servo motor and regenerative resistor on incombustible. Installing them directly or close to combustibles will lead to fire.
- If a fault occurs in the position board or servo amplifier, shut the power OFF at the servo amplifier's power source. If a large current continues to flow, fire may occur.
- When using a regenerative resistor, shut the power OFF with an error signal. The regenerative resistor may abnormally overheat due to a fault in the regenerative transistor, etc., and may lead to fire.
- Always take heat measures such as flame proofing for the inside of the control panel where the servo amplifier or regenerative resistor is installed and for the wires used. Failing to do so may lead to fire.
- Do not damage, apply excessive stress, place heavy things on or sandwich the cables, as this may lead to fire.

3. For injury prevention

\triangle CAUTION

- Do not apply a voltage other than that specified in this manual and the instruction manual of the product you are using on any terminal.
Doing so may lead to destruction or damage.
- Do not mistake the terminal connections, as this may lead to destruction or damage.
- Do not mistake the polarity ($+/-$), as this may lead to destruction or damage.
- Do not touch the heat radiating fins of position board or servo amplifier, regenerative resistor and servo motor, etc., while the power is ON and for a short time after the power is turned OFF. In this timing, these parts become very hot and may lead to burns.
- Always turn the power OFF before touching the servo motor shaft or coupled machines, as these parts may lead to injuries.
- Do not go near the machine during test operations or during operations such as teaching. Doing so may lead to injuries.

4. Various precautions

Strictly observe the following precautions.
Mistaken handling of the unit may lead to faults, injuries or electric shocks.
(1) System structure

\triangle CAUTION

- Always install a leakage breaker on the controller incorporating the position board and servo amplifier power source.
- If installation of an electromagnetic contactor for power shut off during an error, etc., is specified in the instruction manual for the servo amplifier, etc., always install the electromagnetic contactor.
- Install the emergency stop circuit externally so that the operation can be stopped immediately and the power shut off.
- Use the position board, servo amplifier, servo motor and regenerative resistor with the correct combinations listed in the instruction manual. Other combinations may lead to fire or faults.
- If safety standards (ex., robot safety rules, etc.,) apply to the system using the position board, servo amplifier and servo motor, make sure that the safety standards are satisfied.
- Construct a safety circuit externally of the position board or servo amplifier if the abnormal operation of the position board or servo amplifier differ from the safety directive operation in the system.
- In systems where coasting of the servo motor will be a problem during the forced stop, emergency stop, servo OFF or power supply OFF, use dynamic brakes.
- Make sure that the system considers the coasting amount even when using dynamic brakes.
- In systems where perpendicular shaft dropping may be a problem during the forced stop, emergency stop, servo OFF or power supply OFF, use both dynamic brakes and electromagnetic brakes.

\triangle CAUTION

- The dynamic brakes must be used only on errors that cause the forced stop, emergency stop, or servo OFF. These brakes must not be used for normal braking.
- The brakes (electromagnetic brakes) assembled into the servo motor are for holding applications, and must not be used for normal braking.
- The system must have a mechanical allowance so that the machine itself can stop even if the stroke limits switch is passed through at the max. speed.
- Use wires and cables that have a wire diameter, heat resistance and bending resistance compatible with the system.
- Use wires and cables within the length of the range described in the instruction manual.
- The ratings and characteristics of the parts (other than position board, servo amplifier and servo motor) used in a system must be compatible with the position board, servo amplifier and servo motor.
- Install a cover on the shaft so that the rotary parts of the servo motor are not touched during operation.
- There may be some cases where holding by the electromagnetic brakes is not possible due to the life or mechanical structure (when the ball screw and servomotor are connected with a timing belt, etc.). Install a stopping device to ensure safety on the machine side.

(2) Parameter settings and programming

. CAUTION

- Set the parameter values to those that are compatible with the position board, servo amplifier, servo motor and regenerative resistor model and the system application. The protective functions may not function if the settings are incorrect.
- The regenerative resistor model and capacity parameters must be set to values that conform to the operation mode and servo amplifier. The protective functions may not function if the settings are incorrect.
- Set the mechanical brake output and dynamic brake output validity parameters to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
- Set the stroke limit input validity parameter to a value that is compatible with the system application. The protective functions may not function if the setting is incorrect.
- Set the servo motor encoder type (increment, absolute position type, etc.) parameter to a value that is compatible with the system application. The protective functions may not function if the setting is incorrect.
- Set the servo motor capacity and type (standard, low-inertia, flat, etc.) parameter to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
- Set the servo amplifier capacity and type parameters to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
- Use the program commands for the program with the conditions specified in the instruction manual.

\triangle CAUTION

- Transport the product with the correct method according to the mass.
- Use the servo motor suspension bolts only for the transportation of the servo motor. Do not transport the servo motor with machine installed on it.
- Do not stack products past the limit.
- When transporting, installing, and removing the position board, never touch the print board inner part and electronic components. Hold the front panel or edge of the print board.
- When transporting the position board or servo amplifier, never hold the connected wires or cables.
- When transporting the servo motor, never hold the cables, shaft or detector.
- When transporting the position board or servo amplifier, never hold the front case as it may fall off.
- When transporting, installing or removing the position board or servo amplifier, never hold the edges.
- Install the unit according to the instruction manual in a place where the mass can be withstood.
- Do not get on or place heavy objects on the product.
- Always observe the installation direction.
- Mount the position board to a connector or slot that is compatible with standards, and keep the designated clearance between the position board and other boards.
- Keep the designated clearance between the position board or servo amplifier and control panel inner surface or the position board and servo amplifier, position board or servo amplifier and other devices.
- Do not install or operate position board, servo amplifiers or servo motors that are damaged or that have missing parts.
- Do not block the intake/outtake ports of the servo amplifier and servo motor with cooling fan.
- Do not allow conductive matter such as screw or cutting chips or combustible matter such as oil enter the position board, servo amplifier or servo motor.
- The position board, servo amplifier and servo motor are precision machines, so do not drop or apply strong impacts on them.
- Securely fix the position board, servo amplifier and servo motor to the machine according to the instruction manual. If the fixing is insufficient, these may come off during operation.

\triangle CAUTION

- Always install the servo motor with reduction gears in the designated direction. Failing to do so may lead to oil leaks.
- Store and use the unit in the following environmental conditions.

Environment	Conditions	
	Position board/Servo amplifier	Servomotor
Ambient temperature	According to each instruction manual.	$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (With no freezing) $\left(32^{\circ} \mathrm{F}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$
Ambient humidity	According to each instruction manual.	80% RH or less (With no dew condensation)
Storage temperature	According to each instruction manual.	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to }+65^{\circ} \mathrm{C} \\ & \left(-4^{\circ} \mathrm{F} \text { to }+149^{\circ} \mathrm{F}\right) \end{aligned}$
Atmosphere	Indoors (where not subject to direct sunlight). No corrosive gases, flammable gases, oil mist or dust must exist	
Altitude	According to each instruction manual	
Vibration	According to each instruction manual	

- When coupling with the synchronous encoder or servo motor shaft end, do not apply impact such as by hitting with a hammer. Doing so may lead to detector damage.
- Do not apply a load larger than the tolerable load onto the synchronous encoder and servo motor shaft. Doing so may lead to shaft breakage.
- When not using for a long time, disconnect the power line from the servo amplifier.
- Place the position board and servo amplifier in static electricity preventing vinyl bags and store.
- When storing for a long time, please contact with our sales representative.

Also, execute a trial operation.

- When fumigants that contain halogen materials such as fluorine, chlorine, bromine, and iodine are used for disinfecting and protecting wooden packaging from insects, they cause malfunction when entering our products.
Please take necessary precautions to ensure that remaining materials from fumigant do not enter our products, or treat packaging with methods other than fumigation (heat method). Additionally, disinfect and protect wood from insects before packing products.
(4) Wiring

\triangle CAUTION

- Correctly and securely wire the wires. Reconfirm the connections for mistakes and the terminal screws for tightness after wiring. Failing to do so may lead to run away of the servo motor.
- After wiring, install the protective covers such as the terminal covers to the original positions.
- Do not install a phase advancing capacitor, surge absorber or radio noise filter (option FR-BIF) on the output side of the servo amplifier.
- Correctly connect the output side (terminal U, V, W) and ground. Incorrect connections will lead the servo motor to operate abnormally.
- Do not connect a commercial power supply to the servo motor, as this may lead to trouble.
- Do not mistake the direction of the surge absorbing diode installed on the DC relay for the control signal output of brake signals, etc. Incorrect installation may lead to signals not being output when trouble occurs or the protective functions not functioning.

For the sink output interface

For the source output interface

- Do not connect or disconnect the connection cables between each unit or the encoder cable while the power is ON.
- Securely tighten the cable connector fixing screws and fixing mechanisms. Insufficient fixing may lead to the cables coming off during operation.
- Do not bundle the power line or cables.
(5) Trial operation and adjustment

\triangle CAUTION

- Confirm and adjust the program and each parameter before operation. Unpredictable movements may occur depending on the machine.
- Extreme adjustments and changes may lead to unstable operation, so never make them.
- When using the absolute position system function, on starting up, and when the position board or absolute position motor has been replaced, always perform a home position return.
- Before starting test operation, set the parameter speed limit value to the slowest value, and make sure that operation can be stopped immediately by the forced stop, etc. if a hazardous state occurs.
(6) Usage methods

\triangle CAUTION

- Immediately turn OFF the power if smoke, abnormal sounds or odors are emitted from the position board, servo amplifier or servo motor.
- Always execute a test operation before starting actual operations after the program or parameters have been changed or after maintenance and inspection.
- Do not attempt to disassemble and repair the units excluding a qualified technician whom our company recognized.
- Do not make any modifications to the unit.
- Keep the effect or electromagnetic obstacles to a minimum by installing a noise filter or by using wire shields, etc. Electromagnetic obstacles may affect the electronic devices used near the position board or servo amplifier.
- When using the CE Mark-compliant equipment, refer to this manual for the position boards and refer to the corresponding EMC guideline information for the servo amplifiers, inverters and other equipment.
- Use the units with the following conditions.

Item	Conditions
Input power	According to each instruction manual.
Input frequency	According to each instruction manual.
Tolerable momentary power failure	According to each instruction manual.

(7) Corrective actions for errors

\triangle CAUTION

- If an error occurs in the self diagnosis of the position board or servo amplifier, confirm the check details according to the instruction manual, and restore the operation.
- If a dangerous state is predicted in case of a power failure or product failure, use a servo motor with electromagnetic brakes or install a brake mechanism externally.
- Use a double circuit construction so that the electromagnetic brake operation circuit can be operated by emergency stop signals set externally.

- If an error occurs, remove the cause, secure the safety and then resume operation after alarm release.
- The unit may suddenly resume operation after a power failure is restored, so do not go near the machine. (Design the machine so that personal safety can be ensured even if the machine restarts suddenly.)

\triangle CAUTION

- Perform the daily and periodic inspections according to the instruction manual.
- Perform maintenance and inspection after backing up the program and parameters for the position board and servo amplifier.
- Do not place fingers or hands in the clearance when opening or closing any opening.
- Periodically replace consumable parts such as batteries according to the instruction manual.
- Do not touch the lead sections such as ICs or the connector contacts.
- Before touching the position board, always touch grounded metal, etc. to discharge static electricity from human body. Failure to do so may cause the position board to fail or malfunction.
- Do not directly touch the position board's conductive parts and electronic components.

Touching them could cause an operation failure or give damage to the position board.

- Do not place the position board or servo amplifier on metal that may cause a power leakage or wood, plastic or vinyl that may cause static electricity buildup.
- Do not perform a megger test (insulation resistance measurement) during inspection.
- When replacing the position board or servo amplifier, always set the new position board settings correctly.
- When the position board or absolute value motor has been replaced, carry out a home position return operation from the user program. Failing to do so may cause position displacement.
- After maintenance and inspections are completed, confirm that the position detection of the absolute position detector function is correct.
- Do not drop or impact the battery installed to the module.

Doing so may damage the battery, causing battery liquid to leak in the battery. Do not use the dropped or impacted battery, but dispose of it.

- Do not short circuit, charge, overheat, incinerate or disassemble the batteries.
- The electrolytic capacitor will generate gas during a fault, so do not place your face near the position board or servo amplifier.
- The electrolytic capacitor and fan will deteriorate. Periodically replace these to prevent secondary damage from faults. Replacements can be made by our sales representative.
- Lock the control panel and prevent access to those who are not certified to handle or install electric equipment.
- Do not burn or break a position board and servo amplifier. Doing so may cause a toxic gas.
(9) About processing of waste

When you discard position board, servo amplifier, a battery (primary battery) and other option articles, please follow the law of each country (area).

\triangle CAUTION

- This product is not designed or manufactured to be used in equipment or systems in situations that can affect or endanger human life.
- When considering this product for operation in special applications such as machinery or systems used in passenger transportation, medical, aerospace, atomic power, electric power, or submarine repeating applications, please contact your nearest Mitsubishi Electric sales representative.
- Although this product was manufactured under conditions of strict quality control, you are strongly advised to install safety devices to forestall serious accidents when it is used in facilities where a breakdown in the product is likely to cause a serious accident.

(10) General cautions

- All drawings provided in the instruction manual show the state with the covers and safety partitions removed to explain detailed sections. When operating the product, always return the covers and partitions to the designated positions, and operate according to the instruction manual.
* The manual number is given on the bottom left of the back cover.

Print Date	* Manual Number	Revision
Dec., 2013	IB(NA)-0300223-A	First edition
Dec., 2014	IB(NA)-0300223-B	[Additional model] MR-MC240, MR-MC241 [Additional function] Speed-torque control, Mark detection, Continuous operation to torque control, External forced stop disabled [Additional correction] Alarm history, Home position return change while system is running, High speed monitor position droop, Table map, Log data (event code list, information for each event), Parameters (servo parameters, control parameters), Monitor number (operation information), Alarm number (system alarm, operation alarm), Supplementary explanation for the use of linear servo system, Supplementary explanation for the use of SSCNETIII compatible servo amplifier, Connector exterior dimensions
Aug., 2015	IB(NA)-0300223-C	[Additional model] MR-JE-पB [Additional function] SSCNETII/H head module connection, transient transmit, hot line forced stop function, event detection function [Additional correction] About manuals, Summary, System configuration, Restriction's by the software's version, I/O table setting, Point table loop method, I/O device, Log data (event code list, information for each event), Table map, Parameters (system parameters, servo parameters, control parameters, RIO control parameters), Monitor number (servo information (1), RIO information, RIO control information, system information), Alarm number (RIO module alarm, operation alarm, RIO control alarm, system error), Supplementary explanation for the use of servo amplifier (MR-JE-पB), Supplementary explanation for the use of SSCNETIII compatible servo amplifier (MR-J3(W)-口B)
Feb., 2017	IB(NA)-0300223-D	[Additional model] MR-MC220U3, MR-MC220U6 [Additional function] Sensing module connection [Additional correction] For safe operations, Summary, List of specifications of position board, System configuration, Restriction's by the software's version, Linear interpolation, Command change, Other axes start, Number of connectable stations for SSCNETIII/H head module, Transient commands for servo amplifier, Table map (Interpolation group No. being executed table), Parameters (System parameters, Control parameters, RIO module parameters, RIO control parameters), Monitor number (Servo information (2), RIO information), Alarm number (Servo alarm, RIO module alarm, Operation alarm)

Print Date	＊Manual Number	Revision
Mar．， 2018	IB（NA）－0300223－E	［Additional model］ MR－MC341 ［Additional function］ Serial number display，Jerk ratio acceleration／deceleration，Vibration suppression command filter 1，Sensing module（axis mode） connection ［Additional correction］ Manual page organization，Summary，General specifications，List of specifications of position board，System configuration，Checking serial number，Restrictions by the software＇s version，Instructions for wiring， Wiring of connector，Summary of operational functions，Interpolation operation，High－speed update of monitor data，Table map（system information，Axis data（Sensing module（axis mode）），Parameters （System parameters，Control parameters，RIO control parameters）， Monitor number（System information），Alarm number（System alarm， Operation alarm，System error），Supplementary explanation for the use of multiple－axis servo amplifier（MR－J4Wロ－$\square B$ ），Supplementary explanation for the use of（MR－JE－$\square B(F)$ ），Open source software
Sep．， 2018	IB（NA）－0300223－F	［Additional function］ Circular interpolation，Proximity pass function ［Additional correction］ Features，List of specifications of position board，Name of parts for position board MR－MC3口ロ，Configuration register（PCI Express bus compatible position board），Restrictions by the software＇s version， Sampling specification list，MR－MC3 $\square \square$ table，Parameters（Control parameters），Alarm number（Operation alarm），Standards relevant to the EMC directive，Position board MR－MC341 exterior dimensions
Dec．， 2018	IB（NA）－0300223－G	［Additional correction］ PCI Express bus specifications，Axis No．assignment

Japanese Manual Number IB（NA）－0300222

[^0]
INTRODUCTION

Thank you for choosing the Mitsubishi Electric position board MR-MC210/MR-MC211/MR-MC220U3 /MR-MC220U6/MR-MC240/MR-MC241/MR-MC341.
Before using the equipment, please read this manual carefully to develop full familiarity with the functions and performance of the position board you have purchased, so as to ensure correct use.

CONTENTS

Safety Precautions A- 1
Revisions A-11
Contents A-13
About Manuals A-25
Manual Page Organization A-26

1. SUMMARY 1-1 to 1-30
1.1 Summary 1- 1
1.1.1 Position board MR-MC2 $\square \square$ 1-3
1.1.2 Position board MR-MC3 $\square \square$ 1- 5
1.2 Features. 1- 7
1.3 Specifications 1-10
1.3.1 General specifications 1-10
1.3.2 List of specifications of position board 1-11
1.3.3 Bus specifications 1-14
1.4 Name of each section 1-15
1.4.1 Name of parts for position board MR-MC2 $\square \square$ 1-15
1.4.2 Name of parts for position board MR-MC3 $\square \square$ 1-20
1.5 Bus interface 1-22
1.5.1 Configuration register 1-22
1.5.2 Dual port memory map 1-26
1.5.3 Board information 1-27
1.6 SSCNETIII cables 1-29
1.7 Forced stop input terminal 1-30
2. SYSTEM CONFIGURATION 2-1 to 2-10
2.1 Position board MR-MC2 $\square \square$ system configuration 2- 1
2.1.1 MR-MC210/MR-MC211 system configuration 2- 1
2.1.2 MR-MC220U3/MR-MC220U6 system configuration 2- 2
2.1.3 MR-MC240/MR-MC241 system configuration 2- 3
2.2 Position board MR-MC3 $\square \square$ system configuration 2- 4
2.2.1 MR-MC341 system configuration 2- 4
2.3 System configuration equipment 2- 5
2.4 Checking serial number and operating system software version 2- 7
2.4.1 Checking serial number 2- 7
2.4.2 Checking software version 2- 8
2.5 Restrictions by the software's version 2- 9
3.1 Board installation 3- 1
3.1.1 Instructions for handling 3-1
3.1.2 Installation environment 3- 1
3.2 Connection and disconnection of cable 3- 2
3.2.1 SSCNETIII cable 3- 2
3.2.2 Forced stop input cable 3- 6
3.3 Wiring 3-7
3.3.1 Instructions for wiring 3- 7
3.3.2 Wiring of connector 3- 7
3. SYSTEM STARTUP 4-1 to 4-20
4.1 Startup procedures 4- 1
4.2 Check of wiring and ambient environment 4- 2
4.3 Position board setting 4- 2
4.4 Servo amplifier setting 4- 3
4.5 Parameter setting 4- 5
4.5.1 Parameter initialization 4- 5
4.5.2 System option 1 setting 4- 6
4.5.3 System option 2 setting 4- 8
4.5.4 I/O table setting 4- 9
4.5.5 Control option 1 setting 4-10
4.5.6 Axis No. assignment 4-11
4.5.7 Sensor input option setting 4-14
4.5.8 Vendor ID and type code setting 4-18
4.6 System startup processing 4-19
4. OPERATIONAL FUNCTIONS 5-1 to 5-72
5.1 Summary 5- 1
5.1.1 Interface 5-1
5.1.2 Precautions 5- 6
5.1.3 Maximum No. of simultaneous start axes 5-7
5.2 JOG operation 5- 8
5.2.1 Summary 5- 8
5.2.2 Start operation method 5-8
5.2.3 Resuming operation 5- 9
5.3 Incremental feed 5-10
5.3.1 Summary 5-10
5.3.2 Start operation method 5-11
5.4 Automatic operation 5-12
5.4.1 Summary 5-12
5.4.2 Start operation method. 5-14
5.4.3 Auxiliary command 5-15
5.4.4 Other axes start specification 5-21
5.4.5 S-curve ratio 5-22
5.4.6 Point table loop method 5-22
5.4.7 Acceleration/deceleration data 5-26
5.4.8 Auxiliary command 2 5-26
5.5 Interpolation operation 5-27
5.5.1 Summary 5-27
5.5.2 Proximity pass function 5-28
5.6 Linear interpolation 5-30
5.6.1 Summary 5-30
5.6.2 Settings 5-33
5.6.3 Start operation method. 5-36
5.6.4 Processing for exceeding speed limit for each axis 5-37
5.6.5 Restrictions 5-39
5.7 Circular interpolation 5-40
5.7.1 Summary 5-40
5.7.2 Settings 5-41
5.7.3 Group settings 5-44
5.7.4 Auxiliary point-specified 2-axis circular interpolation control 5-46
5.7.5 Central point-specified 2-axis circular interpolation control 5-48
5.7.6 Start operation method 5-52
5.7.7 Exceeding speed limits for each axis 5-53
5.7.8 Restrictions 5-53
5.8 Home position return 5-55
5.8.1 Summary 5-55
5.8.2 Home position return method 5-57
5.8.3 Start operation method. 5-58
5.8.4 Home position return using a dog method 5-59
5.8.5 Home position return using a data set method 5-61
5.8.6 Home position return using a stopper method 5-61
5.8.7 Home position return using a dog cradle method 5-62
5.8.8 Home position return using a limit switch combined method 5-64
5.8.9 Home position return using a limit switch front end method 5-64
5.8.10 Home position return using a dog front end method 5-65
5.8.11 Home position return using a Z-phase detection method 5-67
5.8.12 Home position return using a scale home position signal detection method 5-70
5.8.13 Home position return using a scale home position signal detection method 2 5-71
5.9 Home position reset function (data set function) 5-72
6.1 Command units 6- 1
6.1.1 Position command unit - electronic gear 6- 1
6.1.2 Settings 6- 2
6.1.3 Setting example of electronic gears 6- 3
6.1.4 Restrictions 6- 3
6.2 Speed unit 6-4
6.2.1 Settings 6- 4
6.2.2 Setting example of speed units 6- 4
6.2.3 Speed limit 6- 5
6.3 Acceleration/deceleration 6- 6
6.3.1 Linear acceleration/deceleration 6-7
6.3.2 Smoothing filter 6-8
6.3.3 Start up speed enable 6- 8
6.3.4 S-curve acceleration/deceleration (Sine acceleration/deceleration) 6- 9
6.3.5 Jerk ratio acceleration/deceleration 6-13
6.3.6 Vibration suppression command filter 1 6-17
6.4 Servo off 6-20
6.5 Forced stop. 6-21
6.6 Stop operation 6-22
6.7 Rapid stop operation 6-23
6.8 Limit switch (stroke end) 6-24
6.9 Software limit. 6-25
6.10 Interlock 6-27
6.11 Rough match output 6-28
6.12 Torque limit 6-29
6.13 Command change 6-30
6.13.1 Speed change 6-30
6.13.2 Change of time constants 6-31
6.13.3 Position change 6-32
6.14 Backlash 6-38
6.15 Position switch. 6-39
6.16 Completion of operation signal 6-40
6.17 Interference check function. 6-46
6.17.1 Interface 6-48
6.17.2 Interference check operation image diagram 6-49
6.17.3 Checks prior to start up 6-50
6.17.4 Operation check 6-51
6.18 Home position search limit. 6-53
6.18.1 Summary 6-53
6.18.2 Set items 6-53
6.18.3 Home position search limit operation example 6-54
6.19 Gain changing 6-55
6.20 PI-PID switching 6-57
6.21 Absolute position detection system 6-58
6.21.1 Parameters 6-58
6.21.2 Processing procedure 6-59
6.21.3 Sequence example 6-61
6.22 Home position return request 6-63
6.23 Other axes start 6-65
6.23.1 Summary 6-65
6.23.2 Settings 6-65
6.23.3 Interface 6-76
6.23.4 Operation example 6-80
6.24 High response I/F 6-84
6.24.1 Summary 6-84
6.24.2 Interface 6-85
6.24.3 Fast start operation 6-86
6.24.4 Interrupt processing high speed completion 6-87
6.25 In-position signal 6-88
6.26 Digital I/O 6-89
6.26.1 Summary 6-89
6.26.2 Interface 6-90
6.27 I/O device 6-92
6.27.1 Summary 6-92
6.27.2 Interface 6-93
6.28 Servo amplifier general I/O 6-96
6.28.1 Summary 6-96
6.28.2 Settings 6-99
6.29 Dual port memory exclusive control 6-102
6.29.1 Summary 6-102
6.29.2 Exclusive control of output signals. 6-102
6.30 Pass position interrupt 6-104
6.30.1 Summary 6-104
6.30.2 Pass position interrupt setting method 6-105
6.30.3 Interface 6-105
6.30.4 Operation example 6-120
6.31 Mark detection 6-124
6.31.1 Summary 6-124
6.31.2 Interface 6-127
6.31.3 Function details 6-134
6.31.4 Operation example 6-136
6.32 Continuous operation to torque control 6-139
6.32.1 Summary 6-139
6.32.2 Interface 6-141
6.32.3 Control mode switch 6-150
6.32.4 Operation timing 6-152
6.32.5 Operation during continuous operation to torque control mode 6-156
6.32.6 Stop factors during continuous operation to torque control 6-156
6.32.7 Combinations of continuous operation to torque control and other functions. 6-158
6.32.8 Restrictions on servo amplifier functions 6-160
6.33 SSCNETIII/H head module connection 6-161
6.33.1 Summary 6-161
6.33.2 Supported functions 6-162
6.33.3 System startup 6-163
6.33.4 Interface 6-165
6.33.5 Example of setting procedure 6-175
6.33.6 SSCNETIII/H head module disconnect 6-174
6.34 Sensing module (station mode) connection 6-175
6.34.1 Summary 6-175
6.34.2 Supported functions 6-177
6.34.3 System startup 6-179
6.34.4 Interface 6-181
6.34.5 Example of setting procedure 6-212
6.34.6 Sensing module disconnect 6-214
6.35 Sensing module (axis mode) connection 6-215
6.35.1 Summary 6-215
6.35.2 System startup 6-218
6.35.3 Operation functions 6-223
6.35.4 Application functions 6-229
6.35.5 Auxiliary functions 6-235
6.35.6 Interface mode 6-235
7.1 Reading/writing parameters 7- 1
7.1.1 Writing parameters 7- 1
7.1.2 Reading parameters 7- 3
7.2 Changing parameters at the servo 7- 4
7.3 Alarm and system error 7- 6
7.4 Monitor function 7- 9
7.4.1 Summary 7- 9
7.4.2 Monitor latch function 7-10
7.4.3 High-speed update of monitor data 7-11
7.5 High speed monitor function 7-12
7.5.1 Summary 7-12
7.5.2 Monitor latch function 7-13
7.6 Interrupt 7-14
7.6.1 Interrupt sequence 7-14
7.6.2 Interrupt conditions 7-16
7.6.3 Factor of interrupt 7-18
7.6.4 Interrupt processing example 7-31
7.7 User watchdog function 7-32
7.8 Software reboot function 7-33
7.9 Parameter backup 7-34
7.10 Test mode 7-38
7.10.1 Structural diagram 7-38
7.10.2 Test operation mode 7-39
7.11 Reconnect/disconnect function 7-40
7.11.1 Disconnection function summary 7-40
7.11.2 Reconnect function summary 7-41
7.11.3 Interface 7-43
7.11.4 Disconnection method 7-45
7.11.5 Reconnection method 7-46
7.11.6 Restrictions 7-47
7.12 Sampling 7-48
7.12.1 Summary 7-48
7.12.2 Command/status bit 7-50
7.12.3 Command/status data 7-53
7.12.4 Sampling setting write/read 7-56
7.12.5 Details for sampling function settings 7-57
7.12.6 Number of sampled points 7-64
7.12.7 Sampling items. 7-64
7.12.8 Sampling trigger 7-70
7.12.9 Sampling data read 7-73
7.12.10 Timing chart for sampling function 7-77
7.13 Log 7-86
7.13.1 Summary 7-86
7.13.2 Log data details 7-87
7.13.3 Event code list 7-88
7.13.4 Information for each event 7-90
7.13.5 Interface 7-100
7.13.6 Timing chart for reading of log data 7-102
7.13.7 Log acquiring selection 7-103
7.14 Operation cycle monitor function 7-104
7.14.1 Summary 7-104
7.14.2 Interface 7-104
7.14.3 Operation timing 7-105
7.15 External forced stop disabled 7-106
7.15.1 Summary 7-106
7.15.2 Interface 7-106
7.15.3 Setting method 7-106
7.16 Amplifier-less axis function 7-107
7.16.1 Summary 7-107
7.16.2 Interface 7-107
7.16.3 Control details 7-108
7.17 Alarm history function 7-109
7.17.1 Summary 7-109
7.17.2 Alarm history data details 7-110
7.17.3 Interface 7-115
7.17.4 Timing chart for alarm history read 7-118
7.17.5 Alarm history initialization procedure 7-119
7.17.6 List of system errors that do not apply to alarm history storage 7-119
7.18 Transient transmit 7-120
7.18.1 Summary 7-120
7.18.2 Interface 7-120
7.18.3 Transient commands for servo amplifier 7-122
7.18.4 Example of using transient commands 7-125
7.18.5 Transient commands for SSCNETய/H head module 7-126
7.18.6 Transient commands for sensing module (axis mode) 7-127
7.19 Hot line forced stop function 7-128
7.19.1 Summary 7-128
7.19.2 Control details 7-129
7.19.3 Timing for alarm occurrences 7-130
5. TANDEM DRIVE
8.1 Drive modes 8- 1
8.1.1 Synchronous mode 8- 2
8.1.2 Non-synchronous micro-adjustment control mode 8- 2
8.1.3 Changing of drive mode 8- 3
8.2 Parameter settings 8- 4
8.2.1 Designation of tandem drive axes 8- 4
8.2.2 Servo parameters 8- 4
8.2.3 Control parameters 8- 4
8.3 Axis data classifications 8- 5
8.3.1 Only data from master axis is valid 8- 5
8.3.2 Individual data for master axis/slave axis 8- 5
8.4 Tandem drive axis operation 8- 6
8.4.1 Home position return during tandem drive 8- 6
8.4.2 JOG operation during tandem drive 8-23
8.4.3 Incremental feed while using tandem drive 8-24
8.4.4 Automatic operation during tandem drive 8-25
8.4.5 Linear interpolation during tandem drive 8-26
8.5 Servo on and servo off during tandem drive axis operation 8-28
8.6 Tandem drive axis limit switch 8-29
8.7 Tandem drive axis software limit 8-30
8.8 Tandem drive interference check 8-30
8.9 Tandem drive axis servo alarms 8-31
8.10 Deviation monitoring function 8-31
6. INTERFACE MODE 9-1 to 9-42
9.1 Summary 9- 1
9.2 Combinations with functions 9- 3
9.3 Parameters 9- 5
9.4 Interface. 9- 7
9.5 Control method 9-12
9.5.1 Control mode 9-12
9.5.2 Position control mode 9-13
9.5.3 Speed control mode 9-15
9.5.4 Torque control mode 9-17
9.5.5 Control method for interrupt output invalid 9-19
9.5.6 Control method for interrupt output valid 9-22
9.5.7 Procedure for switching control mode 9-26
9.5.8 Examples of switching control mode 9-28
9.6 Interrupt output cycle. 9-31
9.7 Command data update cycle. 9-32
9.8 Event detection function. 9-33
9.9 Servo off 9-36
9.10 Home position return. 9-37
9.11 Coordinate management 9-39
9.11.1 Incremental system 9-39
9.11.2 Absolute position system 9-40
9.12 Precautions 9-42
7. TABLE MAP 10-1 to $10-80$
10.1 Table list 10-1
10.1.1 MR- MC2 $\square \square$ table 10- 1
10.1.2 MR- MC3 $\square \square$ table 10-3
10.2 System information 10- 5
10.3 System command/status table 10-7
10.3.1 System commands 10-7
10.3.2 System status 10-13
10.4 Factor of interrupt 10-20
10.4.1 Information of outputting with factor of interrupt 10-20
10.4.2 Factor of axis interrupt 10-21
10.4.3 System interrupt factors 10-23
10.4.4 Station interrupt factors. 10-32
10.5 Factor of event 10-33
10.6 System configuration information table 10-35
10.7 Axis data 10-36
10.7.1 Axis data command table 10-36
10.7.2 Axis data status table 10-42
10.8 Axis data (sensing module (axis mode)) 10-49
10.8.1 Axis data command table 10-49
10.8.2 Axis data status table 10-54
10.9 Remote I/O data 10-60
10.9.1 RIO data command table 10-60
10.9.2 RIO data status table 10-63
10.10 Servo parameter change number (SSCNETII/H) 10-66
10.11 Transient transmit command/status table 10-68
10.11.1 Transient transmit command table 10-68
10.11.2 Transient transmit status table 10-68
10.12 Point number offset 10-69
10.13 Command buffers 10-70
10.13.1 Position command buffer 10-70
10.13.2 Speed command buffer. 10-71
10.13.3 Torque command buffer 10-71
10.14 Digital I/O table 10-72
10.14.1 Digital input table 10-72
10.14.2 Digital output table 10-72
10.15 I/O device table 10-73
10.15.1 Input device table 10-73
10.15.2 Output device table 10-74
10.16 Mark detection command/status table 10-75
10.16.1 Mark detection command table 10-75
10.16.2 Mark detection status table 10-75
10.17 Mark detection data tables 10-76
10.17.1 Mark detection edge data table 10-76
10.17.2 Mark detection positioning data table 10-77
10.18 Continuous operation to torque control data table 10-78
10.19 Interpolation group No. being executed table 10-79
11.1 System parameters 11- 2
11.2 Servo parameters 11- 5
11.2.1 Servo amplifier MR-J4(WD)-पB 11- 5
11.2.2 Sensing module (axis mode) 11-18
11.3 Control parameters 11-22
11.3.1 Servo amplifier MR-J4(WD)-पB 11-22
11.3.2 Sensing module (axis mode) 11-41
11.4 RIO module parameters 11-54
11.4.1 SSCNETII/H head module 11-54
11.4.2 Sensing module (station mode) 11-54
11.5 RIO control parameters 11-66
8. MONITOR NUMBER 12- 1 to $12-18$
12.1 Servo information (1) 12- 1
12.2 Servo information (2) 12- 3
12.3 RIO information 12- 6
12.4 Operation information 12- 8
12.5 Operation information (double word) 12-11
12.6 RIO control information 12-12
12.7 System information 12-13
12.8 Servo parameter information 12-15
9. ALARM NUMBER13-1 to 13-20
13.1 System alarm 13- 1
13.2 Servo alarm 13- 2
13.2.1 Servo amplifier MR-J4(WD)-पB 13- 2
13.2.2 Sensing module (axis mode) 13- 3
13.3 RIO module alarm 13- 4
13.3.1 SSCNETIII/H head module 13- 4
13.3.2 Sensing module (station mode) 13- 4
13.4 Operation alarm 13- 5
13.5 RIO control alarm 13-17
13.6 System error 13-18
10. EMC AND LOW VOLTAGE DIRECTIVES 14-1 to 14-6
14.1 Requirements for compliance with the EMC directive 14- 1
14.1.1 Standards relevant to the EMC directive 14-2
14.1.2 Installation instructions for EMC directive 14- 4
14.1.3 Parts of measure against noise 14-6
14.2 Requirements for compliance with the low voltage directive 14- 6
APPENDIXApp.- 1 to App. -88
App. 1 Supplementary explanation for the use of linear servo system App.- 1
App. 1.1 Position board App.- 1
App. 1.2 Position board utility software App.- 1
App. 1.3 Servo amplifier App.- 1
App. 1.4 Operations and functions of the linear servo system App.- 2
App. 2 Supplementary explanation for the use of fully closed loop system App.-13
App. 2.1 Position board App.-13
App. 2.2 Position board utility software App.-13
App. 2.3 Servo amplifier App.-13
App. 2.4 Operations and functions of the fully closed loop control App.-14
App. 3 Supplementary explanation for the use of direct drive servo system App.-21
App. 3.1 Position board App.-21
App. 3.2 Position board utility software App.-21
App. 3.3 Servo amplifier App.-21
App. 3.4 Operations and functions of the direct drive servo system App.-22
App. 4 Supplementary explanation for the use of multiple-axis servo amplifier (MR-J4Wロ - \square) App.-27
App. 4.1 Position board App.-27
App. 4.2 Position board utility software App.-27
App. 4.3 Servo amplifier App.-27
App. 4.4 Operations and functions of the servo amplifier App.-28
App. 5 Supplementary explanation for the use of (MR-JE- $\square B(F)$) App.-29
App. 5.1 Position board App.-29
App. 5.2 Position board utility software App.-29
App. 5.3 Servo amplifier App.-29
App. 5.4 System configuration App.-30
App. 5.4.1 System configuration diagram App.-30
App. 5.5 Axis No. setting App.-31
App. 5.5.1 Servo amplifier setting App.-31
App. 5.6 Parameter setting App.-32
App. 5.6.1 System option 1 setting App.-32
App. 5.7 Axis No. assignment App.-33
App. 5.8 Sensor input option setting App.-34
App. 5.9 Vendor ID and type code setting App.-34
App. 5.10 Supported functions App.-35
App. 5.10.1 Application functions App.-37
App. 5.10.2 Auxiliary function App.-37
App. 5.11 Table map App.-38
App. 5.12 Parameters App.-38
App. 5.12.1 System parameters App.-38
App. 5.12.2 Servo parameters App.-39
App. 5.12.3 Control parameters App.-39
App. 5.13 Monitor App.-39
App. 5.14 System alarm App.-40
App. 5.14.1 Servo alarm App.-40
App. 6 Supplementary explanation for the use of SSCNETIII compatible servo amplifier (MR-J3(W)-■B) App. -41
App. 6.1 Position board App.-41
App. 6.2 Position board utility software App.-41
App. 6.3 Connectable units App.-41
App. 6.4 System setting App.-42
App. 6.5 System configuration App.-42
App. 6.5.1 System configuration diagram App.-42
App. 6.6 Axis No. setting App.-43
App. 6.6.1 Servo amplifier setting App. 43
App. 6.7 Parameter setting App.-44
App. 6.7.1 System option 1 setting App.-44
App. 6.8 Control option 1 setting App.-45
App. 6.9 Axis No. assignment App.-46
App. 6.10 Sensor input option setting App.-47
App. 6.11 Vendor ID and type code setting App.-48
App. 6.12 System startup processing App.-48
App. 6.13 Restrictions when using J3 compatibility mode App.-49
App. 6.14 Supported functions App.-51
App. 6.14.1 Application functions App.-53
App. 6.14.2 Auxiliary function App.-56
App. 6.15 Table map App.-58
App. 6.15.1 Table list App.-58
App. 6.15.2 System information App.-60
App. 6.15.3 Servo parameter change number. App.-61
App. 6.16 Parameters App.-62
App. 6.16.1 System parameters App.-62
App. 6.16.2 Servo parameters App.-63
App. 6.16.3 Control parameters App.-69
App. 6.17 Monitor App. 70
App. 6.17.1 Servo information (1) App.-70
App. 6.17.2 Servo information (2) App.-72
App. 6.17.3 Servo parameter information App.-74
App. 6.18 System alarm App.-76
App. 6.18.1 Servo alarm App.-76
App. 7 Cables App.-77
App. 7.1 SSCNETIII cables App.-77
App. 7.2 Forced stop input cable App.-80
App. 7.3 SSCNETIII cables (SC-J3BUS口M-C) manufactured by Mitsubishi Electric System \& Service App.-81
App. 8 Exterior dimensions App.-82
App. 8.1 Position board MR-MC2口П App.-82
App. 8.2 Position board MR-MC3 $\square \square$ App.-86
App. 8.3 Connectors App.-87
App. 9 Open source software App.-88

About Manuals

The following manuals are also related to this product.
When necessary, order them by quoting the details in the tables below.

Related Manuals

(1) Position Board

Manual Name	Manual Number (Model Code)
MR-MC200/MR-MC300 Series Position Board User's Manual (Details)	IB-0300223
This manual explains specifications of the position board, information on how to establish a system,	
(1XB968)	
maintenance/inspection, trouble shooting, functions for the positioning control of the position board,	IB-0300225 (1XB970)
MR-MC200/MR-MC300 Series Position Board User's Manual (API Library) This manual explains the library of functions and others that the host controller uses to control the position board.	(1) memory and others.

(2) Servo amplifier

Manual Name	Manual Number (Model Code)
SSCNETII/H interface AC Servo MR-J4_B(-RJ)/MR-J4_B4(-RJ)/MR-J4_B1(-RJ) Servo amplifier Instruction Manual This manual explains the I/O signals, parts names, parameters, start-up procedure and others for AC Servo MR-J4_B(-RJ)/MR-J4_B4(-RJ)/MR-J4_B1(-RJ) Servo amplifier.	SH-030106 (1CW805)
SSCNETII/H interface Multi-axis AC Servo MR-J4W2-_B/MR-J4W3-_B Servo amplifier Instruction Manual This manual explains the I/O signals, parts names, parameters, start-up procedure and others for Multiaxis AC Servo MR-J4W2-_B/MR-J4W3-_B Servo amplifier.	SH-030105 (1CW806)
SSCNETII/H interface AC Servo MR-JE-_B Servo amplifier Instruction Manual This manual explains the I/O signals, parts names, parameters, start-up procedure and others for AC Servo MR-JE-_B Servo amplifier.	$\begin{aligned} & \text { SH-030152 } \\ & (1 \text { CW750) } \end{aligned}$
SSCNETIII interface MR-J3- $\square \mathrm{B}$ Servo amplifier Instruction Manual This manual explains the I/O signals, parts names, parameters, start-up procedure and others for MR-J3-DB Servo amplifier.	$\begin{aligned} & \text { SH-030051 } \\ & \text { (1CW202) } \end{aligned}$
SSCNETIII Compatible Linear Servo MR-J3-■B-RJ004U \square Instruction Manual This manual explains the I/O signals, parts names, parameters, start-up procedure and others for Linear Servo MR-J3- $\square B-R J 004 U \square$ Servo amplifier.	SH-030054 (1CW943)
SSCNETIII Compatible Fully Closed Loop Control MR-J3-पB-RJ006 Servo amplifier Instruction Manual This manual explains the I/O signals, parts names, parameters, start-up procedure and others for Fully Closed Loop Control MR-J3-पB-RJ006 Servo amplifier.	$\begin{aligned} & \text { SH-030056 } \\ & (1 \text { CW304) } \end{aligned}$
SSCNETII interface 2-axis AC Servo AmplifierMR-J3W-0303BN6/MR-J3W-■B Servo amplifier Instruction Manual This manual explains the I/O signals, parts names, parameters, start-up procedure and others for 2-axis AC Servo Amplifier MR-J3W-0303BN6/MR-J3W-DB Servo amplifier.	$\begin{aligned} & \text { SH-030073 } \\ & \text { (1CW604) } \end{aligned}$
SSCNETIII Interface Direct Drive Servo MR-J3-■B-RJ080W Servo amplifier Instruction Manual This manual explains the I/O signals, parts names, parameters, start-up procedure and others for Direct Drive Servo MR-J3-■B-RJ080W Servo amplifier.	SH-030079 (1CW601)
SSCNETIII interface Drive Safety integrated MR-J3- \square B Safety Servo amplifier Instruction Manual This manual explains the I/O signals, parts names, parameters, start-up procedure and others for safety integrated MR-J3-पB Safety Servo amplifier.	SH-030084 (1CW205)

Manual Page Organization

The symbols used in this manual are shown below.

Symbol	Description
MC200	Symbol that indicates correspondence to only MR-MC210/MR-MC211/MR- MC220U3/MR-MC220U6/MR-MC240/MR-MC241.
MC300	Symbol that indicates correspondence to only MR-MC341.

1. SUMMARY

1.1 Summary

This manual describes the specifications and handling of SSCNETII/H compatible position board MR-MC200 series (MR-MC210/MR-MC211/MR-MC220U3/MR-MC220U6/MR-MC240/MR-MC241) and MR-MC300 series (MR-MC341).

In this manual, the following abbreviations are used.

Generic term/Abbreviation	Description
MR-MC2 $\square \square$	General name for PCI bus compatible position board MR-MC210/MR-MC211/ CompactPCI bus compatible position board MR-MC220U3/MR-MC220U6/ PCI Express bus compatible position board MR-MC240/MR-MC241.
MR-MC3 $\square \square$	General name for PCI Express bus compatible position board MR-MC341.
Position board	General name for MR-MC2 $\square \square$ and MR-MC3 $\square \square$.
Host controller	General name for computer equipped with position board and operates user program.
MR-J4(W \square)- $\square \mathrm{B}$	Servo amplifier model MR-J4- $\square \mathrm{B} / \mathrm{MR}$-J4W \square - $\square \mathrm{B}$.
MR-J3(W)-口B	Servo amplifier model MR-J3- \square B/MR-J3W- $\square \mathrm{B}$.
MR-JE- $\square \mathrm{B}$ (F)	Servo amplifier model MR-JE- \square B/MR-JE- \square BF.
Servo amplifier	General name for SSCNETM/H compatible servo amplifier.
Utility software	General name for the Position Board Utility2 (MRZJW3-MC2-UTL) which includes test tool for start-up and examination, and the API library for position board.
Test tool	Abbreviation for start-up and examination tool for position board.
API library	General name for the library of functions for positioning control that the host controller uses to control the position board.
MR Configurator2	Abbreviation for the Servo set-up software MR Configurator2 version 1.10L or later.
User program	Program created by the user that operates on the host controller.
System program	Internal program that controls the position board.
SSCNETII/H(Note)	
SSCNETM(Note)	
SSCNETII/(H)(Note)	General name for SSCNETII/H, SSCNETII.
Board Ver.	System version of position board.
API Ver.	Software version of the API library for position board.
Remote I/O module	General name for modules that connect I/O modules and intelligent function modules to SSCNETII/H, including the sensing module and SSCNETI/H head module.
SSCNETII/H head module	General name for MELSEC L series SSCNETII/H head module (LJ72MS15).
Sensing module	General name for SSCNETM/H compatible sensing module MR-MT2000 series
Sensing SSCNETII/H head module or MR-MT2010	Abbreviation for SSCNETII/H head module (MR-MT2010)
Sensing extension module	General name for I/O module (MR-MT2100), pulse I/O module (MR-MT2200), analog I/O module (MR-MT2300), encoder I/F module (MR-MT2400)
Sensing I/O module or MR-MT2100	Abbreviation for I/O module (MR-MT2100)
Sensing pulse I/O module or MR-MT2200	Abbreviation for pulse I/O module (MR-MT2200)
Sensing analog I/O module or MR-MT2300	Abbreviation for analog I/O module (MR-MT2300)
Sensing encoder I/F module or MR-MT2400	Abbreviation for encoder I/F module (MR-MT2400)
Remote register (RWr)	Information for inputting to the position board from the sensing module, and SSCNETس/H head module in a 16-bit (1 word) basis.
Remote register (RWw)	Information for outputting to the sensing module, and SSCNETII/H head module from the position board in a 16-bit (1 word) basis.
Remote input (RX)	Information input from the sensing module, and SSCNETII/H head module to the position board in a 1-bit basis.

1. SUMMARY

Generic term/Abbreviation	Description
Remote output (RY)	Information output from the position board to the sensing module, and SSCNETII/H head module in a 1-bit basis.
Link device	Internal devices (RX/RY/RWr/RWw) of the position board, sensing module, and SSCNETII/H head module.

Note. SSCNET: Servo System Controller NETwork

1.1.1 Position board MR-MC2 $\square \square$

The following position boards are available for the position board MR-MC2 $\square \square$.

- PCI bus compatible position board (MR-MC210/MR-MC211)
- CompactPCI bus compatible position board (MR-MC220U3/MR-MC220U6)
- PCI Express bus compatible position board (MR-MC240/MR-MC241)

The PCI bus compatible position board (MR-MC210/MR-MC211) and PCI Express bus compatible position board (MR-MC240/MR-MC241) are mounted to the host controller, and the CompactPCI bus compatible position board (MR-MC220U3/MR-MC220U6) is mounted to a CompactPCI system. They control our servo amplifiers and remote I/O modules (sensing module (MR-MT2000 series) and SSCNETII/H head module (LJ72MS15)). The position board and the servo amplifiers are connected with SSCNETIII/H, which is a high speed synchronous network.

The PCI bus compatible position board (MR-MC210)/CompactPCI bus compatible position board (MR-MC220U3/MR-MC220U6)/PCI Express bus compatible position board (MR-MC240) have one SSCNET control channel (hereinafter: channel(CH)) and one SSCNET communication line (hereinafter: line), and can control positioning for up to 20 axes and remote I/O control for up to 4 stations. The PCI bus compatible position board (MR-MC211)/PCI Express bus compatible position board (MR-MC241) have one SSCNET control channel and two SSCNET communication lines, and can control positioning for up to 32 axes (up to 20 axes per line) and remote I/O control for up to 4 stations. By reading and writing the dual port memory mapped to the memory space of each bus, the host controller can command position board to start operation, and get servo amplifier status. The host controller can also receive position pass and positioning complete interruptions via each bus.

The position board is equipped with standard mode and interface mode for positioning control. The positioning control mode that corresponds with the application can be selected by parameter. The mode cannot be changed during SSCNET communication (while system is running). Positioning in standard mode is performed using a point table mapped on the dual port memory of the position board. Arbitrary positioning is possible by writing data to this point table from the host controller.
Also, startup of JOG operation and home position return, etc. as well as parameter changing and monitoring are possible through accessing this dual port memory on the position board from the host controller.
Interface mode is a sequential positioning command method that uses a user program on the host controller. The user program controls the servo amplifier with an arbitrary acceleration/deceleration pattern by writing the position command to the position command buffer of the position board every communication cycle (control cycle). Some functions from standard mode cannot be used, or are restricted when in interface mode.

POINT

- Depending on the specifications of the host controller, the PCI Express slot may be directly connected to the CPU of the host controller.
If the PCI Express compatible position board (MR-MC240/MR-MC241) that was produced in or before October 2018 is mounted to a PCI Express slot that is directly connected to the CPU of the host controller, it may not be able to operate.
Mount the PCI Express compatible position board to a PCI Express slot that is not directly connected to the CPU of the host controller (connected to a chipset). The year and month of manufacture for the position board can be checked on the rating plate. Refer to Section 2.4.1 for details.

1.1.2 Position board MR-MC3 \square

The following position boards are available for the position board MR-MC3 $\square \square$.

- PCI bus compatible position board (MR-MC341)

The PCI Express bus compatible position board (MR-MC341) is mounted to the host controller, and controls our servo amplifiers and remote I/O modules (sensing module (MR-MT2000 series) and SSCNETII/H head module (LJ72MS15)). The position board and the servo amplifiers are connected with SSCNETIII/H, which is a high speed synchronous network.

The PCI Express bus compatible position board (MR-MC341) has one SSCNET control channel and two SSCNET communication lines, and can control positioning for up to 64 axes (up to 32 axes per line) and remote I/O control for up to 16 stations (up to 8 stations per line). By reading and writing the dual port memory mapped to the memory space of the PCl Express bus, the host controller can command position board to start operation, and get servo amplifier status. The host controller can also receive position pass and positioning complete interruptions via PCI Express bus.
The position board is equipped with standard mode and interface mode for positioning control. The positioning control mode that corresponds with the application can be selected by parameter. The mode cannot be changed during SSCNET communication (while system is running). Positioning in standard mode is performed using a point table mapped on the dual port memory of the position board. Arbitrary positioning is possible by writing data to this point table from the host controller.
Also, startup of JOG operation and home position return, etc. as well as parameter changing and monitoring are possible through accessing this dual port memory on the position board from the host controller. Interface mode is a sequential positioning command method that uses a user program on the host controller. The user program controls the servo amplifier with an arbitrary acceleration/deceleration pattern by writing the position command to the position command buffer of the position board every communication cycle (control cycle). Some functions from standard mode cannot be used, or are restricted when in interface mode.

1.2 Features

The position board has the following features.
(1) Structuring of SSCNETII/H communication servo system by computer control

The position board can be directly connected to the Mitsubishi Electric servo amplifiers of MR-J4-B series using SSCNETIII/H.
(a) By connecting the position board and servo amplifier and servo amplifiers with a high speed synchronous network by SSCNETII/H, the reduction of wiring is achieved. The maximum distance between the position board and servo amplifier, or servo amplifier and servo amplifier for the SSCNETII cable on the same bus is $100(328.08)$ [$\mathrm{m}(\mathrm{ft}$.$)]. This increases flexibility at system design.$
(b) By using SSCNETIII cable (optical communication), the influence of electromagnetic noise etc. from servo amplifiers and such is reduced.
(c) The servo parameters can be set on the position board side and written to the servo amplifier, or read from the servo amplifier using the SSCNET communication.
(d) The current feedback position and error description contained in the servo can be checked by the dual port memory of the position board.
(e) Communication between MR Configurator2 and the servo amplifiers is possible via the position board USB.
(2) Programming in C programming language with the API library Positioning control for the servo in C programming language is enabled with the API library included with the Position Board Utility2 (MRZJW3-MC2-UTL).
(3) Supports event-driven programming

The host controller is notified by interrupt via PCI bus when the conditions for an interrupt such as passing through a preset point or positioning complete are met. The user program can create event-driven programs according to interrupt factors.
(4) High-speed operation starting time

High-speed operation starting time within the control cycle (0.22 ms fastest) is achieved for the maximum number of synchronous startup axes or less.
(5) Wide variety of positioning control functions

The main functions (such as home position return control, standard mode, and interface mode (sequential positioning command method)) which are required for any positioning system and the sub functions which limit and add functions to those controls are supported.
(a) Enhanced home position return control

Additional features of home position return control
Ten home position return methods are provided: dog cradle method, dog method, data set method, continuous operation to torque method, limit switch combined method, scale home position signal detection method, limit switch front end method, dog front end method, Z-phase detection method, and scale home position signal detection method 2 . Select an applicable method according to the system.
(b) Wide variety of control methods

The control methods shown below are provided for position control.

1) Independent control of each axis

Position control can be performed independently for each axis at any given timing.
2) Interpolation control

Interpolation controls using multiple axes can be performed.

- When using MR-MC2 \square

2-axis to 4-axis linear interpolation control

- When using MR-MC3 $\square \square$

2-axis to 4-axis linear interpolation control
2-axis circular interpolation control
3) Tandem drive

Tandem drive for 2 axes can be performed. In scale home position signal detection method and scale home position signal detection method 2 , the deviation between the 2 axes at home position return can be compensated.
4) Interface mode

The user program controls the servo amplifier with an arbitrary acceleration/deceleration pattern that is not supported in standard mode by writing the position command to the position command buffer of the position board every communication cycle (control cycle).
(c) Continuous processing of multiple positioning data

Multiple positioning data can be processed continuously within one operation start.
(d) Acceleration/deceleration processing

Six acceleration/deceleration processing methods are provided: Linear acceleration/deceleration,
S-curve acceleration/deceleration, start up speed, smoothing filter, jerk ratio
acceleration/deceleration MC300 , and vibration suppression command filter 1 MC300 .
The acceleration/deceleration curve can be selected according to the machine characteristic.
(6) Supports other axes start function

With the other axes start function, the position board can determine the conditions and automatically start other axes, and turn on/off output signals. The position board does not go through user program processing so there are no delays or dispersions. This also lessens the load on the user program.
(7) High maintainability

Maintainability is enhanced in the position board.
(a) Data retention without battery

Parameter data can be stored in the flash ROM inside the position board. This feature allows the retaining of data without a battery.
(b) Alarm collection function

The alarm details when an alarm occurs are automatically stored in the flash ROM inside the position board.
Storing the alarm information allows the user to check the alarm from the user program or test tool even after the position board is powered off or reset.
(8) Setting, monitoring, and testing through test tool

Using the test tool of Position Board Utility2 (MRZJW3-MC2-UTL), users can check the validity of the preset parameters and point table by performing test operation of the position board before creating a user program.
The control monitor/graph function allows users to debug programs efficiently.
(9) Forced stop function

The batch forced stop is available for connected servo amplifiers by the forced stop input signal of the external input.
(10) Easy application to the absolute position system
(a) The MR-J4(W■)- \square B series servo amplifiers and servo motors support the absolute position system. Absolute position system can be used by connecting the battery for absolute position system to the servo amplifier.
(b) Once the home position has been established, the home position return operation is unnecessary at the system's power supply ON.
(c) With the absolute position system, the data set method home position return is used to establish the home position. The wiring of proximity dog, etc. is unnecessary.

1.3 Specifications

1.3.1 General specifications

General specifications of the position board are shown below.

Items	Specification					
	MR-MC2 $\square \square$			MR-MC3 $\square \square$		
Operating ambient temperature	0 to $55^{\circ} \mathrm{C}\left(32\right.$ to $\left.131^{\circ} \mathrm{F}\right)$			0 to $45^{\circ} \mathrm{C}$ (32 to $113^{\circ} \mathrm{F}$) (Secure an airflow) (Note 4)		
Storage ambient temperature	-20 to $65^{\circ} \mathrm{C}\left(-4\right.$ to $\left.149^{\circ} \mathrm{F}\right)$			-25 to $75^{\circ} \mathrm{C}\left(-13\right.$ to $\left.167^{\circ} \mathrm{F}\right)$		
Operating ambient humidity	10 to 90% RH, non-condensing			5 to 95\% RH, non-condensing		
Storage ambient humidity	10 to 90\% RH, non-condensing			5 to 95\% RH, non-condensing		
Operating ambience	Indoors (where not subject to direct sunlight), no corrosive gas, no significant amount of dirt or dust					
Operating altitude (Note 1)	2000 m or less					
Mounting location	Inside control panel					
Overvoltage category (Note 2)	II or less					
Pollution level (Note 3)	2 or less					
Cooling method	Self cooling			Air cooling (cooling fan required) (Note 5) Recommended cooling fan size (airflow): 60 mm or more (10CFM or more)		
Power supply	Model	Power supply voltage	Leakage current	Model	Power supply voltage	Leakage current
	MR-MC210	$5 \mathrm{VDC} \pm 5 \%$	450 mA or less	MR-MC341	$3.3 \mathrm{VDC} \pm 9 \%$	3000 mA or less
	MR-MC211		700 mA or less		$12 \mathrm{VDC} \pm 8 \%$	500 mA or less
	MR-MC220U3		450 mA or less			
	MR-MC220U6					
	MR-MC240	$3.3 \mathrm{VDC} \pm 9 \%$	1100 mA or less			
	MR-MC241		1500 mA or less			

Note 1. Do not use or store under pressure higher than the atmospheric pressure of altitude 0 m . Doing so can cause an operation failure. When using under pressure, please contact our sales representative.
2. This indicates the section of the power supply to which the equipment is assumed to be connected between the public electrical power distribution network and the machinery within premises. Category II applies to equipment for which electrical power is supplied from fixed facilities. The surge voltage withstand level for up to the rated voltage of 300 V is 2500 V .
3. This index indicates the degree to which conductive material is generated in terms of the environment in which the equipment is used. Pollution level 2 is when only non-conductive pollution occurs. A temporary conductivity caused by condensing must be expected occasionally.
4. Using CPU cooling fans, PC power supply cooling fans, and PC case fans, be sure to induce an airflow in the PC case of the host controller that the position board is installed.
5. Check with the maker of the cooling fan to be used.

\triangle CAUTION

- The position board must be stored and used under the conditions listed in the table of specifications above.
- When not using for a long time, disconnect the power line from the servo amplifier.
- Place the position board and servo amplifier in static electricity preventing vinyl bags and store.
- When storing for a long time, please contact with our sales representative.

Also, execute a trial operation.

1.3.2 List of specifications of position board

Function			Contents	
			MR-MC2 $\square \square$	MR-MC3 $\square \square$
System function	Control cycle		0.88ms/0.44ms/0.22ms (Select using parameters.)	
	Control axes		MR-MC210 : Up to 20 axes MR-MC211 : Up to 32 axes MR-MC220U3 : Up to 20 axes MR-MC220U6 : Up to 20 axes MR-MC240 : Up to 20 axes MR-MC241 : Up to 32 axes	MR-MC341: Up to 64 axes
	Control stations		Up to 4 stations	Up to 16 stations
	Axes and stations per line		24	40
	Control mode		Standard mode : Position controlling method by position board Interface mode : Sequential positioning command method by user program	
	SSCNET communication		SSCNETIII/H, SSCNETIII	SSCNETM/H
Operation function (Note 1, 2)	JOG operation		Provided	
	Incremental feed		Provided	
	Automatic operation	Method	Point table method, 1 axis control, Continuous operation to torque control	
		Point table size	32 bytes/point	48 bytes/point
		Number of point tables	320 points for all axes	2048 points for all axes
	Linear interpolation		Point table method, linear interpolation for up to 4 axes is available (Not available for control cycle 0.22 ms)	-
	Interpolation operation		-	Point table method Linear interpolation control for up to 4 axes Circular interpolation for 2 axes (Available for control cycle 0.22 ms)
	Home position return		Dog method, Data set method, Continuous operation to torque control method, Dog cradle method, Limit switch front end method, Dog front end method, Z-phase detection method, Scale home position signal detection method, Scale home position signal detection method 2 (Can indicate direction for home position return, proximity dog is for level detection, can change home position return method while system is running)	
			Home position reset (data set) (The current position can be reset to the home position)	
Application function	Electronic gear		Electronic gear numerator : 1 to 5242879Electronic gear denominator : 1 to 589823	
	Speed units		Command unit/min, command unit/s, and r/min can be selected.	
	Acceleration/ deceleration	$\begin{aligned} & \text { Command speed } \\ & \text { limits } \end{aligned}$	1 to speed limit	
		Limit of start speed	1 to speed limit	
		Time constant limits	0 to 20000ms/speed limit	
		Separate setting of constants for deceleration and acceleration	Provided	
		Setting of constants for separate points	Provided	
		Acceleration/ deceleration method	Linear acceleration/deceleration, smoothing filter, start up speed, S-curve acceleration/deceleration (sine acceleration/deceleration)	Linear acceleration/deceleration, smoothing filter, start up speed, S-curve acceleration/deceleration (sine acceleration/deceleration), jerk ratio acceleration/deceleration, vibration suppression command filter 1

Note 1. The position board can move within the limits of -2147483648 to 2147483647 . Movement outside the limits is not covered with warranty. If software limits have been disabled, be careful not to move it outside of the physical limits.
2. For the absolute position detection system, the command limits of the position after calculation using the electronic gear are also -2147483648 to 2147483647 . It is possible for the moveable limits to be narrower than -2147483648 to 2147483647 , depending on the electronic gear.

Function			Contents	
			MR-MC2 $\square \square$	MR-MC3 $\square \square$
Application function	Stop function		Forced stop, Stop operation, Rapid stop operation	
	Limit switch		Provided (Hardware stroke limit)	
	Software limit		Provided (Software stroke limit)	
	Interlock		Provided	
	Rough match output		Provided	
	Torque limit		Provided	
	Command change		Location, speed, time constant	
	Backlash		Provided	
	Position switch		Provided	
	Completion of operation signal		Provided	
	Interference check		Provided (Not available for control cycle 0.22 ms)	Provided (Available for control cycle 0.22 ms)
	Home position search limit		Provided	
	Gain switching		Provided	
	Pl-PID switching		Provided	
	Absolute position detection system		Provided	
	Home position return request		Provided	
	Other axes start	Data	Up to 32	Up to 64
		Condition size	24 bytes	40 bytes
		Operation details size	80 bytes	88 bytes
	High response I/F		Provided	
	In-position signal		Provided	
	Digital I/O		Provided	Uses I/O device function (expanded points method)
	I/O device		Bits : Up to 4096 points Words: Up to 256 points	Bits : Up to 9126 points Words : Up to 576 points
			Bit data and word data share the point table	
	Servo amplifier general I/O		Provided	
	Dual port memory exclusive control		Provided	
	Pass position interrupt		Pass position conditions: Up to 64	Pass position conditions: Up to 128
	Mark detection		Mark detections: Up to 64	Mark detections: Up to 128
	Continuous operation to torque control		Provided	
	SSCNETII/H head module connection		Provided	
	Sensing module connection		Provided (station mode and axis mode)	
Help function	Reading/writing parameters		Provided	
	Changing parameters at the servo		Provided	
	Alarm and system error		Provided	
	Monitor		Current command position, Current feedback position, Speed command, Position droop, Electrical current command, Servo alarm number, External signal status, etc.	
			Can be latched, updated every few seconds	Can be latched, updated every few seconds, can be updated every control cycle with control option 4 (parameter No.0206)
	High speed monitor		Current command position, Current feedback position, Moving speed, Feedback moving speed, External signal, Electrical current feedback, Position droop (interface mode only)	
			Can be latched, updated every control cycle	
	Interrupt		During start operation/Operation stoppage (During operation, in-position, during smoothing of stopping, rough match, etc.), when alarm goes off (servo alarm/operation alarm), etc.	
			Provided (Processed by the software with the watchdog of the of the user program. (Note 3))	
	User watchdog function			
	Software reboot function		Provided	

Note 3. This is not the watch dog for the CPU on the position board.

Function		Contents	
		MR-MC2口ם	MR-MC3口]
Help function	Parameter backup	Parameters can be saved to the flash ROM.	
	Test mode	By connecting MR Configurator2 via the position board, the servo amplifier can easily be tested.	
	Reconnect/disconnect function	Provided	
	Sampling	The maximum sampling point: 65536. (Ring buffer of 8192 points)	The maximum sampling point: 65536. (Ring buffer of 65536 points)
	Log	History of start operation, alarms, etc., can be recorded.	
	Operation cycle monitor function	Provided	
	External forced stop disabled	Provided	
	Amplifier-less axis function	Provided	
	Alarm history function	Alarm history is saved to the flash ROM.	
	Transient transmit	Provided	
Tandem drive		Up to 2 axes $\times 8$ groups	
Interface mode		Positioning control, speed-torque control, event detection function	
Board ID		0 to 3 (Set with setting switch)	
DI	Limit switch +	None (DI signals are input from the servo amplifier or the dual port memory, etc. by the parameter setting.)	
	Limit switch -		
	Proximity dog		
	Forced stop	1 point	
DO		None	

1.3.3 Bus specifications

(1) PCl bus specifications

Items		Specification	
	MR-MC210		
Address bit	32 bit		
Data bit	32 bit		
System clock	33 MHz		
System voltage	+5 V		
Shape [mm(inch)]	Short size: $106.7 \times 167.6(4.20 \times 6.60)$		
Hot swap	Not supported		
Base address	Set configuration register by BIOS		

(2) CompactPCI bus specifications

Items	Specification	
	MR-MC220U3	MR-MC220U6
Address bit	32 bit	
Data bit	32 bit	
System clock	33 MHz	
System voltage	$+5 \mathrm{~V}$	
Shape [mm(inch)]	Board size: $100 \times 160(3.94 \times 6.30)$ Front panel length: 128.7 (5.07)	Board size: $100 \times 160(3.94 \times 6.30)$ Front panel length: 262.05 (10.32)
Connector	J1 connector only	
Hot swap	Not supported	
Base address	Set configuration register by BIOS	

(3) PCI Express bus specifications

Items	Specification		
	MR-MC240 (Note 1)		MR-MC241 (Note 1)

Note 1. Depending on the specifications of the host controller, the PCI Express slot maybe directly connected to the CPU of the host controller.
If the PCI Express compatible position board (MR-MC240/MR-MC241) that was produced in or before October 2018 is mounted to a PCI Express slot that is directly connected to the CPU of the host controller, it may not be able to operate.
Mount the PCI Express compatible position board to a PCI Express slot that is not directly connected to the CPU of the host controller (connected to a chipset).
The year and month of manufacture for the position board can be checked on the rating plate. Refer to Section 2.4.1 for details.

1.4 Name of each section

1.4.1 Name of parts for position board MR-MC2 $\square \square$
(1) MR-MC210

(2) MR-MC211

(3) MR-MC220U3

(4) MR-MC220U6

(5) MR-MC240

(6) MR-MC241

Note 1. Put the SSCNETIII cable in the duct or fix the cable at the closest part to the position board with bundle material in order to prevent SSCNETIII cable from putting it's own weight on SSCNETIII connector.
1.4.2 Name of parts for position board MR-MC3 $\square \square$
(1) MR-MC341

No.	Item	Function				
1)	Setting switch (SW1)	<Board ID selection> Define a board ID in order to distinguish between multiple position boards.				
			Switch 1	Switch 2	Board ID	
			ON	ON	3	
			OFF	ON	2	
			ON	OFF	1	
		$\begin{array}{llllll}1 & 1 & 1 & 1 & 8 \\ 1 & 4\end{array}$	OFF	OFF	0 (default value)	
			<For manufacturer setting> This switch is provided for manufacturer setting. Make sure the switch is always OFF			
			Switch 3	Switch 4	For manufacturer setting	
			OFF	OFF		
2)	PCI Express link (green)	ON : PCI Express link up OFF : PCI Express disconnected				
3)	Operation indicator (green)	ON : At power ON Flicker : At system startup OFF : At power OFF				
4)	Error indicator (red)	OFF : Normal ON : At system error (E001 to E302) occurrence				
5)	USB connector	Connector for communication with the position board test tool and MR Configurator2. (connects MR-J3USBCBL3M)				
6)	SSCNETIII connector (line 1) (Note 1)	Connector for communication with a servo amplifier. (connects MR-J3BUS■M)				
7)	SSCNETIII connector (line 2) (Note 1)					
8)	Forced stop input connector					
		front. Note. Do not connect to any of the terminals explained as "No connect". <Cable-side connector model name> FK-MC0, 5/3-ST-2, 5 (PHOENIX CONTACT GmbH \& Co. KG) <Wire size> AWG28 to AWG20 (0.08 to $0.52 \mathrm{~mm}^{2}$)				

Note 1. Put the SSCNETII cable in the duct or fix the cable at the closest part to the position board with bundle material in order to prevent SSCNETIII cable from putting it's own weight on SSCNETIII connector.

1.5 Bus interface

1.5.1 Configuration register

The following shows the configuration register.
(1) PCI bus compatible position board (MR-MC210/MR-MC211)/CompactPCI bus compatible position board (MR-MC220U3/MR-MC220U6)

Address	31 to 24	23 to16	15 to 8	7 to 0	Remarks
00	$\begin{aligned} & \text { Device ID } \\ & 0624 \end{aligned}$		$\begin{aligned} & \text { Vendor ID } \\ & \text { 10BA } \end{aligned}$		Vendor ID: Mitsubishi Electric 10BA Device ID: 0624
04	Status		Command		
08	$\begin{aligned} & \text { Class Code } \\ & 118000 \end{aligned}$			$\begin{array}{\|l} \hline \text { Revision ID } \\ 01 \\ \hline \end{array}$	Revision ID: 01 Class Code: 118000 (data processing controller)
OC	BIST (Note)	Header Type (Note)	Latency Timer (Note)	Cache Line Size (Note)	
10	Base Address Register 0				
14	Base Address Register 1				
18	Base Address Register 2				Dual port memory (including board ID) leading address Memory Space Indicator (bit0): 0 (Memory space) Type (bit1 to 2): 00 (32 bits, arbitrary position of address space) Prefetchable (bit3): 0 (Prefetch prohibited)
1C	Base Address Register 3 (Note)				
20	Base Address Register 4 (Note)				
24	Base Address Register 5 (Note)				
28	Cardbus CIS Pointer (Note)				
2C	Subsystem ID 0601		Subsystem Vendor ID10BA		Subsystem Vendor ID: Mitsubishi Electric 10BA Subsystem ID: 0601
30	Expansion ROM Base Address (Note)				
34	(Reserved) (Note)			CAP_PTR (Note)	
38	(Reserved) (Note)				
3C	Max_Lat (Note)	Min_Gnt (Note)	Interrupt Pin 01	Interrupt Line	Interrupt Pin: 01(INTA use)

[^1](2) PCI Express bus compatible position board
(a) When using MR-MC240/MR-MC241

Address	31 to 24	23 to16	15 to 8	7 to 0	Remarks
00	$\begin{aligned} & \text { Device ID } \\ & 0624 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Vendor ID } \\ & \text { 10BA } \end{aligned}$		Vendor ID: Mitsubishi Electric 10BA Device ID: 0624
04	Status		Command		
08	Class Code118000			$\begin{array}{\|l} \hline \text { Revision ID } \\ 01 \\ \hline \end{array}$	Revision ID: 01 Class Code: 118000 (data processing controller)
OC	BIST (Note)	Header Type (Note)	Latency Timer (Note)	Cache Line Size (Note)	
10	Base Address Register 0				
14	Base Address Register 1				
18	Base Address Register 2				Dual port memory (including board ID) leading address Memory Space Indicator (bit0): 0 (Memory space) Type (bit1 to 2): 00 (32 bits, arbitrary position of address space) Prefetchable (bit3): 0 (Prefetch prohibited)
1C	Base Address Register 3 (Note)				
20	Base Address Register 4 (Note)				
24	Base Address Register 5 (Note)				
28	Cardbus CIS Pointer (Note)				
2 C	Subsystem ID 0601		Subsystem Vendor ID10BA		Subsystem Vendor ID: Mitsubishi Electric 10BA Subsystem ID: 0601
30	Expansion ROM Base Address (Note)				
34	(Reserved) (Note)			CAP_PTR (Note)	
38	(Reserved) (Note)				
3C	Max_Lat (Note)	Min_Gnt (Note)	Interrupt Pin 01	Interrupt Line	Interrupt Pin: 01(INTA use)
40	PM Capability		NxtCap	PM Cap	
44	Data	BSE	PMCSR		
48	MSI Control		NxtCap	MSI Cap	MSI Control (bit0): 0 INTA interrupt
4 C	Message Address (Lower)				
50	Message Address (Upper)				
54	Reserved		Message Data		
58	PE Capability		NxtCap	PE Cap	
5C	PCI Express Device Capabilities				
60	Device Status		Device Control		
64	PCI Express Link Capabilities				
68	Link Status		Link Control		
6C-FF	Reserved Legacy Configuration Space (Returns 0x00000000)				
100	Next Cap	Capability Version	PCI Express Extended Capability - DSN		
104	PCI Express Device Serial Number (1st)				
108	PCI Express Device Serial Number (2nd)				
$\begin{aligned} & 10 \mathrm{C} \\ & \text { FFF } \end{aligned}$	Reserved Extended Configuration Space (Returns Completion with 0x00000000)				

[^2](b) When using MR-MC341

Address	31 to 24	23 to16	15 to 8	7 to 0	Remarks
00	$\begin{array}{\|l} \hline \text { Device ID } \\ 0624 \\ \hline \end{array}$		$\begin{aligned} & \text { Vendor ID } \\ & \text { 10BA } \end{aligned}$		Vendor ID: Mitsubishi Electric 10BA Device ID: 0624
04	Status		Command		
08	$\begin{aligned} & \text { Class Code } \\ & 118000 \\ & \hline \end{aligned}$			Revision ID 01	Revision ID: 01 Class Code: 118000 (data processing controller)
OC	$\begin{aligned} & \text { BIST } \\ & 00 \\ & \hline \end{aligned}$	Header Type (Note)	Latency Timer 00	Cache Line Size (Note)	
10	Base Address Register 0				Dual port memory (including board ID) leading address Memory Space Indicator (bit0): 0 (Memory space) Type (bit1 to 2): 00 (32 bits, arbitrary position of address space) Prefetchable (bit3): 0 (Prefetch prohibited)
14	Base Address Register 0 (Upper)				
18	Base Address Register 2 (Note)				
1C	Base Address Register 2 (Upper) (Note)				
20	Base Address Register 4 (Note)				
24	Base Address Register 4 (Upper) (Note)				
28	(Reserved) (Note)				
2 C	Subsystem ID0601		Subsystem Vendor ID10BA		Subsystem Vendor ID: Mitsubishi Electric 10BA Subsystem ID: 0603
30	Expansion ROM Base Address (Note)				
34	(Reserved) (Note)			CAP_PTR	
38	(Reserved) (Note)				
3C	Max_Lat (Note)	Min_Gnt (Note)	Interrupt Pin 01	Interrupt Line	Interrupt Pin: 01(INTA use)
40	(Reserved) (Note)				
44	(Reserved) (Note)				
48	(Reserved) (Note)				
4C	(Reserved) (Note)				
50	MSI Control		NxtCap	MSI Cap	MSI Control (bit0): 1 MSI interrupt
54	Message Address (Lower)				
58	Message Address (Upper)				
5 C	(Reserved) (Note)		Message Data		
60	(Reserved) (Note)				
64	(Reserved) (Note)				
68	(Reserved) (Note)				
6C	(Reserved) (Note)				
70	(Reserved) (Note)				
74	(Reserved) (Note)				
78	PM Capability		NxtCap	PM Cap	
7 C	Data	BSE	PMCSR		
80	PE Capability		NxtCap	PE Cap	
84	PCI Express Device Capabilities				
88	Device Status		Device Control		
8C	PCI Express Link Capabilities				
90	Link Status		Link Control		
94	PCI Express Slot Capabilities (Note)				
98	Slot Status (Note)		Slot Control (Note)		
9 C	Root Capabilities (Note)		Root Control (Note)		

Address	31 to 24	23 to16	15 to 8	7 to 0
A0	Root Status (Note)			
A4	PCI Express Device Capabilities2	Remarks		
A8	Device Status2 (Note)	Device Control2 (Note)		
AC	PCI Express Link Capabilities2			
B0	Link Status2	Link Control2		
B4	PCI Express Slot Capabilities2 (Note)			
B8	Slot Status2 (Note)	Slot Control2 (Note)		

Note. Has not been implemented, therefore, if read an indefinite value will be returned.

1.5.2 Dual port memory map

The bus width of dual port memory is 32 bits. For the address map of the dual port memory on the position board side, refer to Chapter 10.
(1) MR-MC2 $\square \square$

PCI bus/CompactPCI bus/PCI Express bus
Offset address

(2) MR-MC3 $\square \square$

PCI Express bus
Offset address

Note. Board information is allocated within the memory space of 1 CH . Refer to Section 1.5 .3 for details.

1.5.3 Board information

The (R)s in the table designate read only, while the (W)s designate write only capability.

[^3](1) Board ID information

Status set with the dip switch is displayed.

bit1	bit0	Content
0	0	0
0	1	1
1	0	2
1	1	3

(2) Interrupt output mask information MC200

Status set with the dip switch is displayed.

bit3	Content
0	Invalid
1	Valid

(3) Implemented CH information

bit5	bit4	Content
0	0	1 CH
0	1	Reserved
1	0	Reserved
1	1	Reserved

(4) Bus type

bit7	bit6	Content
0	0	PCI bus
0	1	CompactPCI bus
1	0	PCI Express bus
1	1	Reserved

(5) Number of SSCNET lines

bit1	bit0	Content
0	0	1 line
0	1	2 lines
1	0	Reserved
1	1	Reserved

(6) Signal during interrupt output MC200

bit1	bit0	Content
0	0	Interrupts are not generated
0	1	During interrupt output

(7) Interrupt signal clear register (1CH) MC200

bit1	bit0	Content
0	0	Invalid
0	1	1CH interrupt signal is cleared

1.6 SSCNETIII cables

Connect the position board and servo amplifiers, or servo amplifier and servo amplifier by SSCNETIII cable. When using MR-MC210/MR-MC220U3/MR-MC220U6/MR-MC240, the SSCNETIII cable for connecting servo amplifiers can be used for one line only. When using MR-MC211/MR-MC241/MR-MC341, the SSCNETIII cable for connecting servo amplifiers can be used for up to two lines (use 1 CH and 2 CH).
(1) SSCNETIII cable specifications

Model name		Cable length [m(ft.)]	Description
MR-J3BUS $\square \mathrm{M}$	MR-J3BUS015M	0.15 (0.49)	- Position board \leftrightarrow Servo amplifier - Servo amplifier \leftrightarrow Servo amplifier
	MR-J3BUS03M	0.3 (0.98)	
	MR-J3BUS05M	0.5 (1.64)	
	MR-J3BUS1M	1 (3.28)	
	MR-J3BUS3M	3 (9.84)	
MR-J3BUS $\square \mathrm{M}-\mathrm{A}$	MR-J3BUS5M-A	5 (16.40)	
	MR-J3BUS10M-A	10 (32.81)	
	MR-J3BUS20M-A	20 (65.62)	
MR-J3BUS $\square \mathrm{M}-\mathrm{B}$	MR-J3BUS30M-B	30 (98.43)	
	MR-J3BUS40M-B	40 (131.23)	
	MR-J3BUS50M-B	50 (164.04)	

(2) Connection between the position board and servo amplifiers

Connect the SSCNETIII cables to the following connectors.
Refer to Section 3.2.1 for the connection and disconnection of SSCNETII cable.

1.7 Forced stop input terminal

(1) Table of the forced stop input terminal specifications

Item		Specifications	
		MR-MC2 $\square \square$	MR-MC3 $\square \square$
Number of input points		Forced stop signal: 1 point	
Input method		Positive common/Negative common shared type	
Rated input current		2.4 mA	
Isolation method		Photocoupler	
Operating voltage range		$\begin{gathered} 20.4 \text { to } 26.4 \mathrm{VDC} \\ (+10 /-15 \% \text {, ripple ratio } 5 \% \text { or less }) \end{gathered}$	
ON voltage/current		17.5 VDC or more/2.0mA or more	
OFF voltage/current		1.8 VDC or less $/ 0.18 \mathrm{~mA}$ or less	
Input resistance		Approx. $10 \mathrm{k} \Omega$	
Response time	OFF to ON	1 ms or less	
	ON to OFF		
External connector type		3 pin connector	
Recommended wire size		0.08 to $0.32 \mathrm{~mm}^{2}$ (AWG28 to AWG22)	0.08 to $0.52 \mathrm{~mm}^{2}$ (AWG28 to AWG20)

(2) Forced stop circuit
(a) Positive common

(b) Negative common

2. SYSTEM CONFIGURATION

This section describes the system configuration and equipment settings for the position board.

2.1 Position board MR-MC2 $\square \square$ system configuration

2.1.1 MR-MC210/MR-MC211 system configuration

POINT

- Refer to Section 4.5.6, Section 6.33.3, Section 6.34.3, and Section 6.35 .2 to change the number of axes (stations) distributed to line 1 and line 2.

2.1.2 MR-MC220U3/MR-MC220U6 system configuration

2.1.3 MR-MC240/MR-MC241 system configuration

POINT

- Refer to Section 4.5.6, Section 6.33.3, Section 6.34.3, and Section 6.35 .2 to change the number of axes (stations) distributed to line 1 and line 2.

2.2 Position board MR-MC3 $\square \square$ system configuration

2.2.1 MR-MC341 system configuration

SSCNETII/H compatible servo amplifier MR-J4(W)- $\square B$

POINT

- Refer to Section 4.5.6, Section 6.33.3, Section 6.34.3, and Section 6.35 .2 to change the number of axes (stations) distributed to line 1 and line 2.

2.3 System configuration equipment

(1) MR-MC2 $\square \square$ related module

Part name	Model name (Note 1)	Description
Position board	MR-MC210	Up to 20 axes control, Operation cycle $0.22 \mathrm{~ms}, 0.44 \mathrm{~ms}, 0.88 \mathrm{~ms}, \mathrm{PCI}$ bus compatible (Note 2)
	MR-MC211	Up to 32 axes control, Operation cycle $0.22 \mathrm{~ms}, 0.44 \mathrm{~ms}, 0.88 \mathrm{~ms}, \mathrm{PCI}$ bus compatible (Note 2)
	MR-MC220U3	Up to 20 axes control, Operation cycle $0.22 \mathrm{~ms}, 0.44 \mathrm{~ms}, 0.88 \mathrm{~ms}$, CompactPCI bus compatible (Note 2)
	MR-MC220U6	Up to 20 axes control, Operation cycle $0.22 \mathrm{~ms}, 0.44 \mathrm{~ms}, 0.88 \mathrm{~ms}$, CompactPCI bus compatible (Note 2)
	MR-MC240	Up to 20 axes control, Operation cycle $0.22 \mathrm{~ms}, 0.44 \mathrm{~ms}, 0.88 \mathrm{~ms}, \mathrm{PCI}$ Express bus compatible (Note 2)
	MR-MC241	Up to 32 axes control, Operation cycle $0.22 \mathrm{~ms}, 0.44 \mathrm{~ms}, 0.88 \mathrm{~ms}, \mathrm{PCI}$ Express bus compatible (Note 2)
	MR-MC341	Up to 64 axes control, Operation cycle $0.22 \mathrm{~ms}, 0.44 \mathrm{~ms}, 0.88 \mathrm{~ms}, \mathrm{PCI}$ Express bus compatible (Forced stop input connector is attached) (Note 2)
USB cable	MR-J3USBCBL3M	Position board MR-MC2 $\square \square / \mathrm{MR}-\mathrm{MC} 3 \square \square \leftrightarrow$ host controller
SSCNETIII cable	MR-J3BUS \square M	- MR-MC2 $\square \square /$ MR-MC3 $\square \square \leftrightarrow$ MR-J4(W $\square)-\square B / M R-J 4(W \square)-\square B \leftrightarrow$ MR-J4(W $\square)-\square B$ - Standard cord for inside panel 0.15 m (0.49 ft.$), 0.3 \mathrm{~m}(0.98 \mathrm{ft}),. 0.5 \mathrm{~m}(1.64 \mathrm{ft}),. 1 \mathrm{~m}(3,28 \mathrm{ft}),. 3 \mathrm{~m}(9.84 \mathrm{ft}$.
	MR-J3BUS \square M-A	- MR-MC2 $\square \square / M R-M C 3 \square \square \leftrightarrow$ MR-J4(W $\square)-\square B / M R-J 4(W \square)-\square B \leftrightarrow$ MR-J4(W $\square)-\square B$ - Standard cable for outside panel 5 m (16.40ft.), $10 \mathrm{~m}(32.81 \mathrm{ft}$.), $20 \mathrm{~m}(65.62 \mathrm{ft})$.
	MR-J3BUS \square M-B (Note 3)	- MR-MC2 $\square \square /$ MR-MC3 $\square \square \leftrightarrow$ MR-J4(W $\square)-\square B / M R-J 4(W \square)-\square B \leftrightarrow$ MR-J4(W $\square)-\square B$ - Long distance cable $30 \mathrm{~m}(98.43 \mathrm{ft}$.), $40 \mathrm{~m}(131.23 \mathrm{ft}),. 50 \mathrm{~m}(164.04 \mathrm{ft})$.

Note 1. $\square=$ Cable length (015: $0.15 \mathrm{~m}(0.49 \mathrm{ft}$.$) , 03: 0.3 \mathrm{~m}(0.98 \mathrm{ft}), 05:. 0.5 \mathrm{~m}(1.64 \mathrm{ft}), 1:. 1 \mathrm{~m}(3.28 \mathrm{ft}), 2:. 2 \mathrm{~m}(6.56 \mathrm{ft}), 3:. 3 \mathrm{~m}(9.84 \mathrm{ft}$.$) ,$ 5: 5 m (16.40ft.), 10: 10 m (32.81ft.), 20: 20 m (65.62 ft .), $25: 25 \mathrm{~m}(82.02 \mathrm{ft}), 30:. 30 \mathrm{~m}(98.43 \mathrm{ft}), 40:. 40 \mathrm{~m}(131.23 \mathrm{ft}), 50:. 50 \mathrm{~m}(164.04 \mathrm{ft}$)
2. Cable for forced stop input is not attached to the position board. The cable should be made by the customer.
3. Please contact your nearest Mitsubishi Electric sales representative for the cable of less than $30 \mathrm{~m}(98.43 \mathrm{ft}$.).
(2) Equipment with $\operatorname{SSCNETII}(/ \mathrm{H})$ connection

Part name	Model name	Description	Remarks
MR-J4 series servo amplifier	MR-J4-DB		Refer to the servo amplifier instruction manuals.
	MR-J4- \square B-RJ		
	MR-J4W- \square B	For 2-axis type, 3-axis type	
MR-J3 series servo amplifier	MR-J3-7B		
	MR-J3W- \square B	For 2-axis type	
	MR-J3- \square B-RJ006	For fully closed control	
	MR-J3-■B-RJ004	For linear servo motor	
	MR-J3-■B-RJ080W	For direct drive motor	
	MR-J3- \square B Safety	For drive safety servo	
	MR-J3W-0303BN6	For 2-axis type	
MR-JE series servo amplifier	MR-JE- \square B		
	MR-JE- \square BF		
SSCNETII/H head module	LJ72MS15	Maximum link points input 64 bytes, output 64 bytes	Refer to MELSEC-L SSCNETII/H Head Module User's manual.
Sensing module	MR-MT2010	Sensing SSCNETIII/H head module	Refer to the sensing module instruction manuals.
	MR-MT2100	Sensing I/O module	
	MR-MT2200	Sensing pulse I/O module	
	MR-MT2300	Sensing analog I/O module	
	MR-MT2400	Sensing encoder I/F module	

(3) Software packages
(a) Utility software

Model name	Software package
Position Board Utility2	MRZJW3-MC2-UTL

(b) Servo set-up software package

Model name	Software package
MR Configurator2	SW1DNC-MRC2-E

2.4 Checking serial number and operating system software version

Checking for the serial number of position board and software version are shown below.

2.4.1 Checking serial number

(1) Rating plate

The rating plate is on the position board. The position board serial number is printed on the SERIAL line, and the year and month of manufacture is printed on the DATE line.

POINT

- When the position board is mounted to the host controller, the serial number cannot be checked. Take note of the serial number before mounting. MC200
(2) System information $\sqrt{M C 300}$

The position board serial number can be checked on the serial number (0000C0 to 0000CF) of system information. The serial number is stored as ASCII code.

API LIBRARY

- To check the serial number, use the sscGetBoardSerialNumber function.

2.4.2 Checking software version

The software version of the position board can be checked on the system program software version (0030 to 003F MC200 $/ 0000 \mathrm{DO}$ to 000DF MC300) of system information. System program software version is stored as ASCII code.

API LIBRARY

- To check the software version, use the sscGetBoardVersion function.

2.5 Restrictions by the software's version

There are restrictions in the function that can be used by the version of the software.

Function/Item name	Change details	Software version		
		MR-MC2 $\square \square$	MR-MC3 $\square \square$	MRZJW3-MC2-UTL
Digital I/O	Addition	A1 or later	-	1.20 or later
Servo amplifier general I/O	Addition	A1 or later	-	1.20 or later
Digital output signal control for the other axes start	Addition	A1 or later	-	1.20 or later
Dual port memory exclusive control	Addition	A1 or later	-	1.20 or later
Pass position interrupt	Addition	A1 or later	-	1.20 or later
Interface mode	Addition	A3 or later	-	1.50 or later
Alarm history function	Addition	A3 or later	-	1.50 or later
Addition of waiting for SSCNET response (0009h) to system status code	Addition	A3 or later	-	1.50 or later
Speed-torque control (interface mode only)	Addition	A4 or later	-	1.60 or later
Addition of operation cycle alarm to system alarms	Addition	A4 or later	-	1.60 or later
Addition of position droop to high speed monitor (interface mode only)	Addition	A4 or later	-	1.60 or later
Mark detection function compatible	Addition	A5 or later	-	1.70 or later
Change home position return method while system is running.	Addition	A5 or later	-	1.70 or later
Continuous operation to torque control (automatic operation in standard mode only)	Addition	A5 or later	-	1.70 or later
External forced stop disabled function	Addition	A5 or later	-	1.70 or later
Point table loop method	Addition	A6 or later	-	1.70 or later
Servo amplifier (MR-JE- \square B) compatible	Addition	A7 or later	-	1.70 or later
Addition of forced stop to system interrupt factor	Addition	A7 or later	-	1.70 or later
SSCNETIII/H head module connection	Addition	A8 or later	-	1.80 or later
Transient transmit compatible	Addition	A8 or later	-	1.80 or later
Addition of station No. in order of connection to monitor	Addition	A8 or later	-	1.80 or later
I/O device compatible	Addition	A8 or later	-	1.80 or later
Changeable interpolation group	Addition	A9 or later	-	1.90 or later
Position change during deceleration	Addition	A9 or later	-	1.00 or later
Sensing module (station mode) connection	Addition	B1 or later	-	1.90 or later
SSCNETIII/H head module 0.22 ms connection	Addition	B1 or later	-	1.80 or later
Sensing module (axis mode) connection	Addition	B3 or later	-	1.90 or later
Position board MR-MC341 compatible	Addition	Not supported	-	3.00 or later
Serial number display	Addition	Not supported	-	3.00 or later
Jerk ratio acceleration/deceleration	Addition	Not supported	-	3.00 or later
Vibration suppression command filter 1	Addition	Not supported	-	3.00 or later
Circular interpolation	Addition	Not supported	A1 or later	3.10 or later
Proximity pass function	Addition	Not supported	A1 or later	3.10 or later
USB communication connection function	Addition	-	A1 or later	3.10 or later

-: No restriction by version.

MEMO

3. INSTALLATION AND WIRING

3.1 Board installation

This section explains instructions for handling and installation environment of the position board.

3.1.1 Instructions for handling

The following explains instructions for handling.

\triangle CAUTION

- Do not touch any connectors while power is ON. Doing so may cause electric shock or malfunction.
- Do not directly touch any conductive parts and electronic components of the board. Doing so may cause malfunction or failure of the board.
- Do not disassemble or modify the board. Doing so may cause failure, malfunction, injury, or fire.
- Before handling the board, touch a conducting object such as a grounded metal to discharge the static electricity from the human body. Failure to do so may cause the board to fail or malfunction.
- Handle the board in a place where static electricity will not be generated. Failure to do so may cause a failure or malfunction.
- The board is included in a static electricity preventing vinyl bag. When storing or transporting it, be sure to put it in the static electricity preventing vinyl bag. Failure to do so may cause a failure or malfunction. - Do not drop or apply a strong impact to the board. Doing so may cause a failure or malfunction.

3.1.2 Installation environment

For installation of the host controller in which the position board is installed, refer to the manual for the host controller.
(1) Instructions for board installation environment

Use the board in an environment that meets the general specifications in this manual. Failure to do so may result in electric shock, fire, malfunction, or damage to or deterioration of the product.
(2) Instructions for host controller installation environment

Always ground the host controller to the protective ground conductor. Failure to do so may cause a malfunction.

3.2 Connection and disconnection of cable

3.2.1 SSCNETIII cable

(1) Precautions for handling the SSCNETIII cable

- Do not stamp the SSCNETIII cable.
- When laying the SSCNETIII cable, be sure to secure the minimum cable bend radius or more. If the bend radius is less than the minimum cable bend radius, it may cause malfunctions due to characteristic deterioration, wire breakage, etc.
- For connection and disconnection of SSCNETIII cable, hold surely a tab of cable connector.

(2) Connection of SSCNETIII cable
- For connection of SSCNETIII cable to the position board, connect it to the SSCNETIII connector 1CH or 2CH of position board while holding a tab of SSCNETIII cable connector. Be sure to insert it until it clicks.
- If the cord tip for the SSCNETIII cable is dirty, optical transmission is interrupted and it may cause malfunctions. If it becomes dirty, wipe with a bonded textile, etc. Do not use solvent such as alcohol.
(3) Disconnection of SSCNETIII cable
- For disconnection of SSCNETIII cable, pull out it while holding a tab of SSCNETIII cable connector or the connector.
- After disconnection of SSCNETIII cable, be sure to put a cap (attached to position board or servo amplifier) to the position board and servo amplifier.
- For SSCNETIII cable, attach the tube for protection optical cord's end face on the end of connector.
(4) Precautions of SSCNETIII cable wiring

SSCNETIII cable is made from optical fiber. If optical fiber is added a power such as a major shock, lateral pressure, haul, sudden bending or twist, its inside distorts or breaks, and optical transmission will not be available. Especially, as optical fiber for MR-J3BUS $\square \mathrm{M}$ and MR-J3BUS $\square \mathrm{M}-\mathrm{A}$ is made of synthetic resin, it melts down if being left near the fire or high temperature. Therefore, do not make it touched the part, which becomes high temperature, such as radiator or regenerative option of servo amplifier, or servo motor. Be sure to use optical fiber within the range of operating temperature described in this manual.
Read described item of this section carefully and handle it with caution.
(a) Minimum bend radius

Make sure to lay the cable with greater radius than the minimum bend radius. Do not press the cable to edges of equipment or others. For SSCNETIII cable, the appropriate length should be selected with due consideration for the dimensions and arrangement of position board and servo amplifier. When closing the door of control panel, pay careful attention for avoiding the case that SSCNETIII cable is hold down by the door and the cable bend becomes smaller than the minimum bend radius.

Model name of SSCNETIII cable	Minimum bend radius[mm(inch)]
MR-J3BUSロM	$25(0.98)$
MR-J3BUSDM-A	Enforced covering cord : 50 (1.97) Cord : 25 (0.98)
MR-J3BUS■M-B	Enforced covering cord : 50 (1.97) Cord : $30(1.18)$

(b) Tension

If tension is added on the SSCNETIII cable, the increase of transmission loss occurs because of external force which concentrates on the fixing part of SSCNETIII cable or the connecting part of SSCNETIII connector. At worst, the breakage of SSCNETIII cable or damage of SSCNETIII connector may occur. For cable laying, handle without putting forced tension.

Model name of SSCNETIII cable		Tension strength [N]
MR-J3BUS \square M	$\square=015$	70
	$\square=03$ to 3	140
MR-J3BUS $\square M-A ~$	420 (Enforced covering cord)	
MR-J3BUSロM-B	980 (Enforced covering cord)	

(c) Lateral pressure

If lateral pressure is added on the SSCNETIII cable, the cable itself distorts, internal optical fiber gets stressed, and then transmission loss will increase. At worst, the breakage of SSCNETIII cable may occur. As the same condition also occurs at cable laying, do not tighten up SSCNETII cable with a thing such as nylon band (TY-RAP). Do not trample it down or tuck it down with the door of control panel or others.
(d) Twisting

If SSCNETIII cable is twisted, it will become the same stress added condition as when local lateral pressure or bend is added. Consequently, transmission loss increases, and the breakage of SSCNETIII cable may occur at worst.
(e) Disposal

When incinerating optical cable (cord) used for SSCNETIII cable, hydrogen fluoride gas or hydrogen chloride gas which is corrosive and harmful may be generated. For disposal of SSCNETIII cable, request for specialized industrial waste disposal services who has incineration facility for disposing hydrogen fluoride gas or hydrogen chloride gas.

POINT

- Be sure to connect SSCNETIII cable with the above connector. If the connection is mistaken, between the position board and servo amplifier cannot be communicated.
- Forced removal of the SSCNETIII cable from the position board will damage the position board and SSCNETIII cables.
- After removal of the SSCNETIII cable, be sure to put a cap on the SSCNETIII connector. Otherwise, adhesion of dirt deteriorates in characteristic and it may cause malfunctions.
- Do not remove the SSCNETIII cable while turning on the power supply of position board and servo amplifier.
Do not see directly the light generated from SSCNETIII connector of position board or servo amplifier and the end of SSCNETIII cable. When the light gets into eye, may feel something is wrong for eye. (The light source of SSCNETIII cable complies with class1 defined in JISC6802 or IEC60825-1.)
- If the SSCNETIII cable is added a power such as a major shock, lateral pressure, haul, sudden bending or twist, its inside distorts or brakes, and optical transmission will not be available.

Be sure to take care enough so that the short SSCNETIII cable is added a twist easily.

- Be sure to use the SSCNETIII cable within the range of operating temperature described in this manual. Especially, as optical fiber for MR-J3BUS \square M and MR-J3BUSDM-A are made of synthetic resin, it melts down if being left near the fire or high temperature. Therefore, do not make it touched the part which becomes high temperature, such as radiator or regenerative option of servo amplifier, or servomotor.
- When laying the SSCNETIII cable, be sure to secure the minimum cable bend radius or more.
- Put the SSCNETIII cable in the duct or fix the cable at the closest part to the position board with bundle material in order to prevent SSCNETIII cable from putting its own weight on SSCNETIII connector.
When laying cable, the optical cord should be given loose slack to avoid from becoming smaller than the minimum bend radius, and it should not be twisted. When bundling the cable, fix and hold it in position by using cushioning such as sponge or rubber which does not contain migratable plasticizing. If using adhesive tape for bundling the cable, fire resistant acetate cloth adhesive tape 570F (Teraoka Seisakusho Co., Ltd) is recommended

POINT

- Migratable plasticizer is used for vinyl tape. Keep the MR-J3BUS \square M, and MR-J3BUS \square M-A cables away from vinyl tape because the optical characteristic may be affected.

SSCNETIII cable	Cord	Cable
MR-J3BUS \square M	\triangle	
MR-J3BUS \square M-A	\triangle	\triangle
MR-J3BUS $\square M-B ~$	\bigcirc	O

O: Normally, cable is not affected by plasticizer.
\triangle : Phthalate ester plasticizer such as DBP and DOP may affect optical characteristic of cable.
Generally, soft polyvinyl chloride (PVC), polyethylene resin (PE) and fluorine resin contain non-migratable plasticizer and they do not affect the optical characteristic of SSCNETIII cable. However, some wire sheaths and cable ties, which contain migratable plasticizer (phthalate ester), may affect MR-J3BUS \square M and MR-J3BUS \square M-A cables (made of plastic). In addition, MR-J3BUS \square M-B cable (made of quartz glass) is not affected by plasticizer.

- If the adhesion of solvent and oil to the cord part of SSCNETIII cable may lower the optical characteristic and machine characteristic. If it is used such an environment, be sure to do the protection measures to the cord part.
- When keeping the position board or servo amplifier, be sure to put on a cap to connector part so that a dirt should not adhere to the end of SSCNETIII connector.
- SSCNETIII connector to connect the SSCNETIII cable is put a cap to protect light device inside connector from dust. For this reason, do not remove a cap until just before connecting SSCNETIII cable. Then, when removing SSCNETIII cable, make sure to put a cap.
- Keep the cap and the tube for protecting light cord end of SSCNETIII cable in a plastic bag with a zipper of SSCNETIII cable to prevent them from becoming dirty.
- When exchanging the position board or servo amplifier, make sure to put a cap on SSCNETIII connector. When asking repair of position board or servo amplifier for some troubles, make also sure to put a cap on SSCNETIII connector. When the connector is not put a cap, the light device may be damaged at the transit. In this case, exchange and repair of light device is required.

3.2.2 Forced stop input cable

(1) Precautions for handling the forced stop input cable

- For connection or removal of the forced stop input cable, do it surely while holding a connector of forced stop input cable.

(2) Connection of the forced stop input cable
- For connection of a forced stop input cable to the position board, connect it surely to an EMI connector of position board while holding a connector. Be sure to insert it until it clicks.
(3) Removal of the forced stop input cable
- For removal of the forced stop input cable, push a tab and pull out the cable while holding a connector.

POINT

The following handling will damage the position board or forced stop input cable.

- Forced removal of the forced stop input cable from the position board.
- The forced stop input cable is twined other cables.
- Excessive power is applied at cable laying.

Wire the cable correctly.

3.3 Wiring

This section explains instructions for wiring.
Refer to "14 EMC Directives" for grounding method and measure against noise.

3.3.1 Instructions for wiring

. DANGER

- Completely turn off the power used in the system externally before board installation or placing wiring. Not doing so could result in electric shock or damage to the product.
- When turning on the power supply or operating after wiring, be sure that the cover of the equipment the board is connected to is correctly attached.
Not attaching the cover could result in electric shock.

\triangle CAUTION

- Be sure to ground the host controller. Not doing so could result in electric shock or operation failure. (Ground resistance: 100Ω or less)
- Be sure there are no foreign matters such as sawdust or wiring debris inside the host controller. Such debris could cause fire, damage, or operation failure.
- When removing the cable from the board, do not pull the cable. Hold the connector that is connected to the board. Pulling the cable that is still connected to the board may cause malfunction or damage to the board or cable.

3.3.2 Wiring of connector MC300

Specialized tools are not required for wiring the external forced stop cable connector because plugs with spring connection are used.
(1) Applicable wire size and wire fabrication
(a) Applicable wire size

The applicable wire size for external forced stop cable connector is shown below.

Connector	Model	Applicable wire size
Forced stop input connector	FK-MC0, $5 / 3-$ ST-2,5	0.08 to $0.52 \mathrm{~mm}^{2}$ (AWG28 to AWG20)

(b) Wire fabrication

Strip the wire according to stripped length indicated in the figure below.
Slide the sheath off the wire and gently twist and straighten the strands. When using the wire, be careful not to short with stray strands entering the neighboring poles. Do not use solder on the wire's core as this may lead to insufficient contact.

1) Using a ferrule

A ferrule can also be used to connect with the connector.
Use the ferrules in the table below for the external forced stop cable connector.

Connector	Wire size	Ferrule model		Crimping tool	Manufacturer
		For 1 wire	For 2 wires		
External forced stop cable connector	AWG21	AI0.5-8 OG	-	CRIMPFOX-ZA3	PHOENIX CONTACT GmbH \& Co. KG

- Cut the wire sticking out from the end of the ferrule to 0.5 mm (0.02 inch) or less.

(2) Inserting wire

1) Press the connector release with a tool such as a flathead screwdriver.
2) While holding the release down, insert the wire all the way in.

Note. When using a ferrule, make sure the bumpy side is facing towards the release.
When inserting 2 wires into one terminal, use a twin ferrule.
Insert the wire with the bumpy side facing the release.

4. SYSTEM STARTUP

The following explains the preparations and settings for system startup.
When using a SSCNETIII/H head module, and a sensing module, refer to the following.

- SSCNETII/H head module. \qquad Section 6.33
- Sensing module (station mode) Section 6.34
- Sending module (axis mode).

Section 6.35

4.1 Startup procedures

4.2 Check of wiring and ambient environment

(1) Wiring

Refer to "Chapter 3 INSTALLATION AND WIRING".
(2) Cable treatment

The wiring cables should not be strained.
The connector part should not be strained.
(3) Environment

Signal cables and bus of host controller are not shorted by wire offcuts and metallic dust.

4.3 Position board setting

Board ID is set by board ID selection (SW1) switch of the position board.
(1) Board ID

Board ID and board ID selection switch No. are correlated as shown on the table below. Set board ID so that it will not be duplicated. If it is duplicated, it may interfere with board identification on the host controller side.

Board ID selection

Board ID	Switch 1	Switch 2
3	ON	ON
2	OFF	ON
1	ON	OFF
0	OFF	OFF

The following is a setting example for controlling four position boards.

Board ID	Switch 1	Switch 2
0	OFF	OFF
2	OFF	ON
1	ON	OFF
3	ON	ON

POINT

- The board ID may be in no particular order, and can be arbitrarily selected between 0 to 3 .
- No. of connectable position boards vary by bus specifications of the host controller.
- USB connections between one personal computer and multiple position boards set to an overlapping board ID may interfere with board identification on the personal computer-side. As such, do not perform multiple USB connections at the same time.

4.4 Servo amplifier setting

(1) MR-J4(WD)- $\square B$

Axis No. of MR-J4(Wロ)- $\square B$ is set by the axis selection rotary switch (SW1) and the axis No. auxiliary setting (SW2) on the servo amplifier.

Note. For when set with the axis No. auxiliary setting

Servo amplifier axis No.	Axis selection rotary switch	Axis No. auxiliary setting switch	Servo amplifier display (3-digit, 7-segment LED)
d1	0	$\begin{array}{l\|l\|} \text { ON } \\ \text { OFF } & \square \square \\ \end{array}$	01
d2	1		02
d3	2		03
d4	3		04
d5	4		05
d6	5		06
d7	6		07
d8	7		08
d9	8		09
d10	9		10
d11	A		11
d12	B		12
d13	C		13
d14	D		14
d15	E		15
d16	F		16
d17	0	$\begin{gathered} \text { on } \\ \text { off } \\ \\ \hline \end{gathered}$	17
d18	1		18
d19	2		19
d20	3		20
d21	4		21
d22	5		22
d23	6		23
d24	7		24
d25	8		25
d26	9		26
d27	A		27
d28	B		28
d29	C		29
d30	D		30
d31	E		31
d32	F		32

POINT

- For each switch setting, refer to the Servo Amplifier Instruction Manual for your servo amplifier.
- If the "An axis that has not been mounted exists" (system error E400) occurred, the axis with wrong axis No. set can be confirmed with "information concerning axis that is not mounted" (monitor No. 0480 to 0482).
- The servo amplifier axis No. and the axis No. to be managed on the position board are different. For details, refer to Section 4.5.6.

The following is a setting example for controlling six axes (MR-J4-■B) for each line by control cycle 0.88 ms using MR-MC211.

Line 1				Line 2			
Servo amplifier axis No.	Axis selection rotary switch	Axis No. auxiliary setting switch		Servo amplifier axis No.	Axis selection rotary switch	Axis No. auxiliary setting switch	
		3	4			3	4
d15	E	OFF	OFF	d17	0	OFF	ON
d20	3	OFF	ON	d16	F	OFF	OFF
d1	0	OFF	OFF	d1	0	OFF	OFF
d2	1	OFF	OFF	d2	1	OFF	OFF
d5	4	OFF	OFF	d5	4	OFF	OFF
d6	5	OFF	OFF	d6	5	OFF	OFF

POINT

- The servo amplifier axis No. may be in no particular order, and can be arbitrarily selected between d1 to d20 for MR-MC2D \square, and d1 to d32 for MRMC3 $\square \square$.
- No. of connectable servo amplifiers vary by control cycle.

4.5 Parameter setting

After parameter initialization, set the parameters according to the system such as for control cycle and external signal (sensor) input option.

4.5.1 Parameter initialization

After turning on the position board power, initialize parameter and set before system startup starts.

Figure 4.1 Parameter data flow during parameter initialization

Procedure	Description		Remarks
1	Confirm system preparation completion (system status code 0001h)		Confirmation of system preparation completion uses sscGetSystemStatusCode.
2	To read parameter initial values, perform the parameter initialization (system command code: 0003h).	To read parameters from the flash ROM, perform the flash ROM parameter read (system command code: 0004h).	1) and 2) in Fig. 4.1 Always initialize parameter or read parameter from the flash ROM. Procedure 2 and procedure 3 of parameter initialization uses the sscResetAllParameter function.
3	Check the parameter initialization completion (system status code: 0003h).	Check the flash ROM parameter read completion (system command code: 0004h).	
4	Write parameter from user program if required		3) in Fig. 4.1 Parameter writing uses sscChangeParameter/sscChange2Parameter.

4.5.2 System option 1 setting

SSCNET communication method and control cycle is set by System option 1 (parameter No.0001).
SSCNET communication method is used for communication between a position board and connected units such as servo amplifiers and SSCNETII/H method is available.
Control cycle is a cycle in which the position board controls command import, position control, status output, and communication with servo amplifier and $0.88 \mathrm{~ms}, 0.44 \mathrm{~ms}$ and 0.22 ms are available.
Number of servo amplifier axes which a position board can control is shown below for each control cycle.
(1) MR-MC2 $\square \square$
(a) For MR-MC210/MR-MC220U3/MR-MC220U6/MR-MC240

Control cycle	Maximum No. of axes connected	Maximum No. of axes connected for each line	Controllable axis No.
0.88 ms	20 axes	20 axes	Axis 1 to 20
0.44 ms	16 axes	16 axes	Axis 1 to 16
0.22 ms	8 axes	8 axes	Axis 1 to 8

Note 1. Do not connect more servo amplifiers than the maximum No. of axes connected. When more servo amplifiers are connected than the maximum No. of axes connected, system setting error (alarm No. 38, detail 01) will occur.
2. Use servo amplifier software version A3 or later when the control cycle is 0.22 ms , and the 3 -axis servo amplifier MR-J4W3- $\square \mathrm{B}$ is used.
(b) For MR-MC211/MR-MC241

Control cycle	Maximum No. of axes connected	Maximum No. of axes connected for each line	Controllable axis No.
0.88 ms	32 axes	20 axes	Axis 1 to 32
0.44 ms	16 axes	16 axes	Axis 1 to 16
0.22 ms	8 axes	8 axes	Axis 1 to 8

Note 1. Do not connect more servo amplifiers than the maximum No. of axes connected. When more servo amplifiers are connected than the maximum No. of axes connected, system setting error (alarm No. 38, detail 01) will occur.
2. Use servo amplifier software version A3 or later when the control cycle is 0.22 ms , and the 3 -axis servo amplifier MR-J4W3- $\square \mathrm{B}$ is used.
(2) MR-MC3 $\square \square$
(a) For MR-MC341

Control cycle	Maximum No. of axes connected	Maximum No. of axes connected for each line	Controllable axis No.
0.88 ms	64 axes	32 axes	Axis 1 to 64
0.44 ms	64 axes	32 axes	Axis 1 to 64
0.22 ms	32 axes	16 axes	Axis 1 to 32

Note 1. Do not connect more servo amplifiers than the maximum No. of axes connected. When more servo amplifiers are connected than the maximum No. of axes connected, system setting error (alarm No. 38, detail 01) will occur.
2. Use servo amplifier software version A3 or later when the control cycle is 0.22 ms , and the 3 -axis servo amplifier MR-J4W3- $\square \mathrm{B}$ is used.
3. The 2-axis servo amplifier MR-J4W2- \square B cannot allocate axis 16 onwards. The 3-axis servo amplifier MR-J4W3- $\square \mathrm{B}$ cannot allocate axis 15 onwards.

Control cycle settings are imported during system startup (system command code: 000Ah), and cannot be changed during system running (system status code: 000Ah).
(1) System parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function		
0001	*SYSOP1	System option 1	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 0002h } \end{aligned}$	0	0	—Control cycle setting Set the control cycle. $0: 0.88 \mathrm{~ms}$ 1: 0.44 ms 2: 0.22 ms -SSCNET communication method Set the SSCNET communication method. 0: SSCNETIII/H Note. SSCNET communication method is shared in lines 1 and 2.

(2) System information

Address		Name	
Description			
	MR-MC3 $\square \square$		
0004	000004	Control cycle status	0001h: 0.88 ms $0002 \mathrm{~h}: 0.44 \mathrm{~ms}$
0005	000005		$0003 \mathrm{~h}: 0.22 \mathrm{~ms}$
0006	000006	Reserved	
0007	000007		

4.5.3 System option 2 setting

Set control mode (standard mode or interface mode) by System option 2 (parameter No.0002).
When using interface mode, select "1: Interface mode".
When interface mode is assigned and system is startup, the in interface mode signal (IFMO) turns ON. Control mode setting is imported during system startup (system command code: 000Ah), and cannot be changed during system running (system status code: 000Ah).
(1) System parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
0002	*SYSOP2	System option 2	0000h		$\begin{aligned} & 0000 \mathrm{~h} \\ & \text { to } \\ & 1101 \mathrm{~h} \end{aligned}$	

4.5.4 I/O table setting

Set the I/O table to be used (digital I/O table or I/O device table) by I/O table (parameter No.004A).
I/O table setting is imported during system startup (system command code: 000Ah), and cannot be changed during system running (system status code: 000Ah).
(1) System parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function		
004A	*IOTBL	I/O table	0000h		$\begin{gathered} 0000 \mathrm{~h} \text { to } \\ 0001 \mathrm{~h} \\ \text { MC200 } \\ 0000 \mathrm{~h} \text { to } \\ 0002 \mathrm{~h} \\ \text { MC300 } \end{gathered}$		0	- I/O table selection Set the I/O table to be used. 0 : Use digital I/O table 1: Use I/O device table (MR-MC2 $\square \square$ method) 2: Use I/O device table (expanded points method) MC300

POINT

- In relation to the digital I/O function, the following functions are expanded for the I/O device function. We recommend using the I/O device function.
- Expansion of I/O points used
- Supports control of I/O word devices

4.5.5 Control option 1 setting

When controlling servo amplifier, set "1: control" for control axis of control option 1 (parameter No.0200). When the axis No. is set out of the controllable range, a system setting error (alarm No. 38) will occur at the corresponding axis, and the axis cannot be controlled. If the servo amplifier set is in a state where communication cannot be made, such as not connected or control circuit power is off, the "An axis that has not been mounted exists" (system error E400) will occur during system startup (system command code: 000Ah).

POINT

- If the "An axis that has not been mounted exists" (system error E400) occurred, the axis with wrong No. set can be confirmed with "information concerning axis that is not mounted" (monitor No.0402).

Control axis settings are imported during system startup (system command code: 000Ah), and cannot be changed during system running (system status code: 000Ah).
(1) Control parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
0200	*OPC1	Control option 1	0000h		$\begin{aligned} & 0000 \mathrm{~h} \\ & \text { to } \\ & 2111 \mathrm{~h} \end{aligned}$	

POINT

- When the amplifier-less axis function is valid, the position board simulates the operations of servo amplifier and operates as if it is connected. Operation can be checked without connecting the servo amplifier. When the setting is valid, the position board do not communicate with the servo amplifier.

4.5.6 Axis No. assignment

With Axis No. assignment, the axis No. (on the position board) can be assigned by the axis No. on the servo amplifier.
(1) When Axis No. assignment is invalid

When Axis No. assignment is invalid, correspondence between the axis No. on a position board and the axis No. on a servo amplifier is shown in the following table.
(a) When SSCNET communication method is SSCNETII/H

1) Using MR-MC2 $\square \square$

Servo amplifier axis No.		Line 1																			
		d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11	d12	d13	d14	d15	d16	d17	d18	d19	d20
Axis No.	0.88 ms	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	0.44 ms	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	-	-	-	-
	0.22 ms	1	2	3	4	5	6	7	8	-	-	-	-	-	-	-	-	-	-	-	-

Servo amplifier axis No.		Line 2																			
		d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11	d12	d13	d14	d15	d16	d17	d18	d19	d20
Axis No.	0.88 ms	21	22	23	24	25	26	27	28	29	30	31	32	-	-	-	-	-	-	-	-
	0.44 ms	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0.22 ms	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		

2) Using MR-MC3 $\square \square$

Servo amplifier axis No.		Line 1																			
		d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11	d12	d13	d14	d15	d16	...	d30	d31	d32
Axis No.	0.88 ms	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	...	30	31	32
	0.44 ms	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	-	30	31	32
	0.22 ms	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	-			

Servo amplifier axis No.		Line 2																			
		d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11	d12	d13	d14	d15	d16	\ldots	d30	d31	d32
$\begin{array}{\|l\|} \hline \text { Axis } \\ \text { No. } \end{array}$	0.88 ms	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	...	62	63	64
	0.44 ms	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	\cdots	62	63	64
	0.22 ms	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32				

POINT

- When axis No. assignment is invalid and both line 1 and line 2 are set to connect to the servo amplifier, the system will not run unless there is a servo amplifier connected to line 1.
(2) When Axis No. assignment is valid

When Axis No. assignment is valid, the axis Nos. (1 to 32 MC200 $/ 1$ to 64 MC300) (on the position board) can be assigned by the servo amplifier axis Nos. (d 1 to $\mathrm{d} 20 /$ MC200 $/ \mathrm{d} 1$ to $\mathrm{d} 64 \sqrt{\text { MC300 }}$) arbitrarily. To assign the axis Nos., set the following parameters.

POINT

- To set servo amplifier axis Nos., use the axis No. assignment (parameter No.0203).
Valid servo amplifier axis Nos. differ depending on the control cycle. Up to 20 axes can be set when using MR-MC2 $\square \square$, and up to 32 axes when using MR-MC3 $\square \square$.

Control cycle	SSCNETII/H	
	MR-MC2 $\square \square$	MR-MC3 $\square \square$
0.88 ms	1 to 20	1 to 32
0.44 ms	1 to 16	1 to 32
0.22 ms	1 to 8	1 to 16

(a) System parameter

Parameter No.	Symbol	Name	Function
0002	*SYSOP2	System option 2	0 0 0 Axis/station No. assignment selection Set 1 when validating axis/station No. assignment. When axis/station No. assignment is invalid, axis/station No. is automatically assigned. 0 : Invalid 1: Valid

(b) Control parameter

Note 1. An axis No. out of the valid range causes the system setting error (alarm No. 38, detail 03).
2. Regardless of the control axis setting (parameter No.0200), set the axis No. so that the axis No. assignment is not duplicated. (Except for 00: No axis No. assignment) Duplicated axis Nos. cause the system setting error (alarm No. 38, detail 04).
3. When Control is set in the control axis setting (parameter No.0200), always set the axis Nos. When 0 is set, system setting error (alarm No. 38, detail 02) will occur.

The following is a setting example for controlling six axes for each line.

Axis No.	1	2	3	4	5	6	7	8	10	11	12	13
Control parameter No.0203 setting value	0001 h	0002 h	0003h	0004 h	0101 h	0102 h	0103 h	0104 h	0005 h	0006 h	0105 h	0106 h
Servo amplifier axis No.	Line 1 d 1	Line 1 d 2	Line 1 d 3	Line 1 d 4	Line 2 d 1	Line 2 d 2	Line 2 d 3	Line 2 d 4	Line 1 d 5	Line 1 d 6	Line 2 d 5	Line 2 d 6

4.5.7 Sensor input option setting

External signal (sensor) is connected by setting sensor input options (parameter No.0219).

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function
0218	*SSIA	Sensor signal input assignment MC300	0000h		$\begin{aligned} & \text { 0000h to } \\ & 0111 \mathrm{~h} \end{aligned}$	Only valid when the I/O table (parameter No.004A) setting is " $1 / O$ device table (expanded points method)". - Input device assignment (LSP) Set the input device assignment connecting LSP to valid/invalid. 0 : Assignment not set 1: Assignment valid Input device assignment (LSN) Set the input device assignment connecting LSN to valid/invalid. 0 : Assignment not set 1: Assignment valid Input device assignment (DOG) Set the input device assignment connecting DOG to valid/invalid. 0 : Assignment not set 1: Assignment valid
0219	*SOP	Sensor input options	0000h		$\begin{aligned} & \text { 0000h to } \\ & 0304 \mathrm{~h} \end{aligned}$	

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function
021A	*SLSP	Sensor signal (LSP) connection specification	0000h		0000 to FFF1h MC200 0000 to FFFFh MC300	The setting target differs depending on the I/O table (parameter No.004A) setting. [When using a digital I/O table] - Digital input assignment Set valid/invalid for the digital input assignment where LSP is connected. 0 : Not assigned 1: Assigned Digital input number assignment Set the digital input number where the LSP is connected. 000h to 3FFh: DI_000 to DI_3FF [When using a I/O device table (MR-MC2 $\square \square$ method)] Input device assignment Set valid/invalid for the input device assignment where LSP is connected. 0 : Not assigned 1: Assigned Input device number assignment Set the input device number where the LSP is connected. 000h to FFFh: DVI_000 to DVI_FFF [When using a I/O device table (expanded points method)] MC300 Set the input device assignment connecting LSP to valid/invalid in sensor signal input assignment (parameter No.0218). Input device number assignment Set the input device number where the LSP is connected. 0000h to 23FFh: DVI_0000 to DVI_23FF
021B	*SLSN	Sensor signal (LSN) connection specification	0000h		0000 to FFF1h MC200 0000h to FFFFh MC300	Assigns the input of the sensor signal (LSN). The settings are the same as parameter No.021A
021C	*SDOG	Sensor signal (DOG) connection specification	0000h		0000 to FFF1h MC200 0000h to FFFFh MC300	Assigns the input of the sensor signal (DOG). The settings are the same as parameter No.021A

(1) When selecting the driver input

When 1 (driver input) is selected as the sensor destination, the sensor (LSP, LSN, DOG) status connected to the driver (such as a servo amplifier) is imported via SSCNET.
(a) MR-J4(Wロ)-■B is used as a servo amplifier

1) $M R-J 4-\square B$

Signal Name	Destination connector pin No.	Symbol
LSP	CN3-2	D11
LSN	CN3-12	D12
DOG	CN3-19	D13

2) MR-J4W2- $\square B$

Signal Name	Destination connector pin No.		Symbol ($\square:$ A, B)
	A-axis	B-axis	
LSP	CN3-7	CN3-20	DI2 \square
LSN	CN3-8	CN3-21	DI3 \square
DOG	CN3-9	CN3-22	

3) MR-J4W3- $\square B$

Signal Name	Destination connector pin No.			Symbol
	B-axis	C-axis	(\square, B, C)	

POINT

- For sensor connection to the driver, refer to the instruction manual of the driver.
- If communication error (system error E401 to E407) occurs, sensor (LSP, LSN, DOG) input status turns off.
- If communication error (system error E400) occurs, the input status of the corresponding axis turns off.
(2) When selecting the digital input/input device

When 2 (digital or input device input) is selected as the sensor destination, the setting target differs depending on the I/O table (parameter No.004A) setting.
Refer to Section 6.26 to $6.28,6.33$, and 6.35 .

I/O table (parameter No.004A) setting	Used input signal	Parameter specifying the input signal connection
Use digital I/O table	Digital input signal (DI_ $\square \square \square)$	Sensor signal (LSP) connection specification (parameter No.021A) Sensor signal (LSN) connection specification (parameter No.021B)
Use I/O device table (MR-MC2 $\square \square$ method)	Input device signal (DVI_ $\square \square \square)$	Sensor signal (DOG) connection specification (parameter No.021C)
Use I/O device table (expanded points method) $\mathbf{M C 3 0 0}$ (DVI_ $\square \square \square \square)$	Sensor signal input assignment (parameter No.0218) Sensor signal (LSP) connection specification (parameter No.021A) Sensor signal (LSN) connection specification (parameter No.021B) Sensor signal (DOG) connection specification (parameter No.021C)	

(3) When selecting not connected

When 3 (not connected) is selected as the sensor destination, the sensor (LSP/LSN/DOG) is not detected. Limit switch functions are always invalid. In the home position return using the proximity dog, the position board operates without detected proximity dog.
(4) When selecting dual port memory

When 4 (dual port memory input) is selected as the sensor destination, + side limit switch input signal (LSPC), - side limit switch input signal (LSNC) and proximity dog input signal (DOGC) are imported as substitutes for sensors.

Address (Note)		Bit	Symbol	Signal Name	

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3 $\square \square:+140 \mathrm{~h}$

POINT

- When the sensor input command (LSPC, LSNC, DOGC) is turned on, a normally-open contact turns on (a normally-closed contact turns off). The polarity of the limit switch input command is the normally closed contact. The polarity of the proximity dog input command can be changed by proximity dog input polarity (parameter No.0240).

\triangle CAUTION

- When "1: driver input" and "2: digital or input device input" are selected as sensor destinations, a delay occurs due to the communication to detect the signal status. Take the delay time due to communication into consideration when installing each sensor.
- Communication delay when control cycle is 0.88 ms : approx. 2 ms
- Communication delay when control cycle is 0.44 ms : approx. 1.5 ms
- Communication delay when control cycle is 0.22 ms : approx. 1.3 ms

4.5.8 Vendor ID and type code setting

Available functions, parameter settings and ranges will vary by servo amplifier type. At the time the communication with the servo amplifier has started, the position board will perform consistency check between vendor ID and type code of the servo amplifier connected and the parameter set. If a consistency check error occurs, driver type code error (system error E405) will be output, therefore set correct vendor ID and type code.

POINT

- If driver type code error (system error E405) occurred, the axis that has set an incorrect type code can be confirmed with "type code erroneous axis information" (monitor No. 0484 to 0485).
(1) Control parameters

Parameter No.	Symbol	Name	Function
021D	*VEND	Vendor ID	Set the vendor ID. 0000h: Mitsubishi Electric
021E	*CODE	Type code	Set the type code. 1000h: MR-J4(W $\square)-\square B$ $1200 h: ~ M R-J E-~$

4.6 System startup processing

(1) System startup procedure

After parameter initialization, start system startup before performing operations.

Figure 4.2 Parameter data flow during system startup

Procedure	Description	Remarks
1	The number of seconds passed since 0000hrs, January 1, 1970 is stored in system startup time.	The time is used to create data for alarm history function. When using the API library, the time is automatically set in the sscSystemStart API function.
2	Set the time synchronization information.	When using the API library, the time is automatically set in the sscSystemStart API function.
3	Perform the start system startup command (system command code 000Ah)	1) of Figure 4.2 The position board will start communicating with the servo amplifier and write the servo parameters according to the parameters set (refer to Section 4.5.1), and system running will be in process (system status code: 000Ah). Start of system startup uses the sscSetSystemCommandCode function.
4	Confirm the during system running (system status code 000Ah).	Confirmation of during system running uses the sscSetSystemCommandCode function.

API LIBRARY

- Use the sscSystemStart function to start system startup.
- For a detailed procedure for system startup, refer to the sample programs (InterruptDrive/AllParamWrite) contained on the utility software.
(2) Sequence example

Note 1. If an error occurs during system startup, an error code is set in the system status code.
Refer to "Section 13.6 System error" concerning error codes.
2. When the system status code does not become 000Ah (an error code is not stored either.), the following is possible: the SSCNET communication cable is disconnected, the connected equipment is turned off, the SSCNET communication method (parameter No.0001) is incorrect. The set communication method can be confirmed in SSCNET communication method.
3. Communication with the axes for which parameter No. 0200 control axis is set to "1: control performed" will be implemented, therefore be sure to set the control axis parameters.
4. The parameter initialization process (sscResetAllParameter function) is listed for compatibility with older models. It can be omitted for MR-MC2 $\square \square / M R-M C 3 \square \square$.

5．OPERATIONAL FUNCTIONS

5．1 Summary

There are six modes in operational functions．

Operation mode	Details
JOG operation	Operates while the start operation signal（ST）is ON．
Incremental feed	Sends a fixed amount．
Automatic operation	Positions according to the point table．
Linear interpolation $M C 200 【$	Performs linear interpolation control for up to 4 axes，according to the point table．
Interpolation operation $\mathbf{M C 3 0 0}$	Performs linear interpolation control for up to 4 axes and circular interpolation control for 2 axes according to the point table．
Home position return	Moves to the home position，and establishes the home position．
Home position reset	Sets the current position as the home position．

After selecting the operation mode，operation is started by turning ON the start operation signal（ST）／fast start operation signal（FST）．During operation the during operation signal（OP）turns ON，and when operation is completed，the completion of operation signal（OPF）turns ON．

5．1．1 Interface

（1）Axis command／axis status bit
The common axis command／status bits for operational functions are as follows．
（a）Axis command bits

Address（Note）		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
1001	005001	0	ST	Start operation
		1	DIR	Movement direction
		2	STP	Stop operation
		3	RSTP	Rapid stop
		4	\checkmark	Reserved
		5	ORST	Operation alarm reset
		6		
		7	V	Reserved

Address（Note）		Bit	Symbol	Signal name
MR－ MC2口	MR－ MC3口			
1002	005002	0	AUT	Automatic operation mode
		1	ZRN	Home position return mode
		2	JOG	JOG operation mode
		3	S	Incremental feed mode
		4	－	Reserved
		5	LIP	Linear interpolation mode MC200 Interpolation operation mode MC300
		6	DST	Home position reset mode
		7	－	Reserved

Address（Note）		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array}$	$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC3 } \\ \hline \end{array}$			
1006	005006	0	FST	Fast start operation
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Note．The addresses in the table are the addresses for the first axis．For the second axis and after，add the following value for each axis．
－Using MR－MC2口D：＋COh
－Using MR－MC3 \square ：＋140h

1) Details concerning axis command bits

Symbol	Signal name	Function details	
		Function	Operation
ST	Start operation	Starts operation.	When the start operation signal (ST) is turned ON while operation is stopped, the selected operation mode starts. For JOG operation, deceleration begins when the start operation signal (ST) is turned OFF. For other operation modes, operation does not stop even when the start operation signal (ST) is turned OFF. When the start operation signal (ST) is turned ON during operation, it is invalid.
DIR	Movement direction	Specify the movement direction. Use in JOG operation mode/incremental feed.	When the movement direction signal (DIR) is turned ON, and the operation start signal (ST) is turned ON, operation starts in the reverse direction. When the movement direction signal (DIR) is turned OFF, and the operation start signal (ST) is turned ON, operation starts in the forward direction.
AUT	Automatic operation mode	Specify automatic operation mode.	When the automatic operation mode signal (AUT) is turned ON, automatic operation mode is specified. When the automatic operation mode signal (AUT) is turned OFF, automatic operation mode is cancelled.
ZRN	Home position return mode	Specify home position return mode.	When the home position return mode signal (ZRN) is turned ON, home position return mode is specified. When the home position return mode signal (ZRN) is turned OFF, home position return mode is cancelled.
JOG	JOG operation mode	Specify JOG operation mode.	When the JOG operation mode signal (JOG) is turned ON, JOG operation mode is specified. When the JOG operation mode signal (JOG) is turned OFF, JOG operation mode is cancelled.
S	Incremental feed mode	Specify incremental feed mode.	When the incremental feed mode signal (S) is turned ON, incremental feed mode is specified. When the incremental feed mode signal (S) is turned OFF, incremental feed mode is cancelled.
LIP	Linear interpolation mode MC200	Specify linear interpolation mode.	When the linear interpolation mode signal (LIP) is turned ON, linear interpolation mode is specified. When the linear interpolation mode signal (LIP) is turned OFF, linear interpolation mode is cancelled.
	Interpolation operation mode MC300	Specify interpolation operation mode.	When the interpolation operation mode signal (LIP) is turned ON, interpolation operation mode is specified. When the interpolation operation mode signal (LIP) is turned OFF, interpolation operation mode is cancelled.
DST	Home position reset mode	Specify home position reset mode.	When the home position reset mode signal (DST) is turned ON, home position reset mode is specified. When the home position reset mode signal (DST) is turned OFF, home position reset mode is cancelled.
FST	Fast start operation	Starts operation. Instead of using start operation signal (ST), by using fast start operation signal (FST), the time take to start operation from the second time and after can be reduced. Not compatible with JOG operation.	When the fast start operation signal (FST) is turned ON while operation is stopped, the selected operation mode starts. When start operation is accepted, the fast start operation signal (FST) turns OFF. When the fast start operation signal (FST) is turned ON during operation, it is invalid.

API LIBRARY

- The fast start operation bit (FST) is used in the internal processing of all start operation functions (sscAutoStart function etc.), except for JOG operation.
(b) Axis status bits

Address (Note)		Bit	Symbol	Signal name
MRMC2	MR- MC3口			
1061	0050A1	0	OP	During operation
		1	CPO	Rough match
		2	PF	Positioning finish
		3	ZP	Home position return complete
		4	SMZ	During smoothing of stopping
		5	OALM	Operation alarm
		6	OPF	Completion of operation
		7	PSW	Position switch

Address (Note)		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC3 } \square \square \\ \hline \end{array}$			
1062	0050A2	0	AUTO	In automatic operation mode
		1	ZRNO	In home position return mode
		2	Jo	In JOG operation mode
		3	so	In incremental feed mode
		4	-	Reserved
		5	LIPO	In linear interpolation mode MC200 In interpolation operation mode MC300
		6	DSTO	In home position reset mode
		7	-	Reserved

Address (Note)		Bit	Symbol	Signal name
MRMC2 \square	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1064	0050A4	0	ISTP	Interlock stop
		1	RMRCH	High speed monitor is latched
		2	POV	Stop position over-bound
		3	STO	Start up acceptance complete
		4		Reserved
		5		
		6	ZREQ	Home position return request
		7	\bigcirc	Reserved

Note. The addresses in the able are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2םロ: +COh
- Using MR-MC3 $\square \square$: +140 h

1) Details concerning axis status bits

Symbol	Signal name	Function details	
		Function	Operation
OP	During operation	Notifies the axis is in operation.	<Conditions for turning ON> The start operation signal (ST)/fast start operation signal (FST) turned ON, and operation started. <Conditions for turning OFF> Operation is completed.
PF	Positioning finish	Notifies the normal completion of positioning of the end point in operations that use the point table. Unlike the completion of operation signal (OPF), it does not turn ON at alarms and the stop operation signal (STP) etc.	<Conditions for turning ON> The positioning of the end point completed normally. <Conditions for turning OFF> The start operation signal (ST)/fast start operation signal (FST) turned ON, and the next operation started. The operation mode was changed.
ZP	Home position return complete	Notifies the normal completion of home position return.	<Conditions for turning ON> The home position return completed normally. <Conditions for turning OFF> The start operation signal (ST)/fast start operation signal (FST) turned ON, and the next operation started. The operation mode was changed.
SMZ	During smoothing of stopping	Notifies the stopping of the output of command pulses to the servo amplifier. For linear interpolation mode $M C 200 /$ /interpolation operation mode MC300, it notifies the stopping of the output of command pulses for all axes set to the same group.	<Conditions for turning ON> All of the conditions below have been established, and the output of command pulses has stopped. (1) The operation of command pulses (before filter) has completed, or is temporarily stopped. (During pauses such as positioning complete and interlocks) (2) The command pulse to the servo amplifier is 0 . (3) When using smoothing filter, or vibration suppression command filter MC300, the droop of the internal operation of the filter (for command pulses that have not been output) is 0 . (4) During linear interpolation $M C 200$ /interpolation operation MC300, all axes in the group have established the conditions (1) to (3) above. <Conditions for turning OFF> When one of the conditions above has not been established, and the output of command pulses has started.
OPF	Completion of operation	Notifies the axis has completed operation.	<Conditions for turning ON> Operation has completed. <Conditions for turning OFF> The start operation signal (ST)/fast start operation signal (FST) turned ON, and the next operation started.
AUTO	In automatic operation mode	Notifies the axis is in automatic operation mode.	<Conditions for turning ON> The automatic operation mode signal (AUT) is ON. <Conditions for turning OFF> The automatic operation mode signal (AUT) is OFF. Multiple operation modes are selected. An incompatible operation mode is selected.

Symbol	Signal name	Function details	
		Function	Operation
ZRNO	In home position return mode	Notifies the axis is in home position return mode.	<Conditions for turning ON> The home position return mode signal (ZRN) is ON. <Conditions for turning OFF> The home position return mode signal (ZRN) is OFF. Multiple operation modes are selected. An incompatible operation mode is selected.
JO	In JOG operation mode	Notifies the axis is in JOG operation mode.	<Conditions for turning ON> The JOG operation mode signal (JOG) is ON. <Conditions for turning OFF> The JOG operation mode signal (JOG) is OFF. Multiple operation modes are selected. An incompatible operation mode is selected.
SO	In incremental feed mode	Notifies the axis is in incremental feed mode.	<Conditions for turning ON> The incremental feed mode signal (S) is ON. <Conditions for turning OFF> The incremental feed mode signal (S) is OFF. Multiple operation modes are selected. An incompatible operation mode is selected.
LIPO	In linear interpolation mode MC200	Notifies the axis is in linear interpolation mode.	<Conditions for turning ON> The linear interpolation mode signal (LIP) is ON. <Conditions for turning OFF> The linear interpolation mode signal (LIP) is OFF. Multiple operation modes are selected. An incompatible operation mode is selected.
	In interpolation operation mode	Notifies the axis is in interpolation operation mode.	<Conditions for turning ON> The interpolation operation mode signal (LIP) is ON. <Conditions for turning OFF> The interpolation operation mode signal (LIP) is OFF. Multiple operation modes are selected. An incompatible operation mode is selected.
DSTO	In home position reset mode	Notifies the axis is in home position reset mode.	<Conditions for turning ON> The home position reset mode signal (DST) is ON. <Conditions for turning OFF> The home position reset mode signal (DST) is OFF. Multiple operation modes are selected. An incompatible operation mode is selected.
POV	Stop position overbound	Notifies the stop position was exceeded by continuous operation, or position change.	<Conditions for turning ON> The stop position was exceeded. <Conditions for turning OFF> The start operation signal (ST) turned ON, and the next operation started. The operation mode was changed.
STO	Start up acceptance complete	Notifies the start operation signal (ST) has been accepted.	<Conditions for turning ON> The start operation signal (ST) is ON. <Conditions for turning OFF> The start operation signal (ST) is OFF.

5.1.2 Precautions

The precautions common to each operation mode are described below.
(1) When operation is started before selecting operation mode, operation mode error (operation alarm 20, detail No.02) occurs, and operation does not occur. Be sure to select operation mode before starting operation.
(2) When multiple operation modes are selected and operation started, operation mode error (operation alarm 20, detail No.01) occurs, and operation does not occur. Be sure to select one operation mode and start operation.
(3) When operation mode is changed during operation, mode change during operation (operation alarm 23, detail No.01) occurs, and operation stops. Do not change operation mode during operation.
(4) When starting operation, be sure to check that the start up acceptance complete signal (STO) (or the fast start operation signal (FST)) is turned OFF before turning ON the start operation signal (ST) (or the fast start operation signal (FST)). The signals are read every control cycle, therefore the leading edge of the start operation signal (ST) (or the fast start operation signal (FST)) may not be able to be checked.

API LIBRARY

- With regard to (4), checking that the start up acceptance complete signal (STO) (or the fast start operation signal (FST)) are OFF is performed in the internal processing of all start operation functions (sscAutoStart function etc.), therefore this process is not required in the user program.

POINT

- Refer to Chapter 10 for the table bit for each signal.

5.1.3 Maximum No. of simultaneous start axes

There are restrictions for the number of axes which can start simultaneously in each operation function and in start operation using other axes start. When the number of started axes exceeds the maximum number of simultaneous start axes, start operation will be performed for the rest of axes in the next control cycle or later.

Control cycle	Maximum No. of simultaneous start axes	
	MR-MC2 $\square \square$	MR-MC3 $\square \square$
0.88 ms	16	32
0.44 ms	6	12
0.22 ms	2	4

POINT

- For the start operation of linear interpolation $\boldsymbol{M C 2 0 0}$ /interpolation operation MC300, one group is regarded to consist of four axes, irrespective of the number of axes in the group.
- For the start operation of tandem drive, one group is regarded to consist of one axis.
- Start operation by other axes start takes priority, the other axes start in order.
- When the number of axes which is set in start axis designation of the other axes start table exceeds the maximum number of simultaneous start axes, other axes start error occurs when the other axes start conditions are fulfilled.

The following shows the operation when axes 9 to 14 are started by other axes start by control cycle of 0.44 ms with maximum No. of simultaneous start axes of 6 , and the other 14 axes are started in normal start operation.

5.2 JOG operation

5.2.1 Summary

When the movement direction is specified and the start operation signal (ST) input, it starts in the designated direction and movement continues until the start operation signal (ST) is turned OFF. When the start operation signal (ST) is turned off, it slows and comes to a stop. JOG operation can be used without completing home position return. JOG operation can be used without completing home position return (home position return request (ZREQ) is $O N$).

5.2.2 Start operation method

Start operation is performed according to the following procedure.
(1) Turn on the JOG operation mode signal (JOG).
(2) Set the manual feed speed, manual feed acceleration time constant, and manual feed deceleration time constant.
(3) Use the movement direction signal (DIR) to set the movement direction of the axis.

When the movement direction signal (DIR) is OFF, the axis moves in the + direction. And when it is ON, the axis moves in the - direction.
(4) Turn on the start operation signal (ST).

POINT

- The manual feed speed, manual feed acceleration time constant, manual feed deceleration time constant, and movement direction signal (DIR) are read at the leading edge of the start operation signal (ST). It follows that after start operation, even if there are changes to the data or signal, they are ignored.

API LIBRARY

- Use the sscJogStart function to perform procedures (1) to (4) above.
- Use the sscJogStop or sscJogStopNoWait functions to perform stop operation.

5.2.3 Resuming operation

When the start operation signal (ST) is turned off, deceleration is started; however, if the start operation signal (ST) is turned back on while decelerating, it does not completely stop but reaccelerates.

5.3 Incremental feed

5.3.1 Summary

A prescribed feed amount is implemented for each fast start operation signal (FST). The feed amount is defined using the incremental feed movement amount.
Incremental feed can be used without completing home position return (home position return request (ZREQ) is ON).

5.3.2 Start operation method

Start operation is performed according to the following procedure.
(1) Turn on the incremental feed mode signal (S).
(2) Set the manual feed speed, manual feed acceleration time constant, and manual feed deceleration time constant.
(3) Set the incremental feed movement amount.
(4) Use the movement direction signal (DIR) to set the movement direction of the axis.

When the movement direction signal (DIR) is OFF, the axis moves in the + direction and when it is ON, the axis moves in the - direction.
(5) Turn on the fast start operation signal (FST).

POINT

- The manual feed speed, manual feed acceleration time constant, manual feed deceleration time constant, movement direction signal (DIR), and incremental feed movement are read at the leading edge of the fast start operation signal (FST). It follows that after start operation, even if there are changes to the data or signal, they are ignored.
- Only positive numbers are valid for the incremental feed movement amount.

Movement direction is designated by the movement direction signal (DIR).

API LIBRARY

- Use the ssclncStart function to perform procedures (1) to (5) above.
- Use the sscGetDriveFinStatus or sscWaitlntDriveFin functions to check completion of operation.
- Use the sscDriveStop or sscDriveStopNoWait functions to perform stop operation.

5.4 Automatic operation

5.4.1 Summary

Automatic operation (positioning) uses the point table for operation. Position data and feed speed designation is set in the point table. When the fast start operation signal (FST) is turned on, instructions are executed in order from the instruction set at the start point No. to the end point No. If automatic operation is started prior to completion of home position return (home position return request (ZREQ) is ON), a home position return not complete error (operation alarm 90, detail 01) occurs upon starting operation and the operation stops.

POINT

- The start point No. for each of the axis point tables is 0000h.
- The start point for each of the axis point tables can be designated using point number offset. Refer to Section 10.12 concerning point number offset.
(1) Point table

Point	Position data [Command units]	Feed speed [Speed units]	Acceleration time constant [ms] (Note 1)	Deceleration time constant [ms] (Note 1)	Dwell/ predwell [ms] (Note 1)	Auxiliary command	Other axes start specification	S-curve ratio [\%]	-
	4 bytes	4 bytes	2 bytes	2 bytes	2 bytes	2 bytes	4 bytes	1 bytes	-••
0000	2000	2000	20	30	0	0000h	00000000h	0	-
0001	5000	2000	30	50	0	0000h	00000000h	0	. -
:	:	:	:	:	:	:	:	:	. . -

Reserved	Interpolation axis No.	Arc coordinate MC300 $($ Note 2, 3)	Acceleration/ deceleration data 1 MC300	Acceleration/ deceleration data 2 MC300	Acceleration/ deceleration data 3 MC300	Acceleration/ deceleration data 4 MC300	Auxiliary command 2 MC300	Reserved MC300
3 bytes	4 bytes	4 bytes	2 bytes	6 bytes				
0	00000002 h	0	2000	2000	20	30	0000 h	0
0	00000002 h	0	5000	2000	30	50	0000 h	0
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$

Note 1. Time specified by the acceleration constant, the deceleration constant and the dwell are rounded off based on the control cycle. (The value is rounded to the nearest integer.)
For example, the dwell is specified to 10 ms with the control cycle of 0.88 ms , the time until executing point is completed after the completion of the point movement is 11 control cycles (approx. 9.778 ms).
2. Not used in automatic operation. The setting is invalid.
3. "Reserved" when using MR-MC2 $\square \square$.

Note. The rough match signal (CPO) is determined when the end point is executed. Therefore, it does not turn on when passing points on the way.

5.4.2 Start operation method

Start operation is performed according to the following procedure.
(1) Set up the point table.
(2) Set the start point No. and the end point No.
(3) Turn on the automatic operation mode signal (AUT).
(4) Turn on the fast start operation signal (FST).

POINT

- For stoppage of operation midway, turn on the stop operation signal (STP).
- The current operation point No. can be checked through the operation point No. of the axis status table (same as monitor No.030A).
- The point number starts from 0 .
- The point table is a total of 320 MC200 $/ 2048 \sqrt{M C 300}$ points for all axes. The number of points distributed to each axis can be adjusted using the point number offset. For details, refer to Section 10.12.

API LIBRARY

- Use the sscSetPointDataEx function to set up point table in (1) above.
- Use the sscAutoStart function to perform procedures (2) to (4) above.
- Use the sscGetDriveFinStatus or sscWaitIntDriveFin functions to check completion of operation.
- Use the sscDriveStop or sscDriveStopNoWait functions to perform stop operation.
- Use the sscSetPointOffset/sscCheckPointOffset functions to set/get point number offset.
- For a detailed procedure from startup of automatic operation to check completion of operation, refer to the sample programs (InterruptDrive/PollingDrive) contained on the utility software.

5.4.3 Auxiliary command

The auxiliary command can be set in the following procedure.

Note 1. The interpolation method cannot be used with automatic operation. The setting is invalid. 2. "Reserved" when using MR-MC2 $\square \square$.
(Example) For designation of position command system as 1 (relative position command) and the deceleration check system as 2 (continue operation), set to "0021h".
(1) Position command system

Select the position data command system.
0 : Absolute position command
1: Relative position command
POINT

- If the setting of the position command system is incorrect, it causes a point table setting error (operation alarm 25, detail 01) and operation is stopped.
(a) Absolute position command Position data is position from the home position.
(b) Relative position command Position data is the movement distance from the current command position.
(2) Vibration suppression command filter 1 specification MC300

Select whether to enable/disable vibration suppression command filter 1.
0 : Vibration suppression command filter 1 disabled
1: Vibration suppression command filter 1 enabled
POINT

- Refer to Section 6.3.6 for vibration suppression command filter 1.
(3) Deceleration check system

Designates the point movement completion conditions.
0 : In-position stop
1: Smoothing stop
2: Continue operation

POINT

- If the setting of the deceleration check system is incorrect, it causes a point table setting error (operation alarm 25, detail 02) and operation is stopped.
(a) In-position stop

After completion of the command pulse output, if it is in-position, the point movement is completed.

When the actual position is within the in-position boundaries, movement to the next point is started.
(b) Smoothing stop

After completion of the command pulse output, point movement is complete.

(c) Continue operation

After arriving at the position commanded to go to, the speed is changed to the speed commanded for the next point and movement to the next point is started. The acceleration and deceleration time constants for changing speeds are set to the acceleration and deceleration time constants of the next point.
However, continuous operation is not performed under the following conditions.

- When a dwell is set

If there is a dwell defined, after coming to a smoothing stop and completion of the dwell time setting, movement to the next point is started.

- When there is end point

Operation that is the same as a smoothing stop is performed.

After arriving at the position commanded to go to, speed is changed to the speed commanded for the next point and movement to the next point is started.

For the end point of continuous operation, if the position after deceleration stop exceeds the command position. A selection can be made from the following control option 2 (parameter No.0201).

1) Stop by the alarm
2) After completion of the deceleration stop, return to the command position
3) Stop at the command position

For selection 2), the stop position over-bound signal (POV) is turned on. The stop position over-bound signal (POV) is turned off at the next start up.
2) After completion of the deceleration stop, return to the command position

3) Stop at the command position

POINT

- There are times, such as that shown below, where the deceleration position exceeds the command position. This causes a position exceeded during positioning (operation alarm 24, detail 01) and operation is stopped.
- For when the movement direction is reversed when position of the next point from the point designated by the deceleration check system under continuous operation.
- For the case where deceleration check system goes from continuous operation (point n) to smoothing stop (point $n+1$) or in-position stop and then goes to reverse direction (point $n+2$) even when the point table is in this order, if point $n+1$ positioning distance is not satisfied by the necessary deceleration distance from the point n command speed.
(4) Speed switching point specification

If "2: Continue operation" is selected in the deceleration check system, a point where speed change is completed can be specified.

0 : After point switching
1: Before point switching
(a) After point switching

(b) Before point switching

POINT

- If "1: Before point switching" is specified, the point table (feed speed) of the next point is imported (read) at start operation or timing when the point switches next point. If the setting of the point table of the next point is incorrect, it causes a point table setting error (operation alarm 25 , detail 01) and operation is stopped.
(5) Dwell specification

Specify the system of dwell.
0 : Dwell
1: Predwell
(a) Dwell

Specify the time until executing point is completed after the point movement is completed. For the pass point, after the time specified with dwell has elapsed, the next point starts moving. For the end point, after the time specified with dwell has elapsed, the completion of operation signal (OPF) turns on.

POINT

- The setting range of dwell is 0 to 65535 ms .

1) When the deceleration check system is Smoothing stop

Time is counted after the during smoothing of stopping signal (SMZ) turns on. The following shows the case for the pass point.

2) When the deceleration check system is In-position stop

Time is counted after the in-position signal (INP) turns on after the during smoothing of stopping signal (SMZ) turns on. The following shows the case for the end point.

3) When the deceleration check system is Continue operation

When dwell is set, the condition of point movement completion is a smoothing stop. Therefore, the control is the same as when Smoothing stop is set to the decelerate check system.
(b) Predwell

Point starts moving after the time specified with predwell has elapsed.
POINT

- The setting of predwell is valid only in the start point. If predwell is set in the other points, it causes a point table setting error (operation alarm 25, detail 0A) and operation is stopped.
- In the initial setting, the setting range of predwell is 0 to 3000 ms . If the value which is out of the range is set, it causes a point table setting error (operation alarm 25 , detail $0 A$) and operation is stopped.
To remove the limit of the setting range, set $1: 0$ to 65535 ms to predwell setting range (parameter No.0206).

\triangle CAUTION

- If large value is set by mistake, the wait time of axis is long and it may look as if axes did not operate. In that case, it is dangerous to approach the moving part because axes operate unexpectedly. Do not approach the moving parts even when axes do not operate while during operation signal (OP) is on because the axes may operate.

(6) Pass position interrupt specification

Select valid or invalid for the pass position interrupt.
0 : Pass position interrupt invalid
1: Pass position interrupt valid
POINT

- This setting in the point data of the start point No. is valid only. If the point data after the start point No. are set, it causes a point table setting error (operation alarm 25 , detail 0 C) and the operation is stopped.
(7) Continuous operation to torque control specification

Select valid or invalid for continuous operation to torque control.
0 : Continuous operation to torque control invalid
1: Continuous operation to torque control valid
POINT

- Refer to Section 6.32 for continuous operation to torque control.
(8) Loop specification

Specify the start and end when using the point table in loop method.
0 : Not using point table method
1: Loop start point
2' Loop end point
POINT

- Refer to Section 5.4.6 for loop specification.

5.4.4 Other axes start specification

Set other axes start data number (1 to $32 \sqrt{M C 200} / 1$ to $64 \sqrt{M C 300}$). When the other axes start data number is set, the position board starts the other axes according to other axes start conditions and operation details of their start data. Up to 2 other axes start data number can be set. For details concerning other axes start function, refer to Section 6.23.

POINT

- If the setting of the other axes start specification is incorrect, it causes a point table setting error (operation alarm 25, detail 09) and operation is stopped.

5.4.5 S-curve ratio

Perform S-curve acceleration/deceleration for acceleration/deceleration selected in speed options (parameter No.0220). For automatic operation, this setting is valid regardless of the setting of S-curve ratio (parameter No.0221).

0: S-curve acceleration/deceleration invalid
1 to 100: S-curve acceleration/deceleration

5.4.6 Point table loop method

Point table loop method can be used by setting the loop specification of auxiliary command. When using the point table in loop method, refer to/set the following data.
(1) Axis data command/status table
(a) Axis data command table

Address (Note 1)		Content	Setting range	
MR-MC2 $\square \square$	MR-MC3 $\square \square$		MR-MC2 $\square \square$	MR-MC3 $\square \square$
102C	00503C	Start point No.	0 to 319	0 to 2047
102D	00503D			
102E	00503E	End point No.	0 to 319	0 to 2047
102F	00503F			
103A	00504A	Latest command point No. (Note 2)	1 to 320	1 to 2048
103B	00504B			

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+C 0 h$
- Using MR-MC3 $\square \square:+140 h$

2. Set the latest command point No. to the value of the point number +1 .
(b) Axis data status table

Address (Note 1)		Content	Output range	
MR-MC2 $\square \square$	MR-MC3 $\square \square$		MR-MC2 $\square \square$	MR-MC3 $\square \square$
108C	0050DC	Operation point No.	0 to 320	0 to 2048
108D	0050DD			

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+C 0 h$
- Using MR-MC3 $\square \square$: +140h
(2) Axis status bit

Address (Note)		Bit	Symbol	Signal name	

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+C 0 h$
- Using MR-MC3 $\square \square:+140 \mathrm{~h}$
(a) Details on axis command bit

Symbol	Signal name	Function details	
		Function	Operation
AUTLO	In point table loop	Indicates that the point table is being used in loop method.	<Conditions for turning ON> The operation of loop start point set by the auxiliary command loop specification of the operation start point has started. <Conditions for turning OFF> One of the following conditions is not satisfied. - The operation of loop end point set by auxiliary command loop specification is completed. - During the operation of a point set by auxiliary command loop specification, an alarm or stop caused the operation to complete.

(3) Controlling method for using the point table in loop method

The controlling method for using the point table in loop method is as follows.

1) Set the point table and latest command point No.
2) Set the start point No. and end point No. to the start point No. and end point No. of the loop.
3) Turn ON the automatic operation mode signal (AUT).
4) Turn ON the fast start operation signal (FST).
5) After the completion of operation for each point, update (overwrite) the point table, and set the latest command point No.
6) At the completion of operation, set the loop end point to the auxiliary command loop specification, and set the latest command point No.

POINT

- When operation point No. matches the latest command point No., operation waits until the latest command point No. is updated. (Operation is not completed, and remains in a stopped state.)
- When a speed change is conducted during standby, speed change error signal (SCE) turns ON, and speed cannot be changed.
- When a time constant change is conducted during standby, acceleration time constant change error signal (TACE), or deceleration time constant change error signal (TDCE) turns ON, and time constant cannot be changed.
- When the loop start point is specified but the latest command point No. is 0 , a point table loop error (operation alarm 5F, detail 01) occurs, and operation does not start.
-When the loop start point is set in one-point operation (start point No. and end point No. are matching), a point table loop error (operation alarm 5F, detail 02) occurs, and operation does not start.
- When a value smaller than start point No. + 1, or a value larger than end point No. +1 is input to the latest command point No., a point table loop error (operation alarm 5F, detail 03) occurs, followed by a deceleration stop.
- Only the point data for the start point No. is valid for the loop start point of this setting. Point data after the loop start point that is set to the loop start point is invalid.
- After the operation of a point which specifies continuous operation, when the next point has not been updated, a point table loop error (operation alarm 5F, detail 04) occurs, and operation is cancelled with a deceleration stop.
- During an operation that does not use loop method, when the loop end point is specified, a point table loop error (operation alarm 5F, detail 05) occurs, and operation is cancelled with a deceleration stop.
- When specifying switch before point in speed switching point specification, use more three or more points.
-When specifying switch before point in speed switching point specification, update the next point before the start of operation for the specified point. When the next point is not updated before start of operation of the specified point, a point table loop error (operation alarm 5F, detail 06) occurs, and operation is cancelled with a deceleration stop.
- The settings for which only the point of the start point No. is valid (pass position interrupt specification, etc.) are only valid for the start operation point. When setting to a point other than the start operation point, the operation is the same as when setting point data after the start point No.

API LIBRARY

- Use the sscSetPointDataEx function for setting of the point table.
- Use the sscSetLatestPointNumber function for setting of the latest command point No.
- Use the sscAutoStart function to perform the procedures in (3) 2) to 4) of this section.
- Use the sscGetDriveFinStatus or sscWaitIntDriveFin functions to check completion of operation.
- Use the sscDriveStop or sscDriveStopNoWait functions to perform stop operation.
- Use the sscSetPointOffset/sscCheckPointOffset functions to set/get point number offset.
- For a detailed procedure from startup of automatic operation to check completion of operation, refer to the sample program "DrivePointLoop" contained on the utility software.
(4) Operation example

The following is an operation example of using point number 0 to 7 .
(a) Before start of operation

Note. Writing point data for the entire area used in the loop before operation start is not necessary.
(b) During operation

Note. Do not update the point table of operation point No.
(c) At operation completion

Loop end point is specified to end point\qquad												
Point table	0	1	2	3	4	5	6	7	8	9	10	
										Sta	point No.	0
											point No.	7
										Lat	st command point No.	6
										Op	ration point No.	2

5.4.7 Acceleration/deceleration data MC300

Sets the acceleration/deceleration data 1 to 4 . Refer to Section 6.3.5 for details.

5.4.8 Auxiliary command 2 MC300

The following can be specified in auxiliary command 2 .

-Acceleration/deceleration method (bit0 to 2)
-Reserved (bit3 to 15)
(1) Acceleration/deceleration method

Select the acceleration/deceleration method
0: Linear acceleration/deceleration/S-curve acceleration/deceleration
1: Jerk ratio acceleration/deceleration

POINT

- Refer to Section 6.3.5 for jerk ratio acceleration/deceleration.

5.5 Interpolation operation MC300

5.5.1 Summary

Interpolation operation performs interpolation control for multiple axes. This system enables a maximum of 4axis linear interpolation control or circular interpolation control for 2 axes.
When the feed speed and position data are defined in the point table and the fast start operation signal (FST) is input after changing to interpolation operation mode, all of the axes set up in the group perform interpolation operation. The axis that has the fast start operation signal (FST) input into it is referred to as the "primary axis", and all other axes are referred to as an "auxiliary axis".

Refer to Section 5.6 and Section 5.7 for details concerning interpolation control.

POINT

- It is possible to switch between linear interpolation and circular interpolation at each point during interpolation operation for 2 axes.
- Interpolation group cannot be changed during operation.

5.5.2 Proximity pass function

The proximity pass function suppresses machine vibrations that occur at point data switching when performing continuous operation via interpolation control. To enable proximity pass, set "1: Proximity pass" in trajectory processing during continuous operation (parameter No.0261).
While proximity pass is enabled, the surplus movement amount at the end of each successively executed point data is transferred over to the next point data. By not performing position adjustment, output speed losses are reduced, and machine vibrations that occur when the speed changes can be suppressed.
As position adjustment is not performed, a trajectory that passes through the proximity of the position set as position data for the point table serves as the control.
The following shows the trajectory when continuous operation has been performed using 2-axis linear interpolation control.
(1) When trajectory processing during continuous operation (parameter No.0261) is set to " 0 : Position adjustment" (initial value)

(2) When trajectory processing during continuous operation (parameter No.0261) is set to "1: Proximity pass"

POINT

-When performing continuous operation, if the movement amount specified in the position data is small the output speed may fail to reach the command speed.

- During interpolation operation a movement direction check is not performed, so a deceleration stop will not occur even if there is a change in movement direction. As such, a rapid reversal may occur if there is a change in movement direction. To avoid a rapid reversal, do not select continuous operation when using the deceleration check method on the point data for the pass point. Instead, use either an in-position stop or a smoothing stop.
- Trajectory processing is performed through position adjustment when the target position is reached within a control cycle where a position, speed, or time constant change was executed.

5.6 Linear interpolation

5.6.1 Summary

Linear interpolation operation has linear interpolation control performed for the axes set up as a group. This system enables a maximum of 4-axis linear interpolation control. When the feed speed and position data are defined in the point table and the fast start operation signal (FST) is input, all of the axes set up in the group perform linear interpolation operation. If linear interpolation operation is started prior to completion of home position return (home position return request (ZREQ) is ON), a home position return not complete error (operation alarm 90, detail 01) occurs upon starting operation and the operation stops.
From this point on, the axis that has the fast start operation signal (FST) input into it is referred to as the "primary axis", and all other axes are referred to as an "auxiliary axis".

POINT

- When the interpolation axis setting method (parameter No.004C) is "0: Use control parameter", the group setting is set using the linear interpolation group $\sqrt{M C 200}$ /interpolation group $\sqrt{M C 300}$ (parameter No.0260). If the group number is set to 0 , the axis becomes an independent axis, making it so linear interpolation operation can not be performed. The number of groups that can be defined differs with the control cycle. When the interpolation axis setting (parameter No.004C) is "1: Use point table", the axis set to the interpolation axis No. of the point table becomes a linear interpolation group, and the valid number of groups simultaneously execute interpolation control.

Control cycle	Valid group number			
	MR-MC2 $\square \square$		MR-MC3 $\square \square$	
	Control parameter	Point table	Control parameter	Point table
0.88 ms	1 to 8	1 to 16		
0.44 ms	1 to 4	1 to 8		
0.22 ms	0	1 to 4		

- Even when the linear interpolation group is within the valid group number range, depending on the combination of functions used, operation cycle alarm signal (OCME), and operation cycle warning (OCMW) may turn ON.
- The fast start operation signal (FST) is only to be input on a primary axis.

An example of the feed speed and speed of axis 1 and 2 when each axis is interpolated is shown below.

Speed for each axis is figured out by dividing feed speed by distance ratio.

5.6.2 Settings

Set the following items when performing linear interpolation. Refer to Section 5.4 for details concerning the point table.
(1) Setting 1: Items set for system parameter

Items	Content	Remarks
System parameter	Interpolation axis setting method (parameter No.004C)	Set the input method of the interpolation axis No. for linear interpolation MC200 /interpolation operation MC300.

(2) Setting 2: Items set for all axes to be interpolated

Items	Content	Remarks
Point table	Position data	Define setting within maximum moveable limits. (Maximum moveable limit = 999999999)
	Other axes start specification	Define the setting when using the other axes start.
	Pass position interrupt specification	Define the setting when using the pass position interrupt.
Axis data	Start point No. End point No.	Define the settings such that the number of points between start and finish is the same for all axes in the group configuration.
Axis data (command bit)	Linear interpolation mode signal/mC200/ interpolation operation mode signal MC300 (LIP)	Turn on this bit.
Control parameter	Linear interpolation group MC200/ interpolation group MC300 (parameter No.0260)	When interpolation axis setting method (parameter No.004C) is " 0 : Use control parameter", define the linear interpolation group number. The maximum number of axes that can be defined for a group is 4. For tandem drive axes, only the master axis must be set.
	Speed limit value (parameter No.0222, 0223)	Defines the speed limit for each axis. Used when selecting "speed clamp" or "alarm stop" as control options for excessive speed processing.

(3) Setting 3: Items defined for the primary axis

Items	Content	Remarks
Point table for primary axis	Feed speed Acceleration time constant (ms) Deceleration time constant (ms) Dwell (ms) Auxiliary command S-curve ratio [\%] Interpolation axis No. Interpolation method MC300 Vibration suppression command filter1 specification MC300	The interpolation axis No. is only required when the interpolation axis setting method (parameter No.004C) is "1: Use point table". Only the start point No. setting is valid. This setting cannot be changed during operation.
Control parameters for the primary axis	Speed units (parameter No.0200) Linear interpolation options MC200\$/ interpolation options $\sqrt{\text { MC300 }}$ (parameter No.0261) Linear interpolation speed limit value MC200/ interpolation speed limit value $\sqrt{\text { MC300 }}$ (parameter No.0262, 0263) Start up speed (parameter No.0224, 0225) Speed units multiplication factor (parameter No.020E, 020F)	The r/min of the units for speed cannot be set.
Command data for the primary axis	Latest command point No.	Set when using the point table loop method.

(4) Point table

Point	Position data [Command units]	Feed speed [Speed units]	Acceleration time constant [ms] (Note 1)	Deceleration time constant [ms] (Note 1)	Dwell/ predwell [ms] (Note 1)	Auxiliary command	Other axes start specification	S-curve ratio [\%]	-••
	4 bytes	4 bytes	2 bytes	2 bytes	2 bytes	2 bytes	4 bytes	1 bytes	-••
0000	2000	2000	20	30	0	0000h	00000000h	0	-••
0001	5000	2000	30	50	0	0000h	00000000h	0	-
:	:	:	:	:	:	:	:	:	-•

Reserved	Interpolation axis No.	Arc coordinate MC300 (Note 2)	Acceleration/ deceleration data 1 MC300 (Note 2)	Acceleration/ deceleration data 2 MC300 (Note 2)	Acceleration/ deceleration data 3 MC300 (Note 2)	Acceleration/ deceleration data 4 MC300 (Note 2)	Auxiliary command 2 MC300 (Note 2)	Reserved MC300
3 bytes	4 bytes	4 bytes	2 bytes	6 bytes				
0	00000002h	0	0	0	0	0	0000h	0
0	00000002h	0	0	0	0	0	0000h	0
:	:	:	:	:	:	:	:	:

Note 1. Time specified by the acceleration constant, the deceleration constant and the dwell are rounded off based on the control cycle.
(The value is rounded to the nearest integer.)
For example, the dwell is specified to 10 ms with the control cycle of 0.88 ms , the time until executing point is completed after the completion of the point movement is 11 control cycles (approx. 9.778ms).
2. Not used in linear interpolation.
(a) Interpolation axis No.

24		16	
Reserved Interpolation axis No. 3 Interpolation axis No. 2Interpolation axis No. 1			

- Interpolation axis No. 1 to 3

Specify the axis Nos. of auxiliary axes set to the same group during linear interpolation
Example) Set 00040302h when setting axis 2, 3, and 4 to interpolation axes No. 1 to 3 respectively which have axis 1 as primary axis.

1) Cause of alarm

- When an axis No. exceeding the maximum number of control axes is set to interpolation axis No. 1 to 3, interpolation axis No. incorrect (operation alarm 41, detail 03) occurs and operation is stopped.
- When the number of linear interpolation MC200/interpolation operation MC300 groups operating simultaneously exceeds the number of valid groups, number of valid interpolation groups exceeded (operation alarm 41, detail 04) occurs and operation is stopped.
(b) Auxiliary command

Note 1. "Reserved" when using MR-MC2 $\square \square$.

- Interpolation method

Select the control method for interpolation operation.
0 : Linear interpolation
1: Auxiliary point-specified circular interpolation control (Note 2)
2: Central point-specified circular interpolation control (CW) (Note 2)
3: Central point-specified circular interpolation control (CCW) (Note 2)
Note 2. Not used in linear interpolation.

POINT

- If the interpolation method is set outside the range a point table setting error (operation alarm 25, detail No.11) occurs and operation is stopped.

5.6.3 Start operation method

Start operation is performed according to the following procedure.
(1) Define the linear interpolation group $M C 200 /$ interpolation group $M C 300$, the linear interpolation speed limit value $\boldsymbol{M C 2 0 0}$ /interpolation speed limit value $\boldsymbol{M C 3 0 0}$, and the linear interpolation options $M C 200$ /interpolation options $M C 300$ in the control parameters. The group number is only required when interpolation axis setting method (parameter No.004C) is " 0 : Use control parameter", and is valid during system startup. Other than that it is valid during writing of parameters.
(2) Set up the point table. At this time, all items are set up for the primary axis and only position data is set up for auxiliary axes. Settings for other items are invalid.
(3) Set the start point No. and end point No. for all of the axes in the group configuration. Define the setting so that the number of points for all of the axes is the same.
(4) Turn on the linear interpolation mode signal (LIP) for all of the axes in the group.
(5) Turn on the fast start operation signal (FST) for the primary axis.

POINT

- To stop the operation, turn on stop operation signal (STP) of any axis in the linear interpolation group.
- The current operation point No. can be checked through the operation point No. of the axis status table (same as monitor No.030A).
- The start point No. for the point table is 0 .
- The point table is a total of 320 MC200 $/ 2048$ MC300 points for all axes. The number of points distributed to each axis can be adjusted using the point number offset. For details, refer to Section 10.12.
- When using the point table in loop method, the primary axis setting values are valid for the latest command point No. and the start point No. /end point No. of the loop. Update the latest command point No. after writing the point tables of all axes in the group.
- The specifications when using "1: Use point table" as the interpolation axis setting method (parameter No.004C) are shown below.
- Specification of interpolation axis No. is only valid for starting point.
- Linear interpolation group (parameter No.0260) is invalid even when specified.
- The startup method does not change.
- Changeable interpolation group signal (IPCH) turns ON.
- Linear interpolation outputs the interpolation group number being executed to the primary axis and auxiliary axis being executed.
- The interpolation group number for the primary axis and auxiliary axis for which linear interpolation has ended is cleared and becomes 0 .

API LIBRARY

- Use the sscSetPointDataEx function to set up point data as shown above in (2).
- Use the sscLinearStart function to perform procedures (3) to (5) above. When using MR-MC3 $\square \square$, use the sscInterpolationStart function.
- Use the sscDriveStop or sscDriveStopNoWait functions to perform stop operation.
- Use the sscGetDriveFinStatus or sscWaitIntDriveFin functions to check completion of operation.
- Use the sscSetPointOffset/sscCheckPointOffset functions to set/get point number offsets.

5.6.4 Processing for exceeding speed limit for each axis

Processing is different concerning exceeding speed limit for each axis depending on the setting for excessive speed processing (parameter No.0261).
(1) Using a speed clamp

When parameter No. 0261 is set to 0 , if there is an axis that exceeds the speed limit, other axes grouped with the axis are also clamped.
The actual acceleration time is the time until the feed speed after clamping is reached.

(2) For using alarm stop (example for continuous operation point change)

When parameter No. 0261 is set to 1 , if there is an axis that exceeds the speed limit for point toggling other than start up or continuous operation, an alarm is set and start up can not be performed.
During continuous operation, if there is an axis that exceeds the speed limit, an alarm is set and deceleration to a stop is performed.

(3) No processing

When parameter No. 0261 is set to 2 , normal operation is continued even if the speed limit is exceeded.

[^4]
5.6.5 Restrictions

The following restrictions apply concerning use of linear interpolation.
(1) A primary axis "linear interpolation start up error $M C 200$ /interpolation start up error $M C 300$ (operation alarm 40)" occurs for the following.

- If axes that have been set to something besides linear interpolation mode $\sqrt[M C 200]{ } /$ /interpolation operation mode $M C 300$ (LIP) are included in the same group. (operation alarm 40, detail 01)
- If a single group is defined with 5 or more axes. (operation alarm 40, detail 02)
- If a group number that exceeds the valid group number is defined when performing start operation for linear interpolation. (operation alarm 40, detail 03)
- If the axes in the group are defined with a varying number of points. (operation alarm 40, detail 04)
- If the speed unit (parameter No.0200) is defined to be " 2 : $\mathrm{r} / \mathrm{min}$ ". (operation alarm 40, detail 05)
(2) A primary axis linear interpolation point data error MC200 /interpolation point data error MC300 (operation alarm 41) and an auxiliary axis group error (operation alarm 16, detail 01) occur for the following.
- If there is an axis within the group whose movement amount exceeds the maximum of 999999999. (operation alarm 41, detail 01)
- If the speed limit for the group configured axis is exceeded. (operation alarm 41, detail 02) (If excessive speed processing (parameter No.0261) is defined to be "1: alarm stop".)
(3) If there is an auxiliary axis in operation or has an alarm set upon starting linear interpolation mode/MC200// interpolation operation mode MC300 , can't start linear interpolation auxiliary axis error MC200/can't start interpolation auxiliary axis error $\boldsymbol{M C 3 0 0}$ (operation alarm 42) occurs on the primary axis.
(4) If an alarm occurs during operation, the axis that caused the error has the corresponding alarm occur; all the other axes in the group have the "group error" (operation alarm 16, detail 01) occur.
(5) If any of the axes defined below is within the group, "out of software limit boundaries (operation alarm A1)" or "reached software limit (operation alarm A2)" occurs.
- If there is movement from within Software limits to outside the limits. (operation alarm A1, detail 01)
- If there is movement from outside Software limits in the direction of outside the limits. (operation alarm A2, detail 01)
(6) The command change signal is input to the primary axis. Input of the signal to auxiliary axes is invalid.
- When changing speeds.
- When changing time constants.
- When changing position.

5.7 Circular interpolation MC300

5.7.1 Summary

Circular interpolation operation performs circular interpolation control for axes set to the group. This system can perform circular interpolation control for 2 axes. There are 2 types of arc specification methods, the auxiliary point-specified method and the central point-specified method.
When the feed speed and position data are defined in the point table and the fast start operation signal (FST) is input, the 2 axes set up in the group will perform interpolation operation (circular interpolation). If circular interpolation operation is performed prior to completion of home position return (home position return request (ZREQ) is ON), a home position return not complete error (operation alarm 90, detail 01) occurs at operation start-up and operation is stopped.
From this point on, the axis that has the fast start operation signal (FST) input into it is referred to as the "primary axis", and all other axes are referred to as the "auxiliary axis".

5.7.2 Settings

Set the following items when performing circular interpolation. Refer to Section 5.4 for details concerning the point table.
(1) Setting 1: Items set for system parameter

Items	Content	Remarks
System parameter	Interpolation axis setting method (parameter No.004C)	Set the interpolation axis No. input method for interpolation operation.

(2) Setting 2: Items set for all axes to be interpolated

Items	Content	Remarks
Point table	Position data	Define the setting within the end point range.
	Arc coordinate	Define positions for the auxiliary or central points.
	Other axes start specification	Define the setting when using the other axes start. Define the setting when using the pass position interrupt.
	Pass position interrupt specification	Define the settings such that the number of points between start and finish is the same for all axes in the group configuration.
Axis data	Start point No. End point No.	Turn on this bit. Axis data (command bit) Control parameter Interpolation operation mode signal (LIP) No.004C) is "0: Use control parameter", define the interpolation operation group number. Define 2 axes for a group. For tandem drive axes, only the master axis must be set.

(3) Setting 3: Items defined for the primary axis

Items	Content	Remarks
Point table for primary axis	Feed speed Acceleration time constant (ms) Deceleration time constant (ms) Dwell (ms) Auxiliary command S-curve ratio [\%] Interpolation axis No. Interpolation method Vibration suppression command filter1 specification	For auxiliary point-specified circular interpolation, define the auxiliary command interpolation method as "auxiliary point-specified circular interpolation". For central point-specified circular interpolation, define the auxiliary command interpolation method as either "central point-specified circular interpolation (CW)" or "central point-specified circular interpolation (CCW)" so as to match the rotation direction. The interpolation axis No. is only required when the interpolation axis setting method (parameter No.004C) is "1: Use point table". Only the start point No. setting is valid. This setting cannot be changed during operation. Feed speed is clamped according to the interpolation speed limit value.
Control parameters for the primary axis	Speed units (parameter No.0200) Interpolation options (parameter No.0261) Interpolation speed limit value (parameter No.0262, 0263) Start up speed (parameter No.0224, 0225) Speed units multiplication factor (parameter No.020E, 020F) Circular interpolation range (parameter No.02CC, 02CD) (Note 1)	The r/min of the units for speed cannot be set.
Command data for the primary axis	Latest command point No.	Set when using the point table loop method.

Note 1. Used only when performing central point-specified circular interpolation control.
(4) Point table

Point	Position data [Command units]	Feed speed [Speed units]	Acceleration time constant [ms] (Note 1)	Deceleration time constant [ms] (Note 1)	Dwell/ predwell [ms] (Note 1)	Auxiliary command	Other axes start specification	S-curve ratio [\%]	-
	4 bytes	4 bytes	2 bytes	2 bytes	2 bytes	2 bytes	4 bytes	1 bytes	-••
0000	2000	2000	20	30	0	0000h	00000000h	0	-••
0001	5000	2000	30	50	0	0000h	00000000h	0	-••
:	:	:	:	:	:	:	:	:	-

Reserved	Interpolation axis No.	Arc coordinate	Acceleration/ deceleration data 1 (Note 2)	Acceleration/ deceleration data 2 (Note 2)	Acceleration/ deceleration data 3 (Note 2)	Acceleration/ deceleration data 4 $($ Note 2)	Auxiliary command 2 (Note 2)	Reserved
3 bytes	4 bytes	4 bytes	2 bytes	6 bytes				
0	00000002 h	0	0	0	0	0	0000 h	0
0	00000002 h	0	0	0	0	0	0000 h	0
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$

Note 1. Time specified by the acceleration constant, the deceleration constant and the dwell are rounded off based on the control cycle.
(The value is rounded to the nearest integer.)
For example, the dwell is specified to 10 ms with the control cycle of 0.88 ms , the time until executing point is completed after the completion of the point movement is 11 control cycles (approx. 9.778 ms).
2. Not used in circular interpolation.
(a) Interpolation axis No.

Note 1. Not used.

- Interpolation axis No. 1

Specify the axis Nos. of auxiliary axes set to the same group during interpolation operation Example) Set 00000002h when setting axis 2 to interpolation axis No. 1.
Note. The interpolation axis No. is only required when the interpolation axis setting method (parameter No.004C) is
"1: Use point table".
(b) Auxiliary command

- Interpolation method

Select the control method for interpolation operation.
0: Linear interpolation (Note 1)
1: Auxiliary point-specified circular interpolation
2: Central point-specified circular interpolation (CW)
3: Central point-specified circular interpolation (CCW)
Note 1. Not used in circular interpolation.

POINT

- If the interpolation method is set outside the range a point table setting error (operation alarm 25, detail No.11) occurs and operation is stopped.
(c) Arc coordinate

Defines the coordinates of the auxiliary point or the central point for the arc. Settings vary by interpolation method.

5.7.3 Group settings

Group settings for circular interpolation are set in either control parameters or the point table depending on the interpolation axis setting method (parameter No.004C) being used.
When setting in control parameters, the group cannot be changed after system start. When setting in the point table it is possible to change the group even after system start, but to do so the interpolation axis Nos. of the point table must be set through a user program or other means.

POINT

- The valid number of groups varies by control cycle. When the interpolation axis setting method (parameter No.004C) is set to "1: Use point table", the axes set to the interpolation axis Nos. of the point table become an interpolation operation group, and the valid number of groups can simultaneously execute interpolation control.

Control cycle	Valid group number	
	Control parameter	Point table
0.88 ms	1 to 16	
0.44 ms	1 to 8	
0.22 ms	1 to 4	

(1) Control parameters

When the interpolation axis setting method (parameter No.004C) is " 0 : Use control parameter", set the group No. for the primary axis and the auxiliary axis in interpolation group (parameter No.0260).

Parameter No.	Symbol	Name	Initial Value	Units	Setting range		Function	When in tandem drive
0260	*LGRP	Interpolation group	0000h		$\begin{aligned} & 0000 \mathrm{~h} \\ & \text { to } \\ & 0010 \mathrm{~h} \end{aligned}$	$\begin{array}{l\|l} \hline 0 & 0 \\ \hline \end{array}$	Group number Set the group number for the interpolation operation group. 00h : Invalid 01h to 10 h : Group number Example. OAh: Group number 10	Master

(2) Point table

When the interpolation axis setting method (parameter No.004C) is "1: Use point table", set the group axis (auxiliary axis) to the interpolation axis No. of the point table for the primary axis.

POINT

- Specification of interpolation axis No. is only valid for starting point.
- Interpolation group (parameter No.0260) is invalid even when specified.
- The startup method does not change.
- Changeable interpolation group signal (IPCH) turns ON.
- Interpolation operation outputs the interpolation group No. being executed to the primary axis and auxiliary axis being executed.
- The interpolation group No. being executed for the primary axis and auxiliary axis for which interpolation operation has ended is cleared and becomes 0 .
(a) Cause of alarm
- When an axis No. exceeding the maximum number of control axes is set to interpolation axis No. 1 to 3, interpolation axis No. incorrect (operation alarm 41, detail 03) occurs and operation is stopped.
- When the number of interpolation operation groups operating simultaneously exceeds the number of valid groups, number of valid interpolation groups exceeded (operation alarm 41, detail 04) occurs and operation is stopped.
- When the axis No. of the interpolation operation auxiliary axis overlaps with the primary axis No. or another auxiliary axis No., interpolation point data error (operation alarm 41, detail 05) occurs and operation is stopped.

5.7.4 Auxiliary point-specified 2-axis circular interpolation control

Auxiliary point-specified 2-axis circular interpolation control performs positioning from the current command position (start point) to the position set as position data for point data (end point) using an arc trajectory which passes through the auxiliary point set as the arc coordinate.
The control trajectory is the center of the arc of the point of intersection between the perpendicular bisectors of either the start point (current command position) to the auxiliary point (arc coordinate) or the auxiliary point (arc coordinate) to the end point (position data).

- When absolute position command is used as the position command method

- When relative position command is used as the position command method The auxiliary point and end point are specified by their relative position (incremental value) from the start point.

(1) Restrictions

The following restrictions apply concerning use of auxiliary point-specified 2-axis circular interpolation. In the cases below, the interpolation point data error (operation error 41) occurs and operation cannot be started. For cases that occur during operation, an immediate stop will occur when an operation alarm is detected.

- When the radius exceeds "536870912 (=2 ${ }^{29}$)". (Operation alarm 41, detail 1A)
- When the position of the auxiliary point is outside the range of "-2147483648 (-2 ${ }^{31}$) to $2147483647\left(2^{31}-1\right)$ ". (Operation alarm 41, detail 14)
- When the position of the end point is outside the range of "-2147483648 (-2 $\left.{ }^{31}\right)$ to $2147483647\left(2^{31}-1\right)$ ". (Operation alarm 41, detail 16)
- When the position of the central point is outside the range of "-2147483648 (-2 $\left.{ }^{31}\right)$ to $2147483647\left(2^{31}-1\right)$ ". (Operation alarm 41, detail 19)
- When the start point = end point. (Operation alarm 41, detail 15)
-When the start point = auxiliary point. (Operation alarm 41, detail 11)
- When the end point = auxiliary point. (Operation alarm 41, detail 12)
- When the start point, auxiliary point, and end point form a straight line. (Operation alarm 41, detail 13)

5.7.5 Central point-specified 2-axis circular interpolation control

Central point-specified 2-axis circular interpolation control performs position control using an arc trajectory with the arc coordinate at its center while interpolating in accordance with the designated arc direction.
The following shows a trajectory determined by circular interpolation that has a controllable arc angle and the rotation direction set according to the interpolation method.

Interpolation method	Rotation direction	Controllable arc angle	Positioning path
Central point-specified circular interpolation (CW)	Clockwise	$0^{\circ}<\theta \leq 360^{\circ}$	
Central point-specified circular interpolation (CCW)	Counterclockwise		

(1) When absolute position command is used as the position command method Performs interpolation control from the current command position (start point coordinate) to the position set as position data for point data (end point coordinate) using an arc trajectory with the central point coordinate set as the arc coordinate at its center.

If the end point coordinate (position data) is set to be identical to the start point coordinate, interpolation control for a perfect circle that has a radius comprised of the start point coordinate and the arc central point is possible.

(2) When relative position command is used as the position command method

Performs interpolation control from the current command position (start point) to the movement amount (incremental value) position(s) set as position data for the point data using an arc trajectory with the central point coordinate set as the arc coordinate at its center.

By setting position data for point data to " 0 ", interpolation control for a perfect circle that has a radius comprised of the start point and the central point is possible.

(3) Error compensation

For central point-specified 2-axis circular interpolation control the arc trajectory calculated from the start point and the central point may not coincide with the position of the end point set as position data for the point data.
When the calculated error is within the allowable error range for circular interpolation (parameter No.02CC, 02CD), both interpolation control to the set end point and error compensation are performed simultaneously. (This is known as "spiral interpolation".)

For central point-specified 2-axis circular interpolation control the radius is calculated from the start and central points; the top of this radius is then used to calculate angular speed on the assumption that it is operating at feed speed, following which radius compensation is performed in proportion to the angular speed by which it moved from the start point.
However, when there is a difference (error) between the "radius calculated from the start point and the central point (start point radius)" and the "radius calculated from the end point and the central point (end point radius)", vector speed and feed speed will vary as shown below.
(a) When the start point radius > end point radius

As it approaches the end point, speed lowers more than it would in a situation with no errors.
(b) When the start point radius < end point radius

As it approaches the end point, speed increases more than it would in a situation with no errors.
(4) Restrictions

The following restrictions apply concerning use of central point-specified 2-axis circular interpolation. In the cases below, the interpolation point data error (operation error 41) occurs and operation cannot be started. For cases that occur during operation, an immediate stop will occur when an operation alarm is detected.

- When the radius exceeds "536870912 (=2 ${ }^{29}$)". (Operation alarm 41, detail 1A)
- When the start point coordinate = central point coordinate. (Operation alarm 41, detail 17)
- When the end point coordinate = central point coordinate. (Operation alarm 41, detail 18)
- When the central point coordinate is outside the range of "-2147483648 (-2 2^{31}) to $2147483647\left(2^{31}-1\right)$ ". (Operation alarm 41, detail 19)
- When the position of the end point is outside the range of "-2147483648 (-2 $\left.{ }^{31}\right)$ to $2147483647\left(2^{31}-1\right)$ ". (Operation alarm 41, detail 16)
-When the difference between the radius of the start/central points and the radius of the end/central points exceeds the allowable error range for circular interpolation (parameter No.02CC and 02CD). (Operation alarm 41, detail 10)

5.7.6 Start operation method

Start operation is performed according to the following procedure.
(1) Set the interpolation group, the interpolation speed limit value, and the interpolation options in control parameters. The group number is only required when the interpolation axis setting method (parameter No.004C) is " 0 : Use control parameter" and is valid during system startup. It is also valid during writing of parameters.
(2) Set the point table. At this time, set all items for the primary axis but only position data for the auxiliary axis. Settings for other items are invalid.
(3) Set the start point No. and the end point No. for all of the axes in the group configuration. At this time, make all axes have an identical number of points.
(4) Turn on the interpolation operation mode signal (LIP) for all of the axes in the group.
(5) Turn on the fast start operation signal (FST) for the primary axis.

POINT

- Only input the fast start operation signal (FST) for the primary axis.
- For stoppage of operation midway, turn on the stop operation signal (STP) for any selected axis in the interpolation group.
- The current operation point No. can be checked through the operation point No. of the axis status table (same as monitor No.030A).
- The start point No. for the point table is 0 .
- The point table is a total of 2048 points for all axes. The number of points distributed to each axis can be adjusted using the point number offset. Refer to Section 10.11 for details.
- When using the point table in loop method, the primary axis setting values are valid for the latest command point No. and the start point No./end point No. of the loop. Update the latest command point No. after writing the point tables of all axes in the group.

API LIBRARY

- Use the sscSetPointDataEx function to set up point data as shown above in (2).
- Use the sscInterpolationStart function to perform procedures (3) to (5) above.
- Use the sscDriveStop or sscDriveStopNoWait functions to perform stop operation.
- Use the sscGetDriveFinStatus or sscWaitlntDriveFin functions to check completion of operation.
- Use the sscSetPointOffset function to set point number offsets and the sscCheckPointOffset function to get point number offsets.

5.7.7 Exceeding speed limits for each axis

The setting for interpolation option (parameter No.0261) is invalid for circular interpolation. In feed speed, set the value for each axis so that the speed does not exceed the speed limit value. (Speeds calculated by the position board are not restricted by speed limit values.)

5.7.8 Restrictions

The following restrictions apply concerning use of circular interpolation.
(1) A primary axis interpolation start up error (Operation alarm 40) occurs for the following.

- If an axis with anything other than interpolation operation mode (LIP) selected exists in the same group. (Operation alarm 40, detail 01)
- If a single group is defined with either 1 axis or 3 or more axes. (Operation alarm 40, detail 02)
- If operation start for interpolation operation was done using a group number that exceeds the valid group number. (Operation alarm 40, detail 03)
- If the axes in the group have a varying number of points. (Operation alarm 40, detail 04)
- If the speed units (parameter No.0200) are "2: r/min". (Operation alarm 40, detail 05)
(2) If the auxiliary axis is in operation or it has an alarm occur when in interpolation operation mode, the can't start interpolation auxiliary axis error (operation alarm 42) occurs on the primary axis.
(3) If an alarm occurs during operation, the axis that caused the error has the corresponding alarm occur; all the other axes in the group have the group error (operation alarm 16, detail 01) occur.
(4) If any of the axes defined below is within the group, the "out of software limit boundaries (operation alarm A1)" or "reached software limit (operation alarm A2)" occurs.
- If the start point coordinate is outside software limits and there is movement away from the direction of the movement allowed area (operation alarm A1, detail 01).
- If either the end point or auxiliary point (when using auxiliary point-specification) coordinates are outside software limits. (Operation alarm A1, detail 01)
- If software limits are reached during operation. (Operation alarm A2, detail 01) In this case, a deceleration stop will occur when the limit is reached.
(5) The command change signal is input into the primary axis. Inputs made into the auxiliary axis are invalid.
- When changing speeds.
- When changing time constants.

Note. Not compatible when changing position. The position change error will occur.
(6) Continuous operation position over-bound processing operates through "2: Stop firmly at command position" regardless of continuous operation position over-bound processing (parameter No.0201) settings.
(7) Circular interpolation is not supported by the interference check function. The interference check axis setting error (operation alarm 43, detail OF) is output at circular interpolation operation start up and operation start up is stopped. For continuous operation, a deceleration stop occurs.
(8) When using the other axes start, if the self-axis pass data for other axis start up is either "start point coordinate \leq end point coordinate < self-axis pass position data" or "self-axis pass position data < end point coordinate \leq start point coordinate", the self-axis judgement coordinate is judged as being outside limits. (Operation alarm 4D, detail No.12)
Segment the arc trajectory and set the point table as necessary.

5.8 Home position return

5.8.1 Summary

The home position return enables the establishment of a start position (home position) in positioning control. By performing a home position return, instructed coordinates and machine coordinates will be consistent. When the incremental system method is used, a home position return is required for each power supply. On the other hand, when the absolute positioning detection system is used, performing a home position return restores the current command position even after power supply is turned off. This makes a home position return unnecessary after power is supplied again. Refer to Section 6.21 concerning absolute position detection systems.

The following table shows the methods of home position return. Select the optimum method according to the configuration and application of the machine with the home position return option 1 (parameter No.0240). For any home position return method, when a home position return is completed, the current command position is a position set in the home position coordinates (parameter No.0246, 0247).

Method	
Dog method	A method that uses the first Z-phase after the proximity dog rear end as the home position.
Data set method	A method that uses a current position as the home position. No proximity dog or Z-phase is necessary.
Stopper method	A method that uses the position of the collision stop caused by JOG operation or something similar as the home position. No proximity dog or Z-phase is necessary.
Dog cradle method	A method that uses the first Z-phase after the proximity dog front end as the home position.
Limit switch combined method	A method that uses the Z-phase prior to the limit switch of the opposite direction to the home position return direction as the home position.
Limit switch front end method	A method that uses the limit switch front end of the opposite direction to the home position return direction as the home position. No proximity dog or Z-phase is necessary.
Dog front end method	A method that uses the proximity dog front end as the home position. No Z-phase is necessary.
Z-phase detection method	A method that uses the nearest Z-phase as the home position. No proximity dog is necessary.
Scale home position signal detection method	A method that uses the linear scale home position signal as the home position.
Scale home position signal detection method 2 2	A method that uses the nearest linear scale home position signal as the home position for home return direction. No proximity dog is necessary.

POINT

-When using the following home position return methods, set proximity dog signal and limit switch signal so that the Z-phase can be passed during home position return.

- Dog method
- Dog cradle method
- Limit switch combined method
- When performing Z-phase detection method home position return, the Z-phase is required to be passed through with the JOG operation etc.
When the Z-phase is not passed, not passing Z-phase (operation alarm 91, detail 01) occurs. However, when "1: Not need to pass motor Z phase after the power supply is switched on" is selected in the home position setting condition selection of parameter No. 1190 (servo parameter PC17 function selection C-4), the home position return can be executed even when the Z-phase is not passed, and the restriction above is removed.
- Set 1 (valid) in No home position of the control option 1 (parameter No.0200) when setting the position at the time of power on as the home position. Once a home position return is performed, a position determined by the home position return is set to the home position.
- In the home position return, smoothing filter is invalid.
- In the Z-phase detection method, shortcut direction can be selected for home position return direction (parameter No.0240). When shortcut direction is selected in other home position return methods than Z-phase detection method, home position return parameter setting error (operation alarm 9D, detail 03) occurs when the operation starts.

5.8.2 Home position return method

Home position return method is set with the home position return option 1 (parameter No.0240).
(1) Using MR-MC2 $\square \square$
(a) Software version A4 or before

Set the home position return method with home position return method (parameter No.0240). The value at system startup is effective. Therefore, the system needs to be restarted if the parameters are changed.
(b) Software version A5 or later

The home position return method (parameter No.0240) can be changed while system is running.
(2) Using MR-MC3 $\square \square$
(a) No restriction by software version

The home position return method (parameter No.0240) can be changed while system is running.

POINT

- When home position return method is changed during home position return, the new home position return method becomes valid at the startup of the next home position return.
- Home position return direction and proximity dog input polarity cannot be changed while system is running.
- When Z-phase detection is set to home position return method and shortcut direction is set for home position return direction, the home position return method cannot be changed while system is running. If the home position return is changed, a home position return parameter setting error (operation alarm 9D, detail No.03) occurs at the next home position return startup.
- When a home position return method that does not exist in the home position return setting range is selected, a home position return parameter setting error (operation alarm 9D, detail No.04) occurs at the home position return startup.

5.8.3 Start operation method

Start operation is performed according to the following procedure.
(1) Set parameters "home position return to speed" (parameter No.0242, 0243), "home position return acceleration time constant" (parameter No.0244), "home position return deceleration time constant" (parameter No.0245), "home position coordinates" (parameter No.0246, 0247), "creep speed" (parameter No.024C), and "home position return direction" (parameter No.0240).
(2) Turn on the "home position return mode signal" (ZRN).
(3) Turn on the "fast start operation signal" (FST).
(4) When the home position return is completed, the home position return request (ZREQ) turns off and the home position return complete signal (ZP) turns on.

POINT

- Set the "amount of home position shift" (parameter No.0248, 0249) and "home position search limit" (parameter No.024A, 024B) if required.
- When a home position return is complete, the home position return complete signal (ZP) turns on. The home position return complete signal (ZP) turns off at the next start operation or at an operation mode change.
- The home position return request (ZREQ) turns on when a home position return starts.

API LIBRARY

- Use the sscHomeReturnStart function to perform procedures (2) to (3) above.
- Use the sscGetDriveFinStatus or sscWaitlntDriveFin functions to check completion of operation.
- Use the sscDriveStop or sscDriveStopNoWait functions to perform stop operation.
- For a detailed procedure from startup of home position return to check completion of operation, refer to the sample programs (InterruptDrive/PollingDrive) contained on the utility software.

5.8.4 Home position return using a dog method

The deceleration is started at the front end of the dog, and the first Z-phase after passing the rear end of the dog is defined as the home position.
(1) When there is a proximity dog in the direction of home position return

Note 1. The amount of home position offset is set to the amount of shift in the home position (parameter No.0248, 0249).
2. If the amount of shift in the home position is zero, the servo stops above the Z-phase.
3. The polarity of the proximity dog input signal can be changed using home position return option 1 (parameter No.0240). (The above figure shows the case of the normally closed contact.)
(2) When the dog is on at start operation

(3) When the proximity dog is in the opposite direction against the direction of home position return

(4) If a limit switch is detected at the start operation position If a limit switch in the direction of home position return is detected, the home position return should be executed by the (3) pattern. Also, if the limit switch is in the opposite direction against the direction of home position return, the home position return should be executed by the (1) pattern.
(5) When the start operation position is on a dog and when moving in the opposite direction the Z-phase was not traveled through until the dog is turned off

5.8.5 Home position return using a data set method

The command position at the start operation of the home position return is defined as the home position. It is necessary to move to home position using JOG operation or something similar in advance.
(1) When the home position is the current command position

Note. If limit switch signal is turned off when operation is started, a limit switch (operation alarm A0, detail 01) occurs and home position return cannot be executed.

5.8.6 Home position return using a stopper method

When start operation is performed for home position return using stopper method, droop pulse is cleared and current feedback position is defined as the home position.
It is necessary to move using JOG operation or something similar in advance and to execute the collision stop from the stopper using torque limit functions. For the torque limit, refer to Section 6.12.

Speed

Note1. If torque limit effective signal (TLC) is turned off when operation is started, "Not limiting torque" (operation alarm 95, detail 01) occurs and home position return cannot be executed.
2. If the home position return direction and the stopper method direction are opposite, a home position return direction error (operation alarm 94, detail 01) occurs and the home position return cannot be executed.

5.8.7 Home position return using a dog cradle method

A method where deceleration is started at the front end of the dog, then return briefly to the front end of the dog, and start moving again at a creep, and that uses the first Z-phase after the dog front end passes as the home position.
(1) When there is a proximity dog in the direction of home position return

Note 1. The amount of home position offset is set to the amount of shift in the home position (parameter No.0248, 0249).
2. If the amount of shift in the home position is zero, the servo stops above the Z-phase.
3. The polarity of the proximity dog input signal can be changed using home position return option 1 (parameter No.0240).
(The above figure shows the case of the normally closed contact.)
(2) When the proximity dog is in the opposite direction against the direction of home position return.

(3) When the start operation position is on the dog

(4) If a limit switch is on at the start operation position

If the limit switch in the direction of home position return is on, the home position return should be executed by the (2) pattern. Also, if the limit switch in the opposite direction against the direction of home position return is on, the home position return should be executed by the (1) pattern.
(5) When the start operation position is on a dog and when moving in the opposite direction the Z-phase is not traveled through until the dog is turned off

(6) When the start operation position is on a dog and when moving in the opposite direction the Z-phase is not traveled through until the dog is turned off

5.8.8 Home position return using a limit switch combined method

The Z-phase prior to the limit switch of the opposite direction to the home position return direction is defined as the home position.

Note 1. The amount of home position offset is set to the amount of shift in the home position (parameter No.0248, 0249).
2. If the amount of shift in the home position is zero, the servo stops above the Z-phase.
3. Polarity of the limit switch signal is only defined for normally-closed contact.

5.8.9 Home position return using a limit switch front end method

In the home position return using a limit switch front end method, the limit switch front end that is opposite to the home position direction is defined as the home position.

Note 1. The amount of home position offset is set to the amount of shift in the home position (parameter No.0248, 0249).
2. If the amount of shift in the home position is zero, the servo stops at the limit switch front end.
3. Polarity of the limit switch signal is only defined for normally-closed contact.

POINT

- A dispersion of the home position occurs depending on the detection timing of the limit switch front end. When this dispersion is a problem, the dispersion can be smaller by reducing the creep speed.

5.8.10 Home position return using a dog front end method

In the home position return using a dog front end method, the motion detected by the proximity dog slows down to stop, and return to the proximity dog front end, setting there to the home position.
(1) When there is a proximity dog in the direction of home position return

Note 1. The amount of home position offset is set to the amount of shift in the home position (parameter No.0248, 0249).
2. If the amount of shift in the home position is zero, the servo stops at the proximity dog front end.

POINT

- A dispersion of the home position occurs depending on the detection timing of the dog front end. When this dispersion is a problem, the dispersion can be smaller by reducing the creep speed.
(2) When the proximity dog is in the opposite direction against the direction of home position return

(3) When the start operation position is on the proximity dog

(4) If a limit switch is on at the start operation position

When the limit switch on the same side as the home position return direction is on, the home position return should be executed by the (3) pattern. Also, when the limit switch on the opposite side of the home position return direction is on, the home position return should be executed by the (1) pattern.

5.8.11 Home position return using a Z-phase detection method

After moving from the position where home position return has started to the nearest Z-phase (in addition, after moving by shift amount when home position shift amount is set), home position return is completed. It is necessary to move to around home position using JOG operation or something similar in advance. For home position return direction (parameter No.0240), in addition to - direction and + direction, shortcut direction can be selected.
For the shortcut direction, home position return operation is started in the direction where the travel distance to the Z-phase is small. At this time, code of the home position shift amount is consistent with the movement direction from the Z-phase. (Example: If home position shift amount is -100 [command unit], home position is the position moved from Z-phase by -100 [command unit].)

Note1. Home position sensor signal is an externally installed signal and monitored by a user program. Execute the movement to around home position by this signal.
2. When limit switch signal of home position return direction is turned off, limit switch (operation alarm A0, detail 01 to 02) occurs when the operation starts and home position return cannot be executed.
3. When not passing Z-phase (ZPASS) is tuned off, Z-phase not passed (operation alarm 91, detail 01) occurs when the operation starts and home position return cannot be executed. Execute home position return after passing through Z-phase by JOG operation or something similar.
4. When setting of the home position signal re-search (parameter No.0240) is set to "Search again", home position return parameter setting error (operation alarm 9D, detail 02) occurs when the operation starts and home position return cannot be executed. Always set to "Do not search again".

[Cautions]

In the sequence 2) above, stop processing by response delay to the home position sensor signal and deceleration occurs during the time until the axis stops.

Stop processing $=\mathrm{La}+\mathrm{Lb}+\mathrm{Lc}+\mathrm{Ldc}$
La: Travel distance associated with delay time (Ta) from sensor-on to JOG operation stop command issued $=($ Moving speed $) \times \mathrm{Ta}$ (Note 1)
Lb: Travel distance associated with delay time (Tb) of position board $=($ Moving speed $) \times \mathrm{Tb}$ (Note 2)
Lc: Travel distance associated with delay of servo $=$ (distance equivalent to drop pulse) (Note 3)
Ldc: Distance which deceleration takes
$=($ Moving speed $) \times($ Deceleration time $) \div 2$
Note 1. Depending on the specification of user program side
2. $\mathrm{Tb} \doteqdot$ Control cycle $\times 2$
3. (Droop pulse) $\div(\mathrm{N} \times \mathrm{Pt}) \div(60 \times \mathrm{PG} 1)$

N : Motor speed ($\mathrm{r} / \mathrm{min}$)
Pt: Number of pulses per revolution PG1: Position loop gain 1
4. The unit of droop pulse calculated here is equivalent to the motor end encoder resolution.

This stop processing changes depending on dispersion of the response delay of the sensor signal. Therefore, reference encoder Z-phase of sequence 3) above may change by one revolution of the motor when stop position is near the encoder Z-phase by the relationship between home sensor position signal and encoder Z-phase.

1) When stop position is before the encoder Z-phase

2) When stop position is after the encoder Z-phase

To avoid this event, adjust position relationship between home position sensor signal and encoder Z-phase, adjust the command speed of JOG operation or set correct value to Z-phase mask amount (parameter No.0250, 0251).

[Encoder Z-phase mask amount]

When the stop position is near the encoder Z-phase by the dispersion, the Z-phase position to be the home position can be fixed by setting encoder Z-phase mask amount.

1) When stop position is before the encoder Z-phase

2) When stop position is after the encoder Z-phase

Note1. When the stop position disperses largely, the home position may change by one revolution of the motor even when encoder Z-phase mask amount is set. In this case, adjust command speed to reduce the dispersion.
2. When the following conditions are satisfied in the calculation of Z-phase mask amount, Z-phase mask amount setting error (operation alarm 9C, detail 01) occurs when the operation starts and home position return cannot be executed. Reexamine the setting value of the Z-phase mask amount.
(a) The value calculated by Z-phase mask amount \times electronic gear numerator (CMX) \div electronic gear denominator (CDV) exceeds 32 bits.
(b) The value calculated by the Z-phase mask amount + the travel distance to the Z-phase exceeds 32 bits.

5.8.12 Home position return using a scale home position signal detection method

Home position return is performed using a home position signal (Z-phase) on a linear scale. After detecting the proximity dog, move in the opposite direction of the home position and the position where a home position signal is detected is defined to be the home position. When multiple home position signals on the linear scale, the nearest home position signal to the proximity dog is defined as the home position.

Note 1. The amount of home position offset is set to the amount of shift in the home position (parameter No.0248, 0249).
2. If the amount of shift in the home position is 0 , the servo stops on the Z-phase.
3. When a limit switch signal is detected, an alarm occurs and execution of return to home position is terminated.

Set the proximity dog signal before the limit switch signal.
Set the proximity dog signal to overlap with the limit switch signal as shown above.

5.8.13 Home position return using a scale home position signal detection method 2

Home position return is performed using a home position signal (Z-phase) on a linear scale. Move in the opposite direction of the home position and the position where a home position signal is detected is defined to be the home position. When multiple home position signals in the linear scale, the nearest home position signal in the opposite direction of home position return direction is defined as the home position.

Note 1. The amount of home position offset is set to the amount of shift in the home position (parameter No.0248, 0249).
2. If the amount of shift in the home position is 0 , the servo stops on the Z-phase.
3. When a limit switch signal is detected, an alarm occurs and execution of return to home position is terminated. Set the home position signal before the limit switch signal.
4. Start position is needed to be adjusted with a user program so that the Z-phase is passed.
5. When there are multiple Z-phase, start position is needed to be adjusted with a user program so that the reference Z-phase is passed first.
6. Z-phase mask function cannot be used.
7. The servo returns to Z-phase after detecting the Z-phase, movement direction is reversed, which is different from home position return using a Z-phase detection method.

5.9 Home position reset function (data set function)

The home position reset function (data set function) is a function that resets the current position to the home position. Prior to executing the home position reset function, set the home position coordinates (parameter No.0246, 0247). The movement is the same as the data set method return to home position, where the current position is changed to the home position coordinates (parameter No.0246, 0247). This function can be used independent of the method for returning to home position. If absolute position detection system is used, whether or not data for absolute position detection system (home position multiple revolution data (parameter No.024D), home position within 1 revolution position (parameter No.024E, 024F)) are changed can be selected using return to home position option 2 (parameter No.0241).
The home position reset function is valid after home position return complete. If the home position reset function is used prior to home position return finish (home position return request (ZREQ) is ON), a home position return not complete error (operation alarm 90, detail 01) occurs.

Start operation is performed according to the following procedure.
(1) Move to an arbitrary position using JOG operation or something similar.
(2) Set home position coordinates for resetting.
(3) Turn on the home position reset mode (DST).
(4) Turn on the start fast operation signal (FST).

API LIBRARY

- Use the sscDataSetStart function to perform procedures (3) to (4) above.
- Use the sscGetDriveFinStatus or sscWaitIntDriveFin functions to check completion of operation.

Note. The home position return complete signal (ZP) is turned off when next start of operation for the following is performed.

6. APPLICATION FUNCTIONS

6.1 Command units

6.1.1 Position command unit - electronic gear

Set position command (such as position data of point table and the incremental movement amount) by position command unit. Electronic gears (parameter No.020A, 020B, 020C, 020D) are used to adjust position command unit. Through making changes to the electronic gears, it is possible to move the equipment using an arbitrary multiplication constant for the movement amount.

$$
\text { Electronic gear }=\frac{\text { Electronic gear numerator }(\mathrm{CMX})}{\text { Electronic gear denominator (CDV) }}
$$

The number of encoder pulses per revolution is 4194304 or less (normal servo motor, linear servo motor etc.).

Item		Setting range	Number of encoder pulses per revolution [pulse] (Note 1)	Maximum speed [r/min] (Note 2,3)
Electronic gear	CMX	$1 \leq C M X \leq 5242879$ (When the speed unit is position command unit/s or position command unit/min)	To 67108864 (The resolution of up to 26 bit is supported.)	Limits the speed to $2160000 \times$ (262144/number of encoder pulses per revolution) $\times($ CMX/CDV) or less, and to $4893355 \times(262144 /$ number of encoder pulses per revolution) or less
		$1 \leq C M X \leq 477218$ (When the speed unit is $\mathrm{r} / \mathrm{min}$)		
	CDV	$1 \leq C D V \leq 589823$		
	CMX/CDV			

Note 1. When a linear servo motor is used, this becomes the value which is set in "Stop interval setting for home position return" of the linear/direct drive motor function selection 1 (parameter No.1300).
2. When the command speed output to the servo amplifier from the position board exceeds the motor maximum revolution speed, the speed is limited to the motor maximum revolution speed (monitor No.0114).
3. When a linear servo motor is used, this is converted into maximum speed [r/min] by the following formula.

Maximum speed $[r / \mathrm{min}]=\frac{\text { Motor maximum speed }[\mathrm{m} / \mathrm{s}] \times 1000 \times 1000 \times 60}{\text { Linear encoder resolution }[\mu \mathrm{m} / \text { pulse }] \times \text { Stop interval setting for home position return[pulse] }}$
However,
Linear encoder resolution $[\mu \mathrm{m} /$ pulse $]=\frac{\text { Linear encoder resolution setting Numerator (Parameter No.1301) }}{\text { Linear }}$

API LIBRARY

- Use the sscChange2Parameter/sscCheck2Parameter functions to set/get electronic gear.

Example: Relationship between setting range of electronic gear and corresponding maximum revolution speed

Number of encoder pulses per revolution [pulse]	Electronic gear (CMX/CDV)	Maximum speed (limited) [r/min]
262144	1/16	135000
	1/1	2160000
	10/1	4893355
	10000/1	4893355
1048576	1/16	33750
	1/1	540000
	10/1	1223338
	10000/1	1223338
4194304	1/16	8437
	1/1	135000
	10/1	305834
	10000/1	305834
16777216	1/16	2109
	1/1	33750
	10/1	76458
	10000/1	76458
67108864	1/16	527
	1/1	8437
	10/1	19114
	10000/1	19114

Note. The smaller the setting value of the electronic gear (CMX/CDV) is, the more the maximum revolution speed is limited. If the maximum revolution speed is limited and the enough speed cannot be output, reexamine the command unit of the user program and make sure the setting value of the electronic gear (CMX/CDV) becomes larger. (The command unit becomes rough.)

6.1.2 Settings

Control parameters

Parameter No.	Symbol	Name	Initial Value	Unit	Setting range	Function
020A	*CMXL	Electronic gear numerator (lower)	0001 h		1 to 5242879 $(32$ bits)	Set the numerator for electronic gears.
020B	${ }^{*} \mathrm{CMXH}$	Electronic gear numerator (upper)	0000 h		1 to 589823 $(32$ bits)	Set the denominator of the electronic gear.

Note. The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.

6.1.3 Setting example of electronic gears

The following is a setup example for use of $\mu \mathrm{m}$ as a command unit for a piece of equipment that uses ball screws.
(1) Equipment specification

Item	Symbol	Value	Unit	Remarks
Ball screw lead	Pb	10	mm	$=10000 \mu \mathrm{~m}$
Deceleration ratio	n	$1 / 2$		
Number of encoder pulses per revolution	Pt	4194304	pulse $/ \mathrm{rev}$	

(2) Calculation of electronic gears

$$
\frac{C M X}{C D V}=\frac{P t}{\Delta S}=\frac{P t}{n \cdot P b}=\frac{4194304}{1 / 2 \cdot 10000}=\frac{4194304}{5000}=\frac{400000 \mathrm{~h}}{1388 \mathrm{~h}}
$$

$$
\text { Note. } \Delta \mathrm{S} \text { is the movement amount for } 1 \text { revolution of the servo motor. }
$$

(3) Parameter settings

Because the value obtained by calculating the electronic gear is within the setting range, the value can be set without reducing.

Parameter No.	Symbol (Note)	Name	Setting value
020 A	${ }^{*} \mathrm{CMXL}$	Electronic gear numerator (lower)	0000 h
020 B	${ }^{*} \mathrm{CMXH}$	Electronic gear numerator (upper)	0040 h
020 C	${ }^{*} \mathrm{CDVL}$	Electronic gear denominator (lower)	1388 h
020 D	${ }^{*} \mathrm{CDVH}$	Electronic gear denominator (upper)	0000 h

Note. The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.

6.1.4 Restrictions

The restrictions on electronic gears are shown below.
(1) When the setting of an electronic gear (CMX, CDV, CMX/CDV) is incorrect, an electronic gear setting error (system error E500) occurs at system startup and the electronic gear setting is treated as CMX: CDV =1: 1 . The operation cannot be performed since the electronic gear is in forced stop status at this time. Reexamine the setting of an electronic gear and start the system again.
(2) When an electronic gear setting error occurs while using the absolute position detection system, the absolute position erased signal (ABSE) and the home position return request (ZREQ) turn on. For the absolute position detection system, refer to Absolute position detection system (Section 6.21).
(3) When an electronic gear setting error occurs, it is possible to check which axis was set using an incorrect electronic gear by checking "electronic gear setting error axis information" (monitor No. 0488 to 0489).

6.2 Speed unit

The speed command (feed speed of point table, manual feed speed, etc.) is set by the speed unit. Speed units are adjusted using the speed units and the speed units multiplication factor (parameter No.020E, 020F) of the control option 1 (parameter No.0200). Through changing the speed units, movement can be performed at an arbitrary unit and multiplication of speed.

> API LIBRARY
> • Use the sscChange2Parameter/sscCheck2Parameter functions to set/get speed unit.

6.2.1 Settings

Control parameters

Parameter No.	Symbol	Name	Initial Value	Unit	Setting range	Function
0200	*OPC1	Control option 1	0001h		$\begin{aligned} & \text { 0000h to } \\ & 2111 \mathrm{~h} \end{aligned}$	
020E	SUML	Speed units multiplication factor (lower)	2000h		$\begin{gathered} \hline 1 \text { to } \\ 32768 \end{gathered}$	Set the speed command multiplication.
020F	SUMH	Speed units multiplication factor (upper)	0000h		(32 bit)	

Note. The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.

6.2.2 Setting example of speed units

The following is a setup example for use of $\mathrm{mm} / \mathrm{min}$ as a speed unit for a piece of equipment that uses ball screws.
(1) Equipment specification

The equipment specification is same as that of Section 6.1.
(2) Parameter setting for the speed unit

As the position command unit is $\mu \mathrm{m}$, set 1000 to the speed units multiplication factor to use $\mathrm{mm} / \mathrm{min}$ as a speed unit.
$1000 \mu \mathrm{~m} / \mathrm{min}=1 \mathrm{~mm} / \mathrm{min}$

Parameter No.	Symbol (Note)	Name	Setting value
0200	$*$ OPC1	Control option 1	$0 \square \square \square \mathrm{~h}$
020 E	SUML	Speed units multiplication factor (lower)	03 Bh
020F	SUMH	Speed units multiplication factor (upper)	0000 h

[^5]
6.2.3 Speed limit

The following restrictions apply to the command speed. Reexamine the command speed according to the following.
(1) When the speed command exceeds the speed limit (parameter No.0222, 0223), the speed is limited to the speed limit.

Control parameters

Parameter No.	Symbol	Name	Initial Value	Unit	Setting range	Function
0222	SPLL	Speed limit value (lower)	0BB8h	Speed units	0000h to FFFFh	Set the value for the moving speed limit.
0223	SPLH	Speed limit value (upper)	0000h		0000h to 7FFFh	

(2) When the command speed output to the servo amplifier exceeds the motor maximum revolution speed, the speed is limited to the motor maximum revolution speed. The motor maximum revolution speed can be checked in the motor maximum revolution speed (monitor No.0114) and the motor permissible pulse rate (monitor No.0120, 0121).
(3) The position board calculates the command speed of the servo amplifiers using the speed setting, speed units multiplication factor and electronic gears; however, if an overflow occurs in the calculation process due to high command speed etc., the speed is limited to the calculable maximum value. The calculable maximum value is checked in the maximum output pulse rate (monitor No.0122, 0123) of the servo information.

6.3 Acceleration/deceleration

The following methods are available for acceleration/deceleration.

- Linear acceleration/deceleration
- Smoothing filter
- Start up speed enable
- S-curve acceleration/deceleration
- Jerk ratio acceleration/deceleration Mcso0
- Vibration suppression command filter 1 Mcsoo

The setting method for acceleration/deceleration differs according to the operation mode.
(1) During automatic operation/interpolation operation

Set with speed options (parameter No.0220) and point table. The actual acceleration/deceleration depends on the combinations shown in the table below.
(2) Operation modes other than the above

Set with speed options.

Speed options			S-curve ratio (Note 1)	Auxiliary command 2		Auxiliary command	Actual acceleration/ deceleration method
Linear acceleration/ deceleration	Smoothing filter	Start up speed enable		Linear acceleration/ deceleration/ S-curve acceleration/ deceleration	Jerk ratio acceleration/ deceleration MC300 (Note 2)	Vibration suppression command filter 1 MC300	
\bigcirc				\bigcirc			Linear acceleration/deceleration
\bigcirc			\bigcirc	\bigcirc			S-curve acceleration/deceleration
\bigcirc					\bigcirc		Jerk ratio acceleration/deceleration
\bigcirc			\bigcirc		\bigcirc		
	\bigcirc			\bigcirc			Smoothing filter
	\bigcirc		\bigcirc	\bigcirc			Smoothing filter + S-curve acceleration/deceleration
	\bigcirc				\bigcirc		Smoothing filter + jerk ratio acceleration/deceleration
	\bigcirc		\bigcirc		\bigcirc		
		\bigcirc		\bigcirc			Start up speed enable
		\bigcirc	\bigcirc	\bigcirc			Start up speed enable + S-curve acceleration/deceleration
		\bigcirc			\bigcirc		Start up speed enable
		\bigcirc	\bigcirc		\bigcirc		Start up speed enable + S-curve acceleration/deceleration
\bigcirc				\bigcirc		\bigcirc	Vibration suppression command filter 1
\bigcirc			\bigcirc	\bigcirc		\bigcirc	S-curve acceleration/deceleration + vibration suppression command filter 1
\bigcirc					\bigcirc	\bigcirc	Jerk ratio acceleration/deceleration + vibration suppression command filter 1
\bigcirc			\bigcirc		\bigcirc	\bigcirc	
	\bigcirc			\bigcirc		\bigcirc	Smoothing filter + vibration suppression command filter 1
	\bigcirc		\bigcirc	\bigcirc		\bigcirc	Smoothing filter + S-curve acceleration/deceleration + vibration suppression command filter 1
	\bigcirc				\bigcirc	\bigcirc	Smoothing filter + Jerk ratio acceleration/deceleration + vibration suppression command filter 1
	\bigcirc		\bigcirc		\bigcirc	\bigcirc	

Speed options			$\begin{gathered} \text { S-curve } \\ \text { ratio } \\ (\text { Note 1) } \end{gathered}$	Auxiliary command 2		Auxiliary command	Actual acceleration/ deceleration method
Linear acceleration/ deceleration	Smoothing filter	Start up speed enable		Linear acceleration/ deceleration/ S-curve acceleration/ deceleration	Jerk ratio acceleration/ deceleration MC300 (Note 2)	Vibration suppression command filter 1 MC300	
		\bigcirc		\bigcirc		\bigcirc	Start up speed enable
		\bigcirc	\bigcirc	\bigcirc		\bigcirc	Start up speed enable + S-curve acceleration/deceleration
		\bigcirc			\bigcirc	\bigcirc	Start up speed enable
		\bigcirc	\bigcirc		\bigcirc	\bigcirc	Start up speed enable + S-curve acceleration/deceleration

Note 1. When S-curve ratio is less than 30%, the cell is blank. O only applies when S-curve ratio is 30 to 100%.
2. Jerk ratio acceleration/deceleration cannot be used during interpolation operation.

POINT

- The setting at starting operation is valid for the method of acceleration/ deceleration of speed options. If the method of acceleration/deceleration is changed during operation, the change is not made. It is validated (changed) the next time operation is started.
- When start up speed enable is specified, jerk ratio acceleration/deceleration and vibration suppression command filter 1 are disabled.
- When smoothing filter and vibration suppression command filter 1 are set together, vibration suppression command filter 1 is processed before processing smoothing filter.

API LIBRARY

- Use the sscChange2Parameter/sscCheck2Parameter functions to set/get the acceleration/deceleration method of speed options.
- Use the sscSetPointDataEx function to set the point table.

6.3.1 Linear acceleration/deceleration

Linear acceleration/deceleration is as shown in the following drawing. The acceleration time constant and deceleration time constant are set the time through where the speed limit value (parameter No.0222, 0223) is reached.

6.3.2 Smoothing filter

Setting smoothing filter makes smooth acceleration/deceleration. The smoothing time constants are set using parameter No.0226. The acceleration time and deceleration time make the profile be longer.

POINT

- The setting at starting operation is valid for the smoothing time constants. If the smoothing time constants are changed during operation, the change is not made. It is validated (changed) the next time operation is started.

6.3.3 Start up speed enable

Through setting start up speed enable, the start speed is stepped up to start up speed, it steps to stop from start up speed. The start up speed is set using parameter No.0224, 0225. However, a shock may be transmitted to the mechanical system during acceleration or deceleration.

POINT
• Cannot be used together with smoothing filter.

6.3.4 S-curve acceleration/deceleration (Sine acceleration/deceleration)

This is a method where acceleration/deceleration is performed gradually based on the Sin-curve. To make the S-curve acceleration/deceleration valid, set the S-curve ratio (1 to 100\%). At this time, the acceleration time and deceleration time is the same as in the case of the linear acceleration/deceleration.

POINT
-When using the S-curve acceleration/deceleration for JOG operation, incremental feed operation and home position return, set the S-curve ratio in Scurve ratio (parameter No.0221). For automatic operation and linear interpolation operation MC200 /interpolation operation MC300 , set the S-curve ratio in the point table.

API LIBRARY

-When using the S-curve acceleration/deceleration for JOG operation, incremental feed operation and home position return, use the sscChange2Parameter/sscCheck2Parameter functions to set the S-curve ratio (Parameter No.0221).

- When using the S-curve acceleration/deceleration for automatic operation and linear interpolation operation $\sqrt{M C 200}$ /interpolation operation $\sqrt{M C 300}$, set the Scurve ratio in the point table using the sscSetPointDataEx function.

Control parameters

Parameter No.	Symbol	Name	Initial Value	Unit	Setting range	Function
0221	SRATE	S-curve ratio	0	$\%$	0 to 100	Set the S-curve ratio of the S-curve acceleration/deceleration (Sine acceleration/deceleration). $0 \quad: ~ S-c u r v e ~ a c c e l e r a t i o n / d e c e l e r a t i o n ~ i n v a l i d ~$
1 to 100: S-curve acceleration/deceleration						
(Note 1) (Note 2)						

Note 1. S-curve acceleration/deceleration is performed for the acceleration/deceleration selected in speed options (parameter No.0220).
2. The S-curve ratio set by this parameter is used in JOG operation, incremental feed operation and home position return. For automatic operation and linear interpolation operation $M C 200$ /interpolation operation $M C 300$, set the S-curve ratio in the point table.

The S-curve ratio indicates which part of the Sin-curve is used to draw the acceleration/deceleration curve as shown in the figure below.

POINT

- The valid limits of S-curve ratio are 30 to 100%. When less than 30% is set, the command waveform is the same as the one of the setting of 0%.
- The setting at starting operation is valid for the S-curve ratio. If the S-curve ratio is changed during operation, the change is not made. It is validated (changed) the next time operation is started.

When the change speed is performed, the acceleration/deceleration based on the Sin-curve to the set speed is performed again from the time of the completion of preparation for changing speed.
change preparation OFF \qquad (SCF)

When the acceleration time constant is changed during the acceleration, acceleration based on the Sin-curve is performed again from the time of the completion of acceleration time constant change preparation.

When deceleration to a stop is performed with rapid stop time constants such as rapid stop (RSTP) and interlock (ITL), the S-curve acceleration/deceleration is canceled and linear deceleration is performed. When deceleration to a stop is performed with deceleration time constants such as operation alarms, the S-curve acceleration/deceleration is performed.

However, when overrun occurs (for example, rapid stop time constant is longer than deceleration time constant.), the S-curve acceleration/deceleration is kept to a stop.

When the original command shape is not in a trapezoid but in a triangle (for example, the travel distance is small.), acceleration/deceleration is performed based on the Sin-curve that peaks at the maximum command speed for triangle command.

Smoothing filter and S-curve acceleration/deceleration can be used together. In addition, S-curve acceleration/deceleration and start up speed can be used together. When S-curve acceleration/deceleration and start up speed is used together, the acceleration/deceleration as shown in the figure below is performed.

6.3.5 Jerk ratio acceleration/deceleration MC300

Jerk ratio acceleration/deceleration is an acceleration/deceleration method that uses a trapezoidal pattern. When using this function, the acceleration time and deceleration time are longer compared to linear acceleration/deceleration.

POINT

- This function can only be used in automatic operation.

The actual acceleration time and deceleration time adds the following amount.
$\begin{gathered}\text { Actual } \\ \text { acceleration time }\end{gathered}=\left(1+\left(\begin{array}{c}\text { Acceleration } / \\ \text { deceleration data } 1\end{array}+\begin{array}{c}\text { Acceleration } / \\ \text { deceleration data 2 }\end{array}\right) \div 1000\right) \times \begin{gathered}\text { Command } \\ \text { speed }\end{gathered} \div \begin{gathered}\text { Speed limit } \\ \text { value }\end{gathered} \times \begin{gathered}\text { Acceleration } \\ \text { time constant }\end{gathered}$ $\begin{gathered}\text { Actual } \\ \text { deceleration time }\end{gathered}=\left(1+\left(\begin{array}{c}\text { Acceleration } / \\ \text { deceleration data } 3\end{array}+\begin{array}{c}\text { Acceleration/ } \\ \text { deceleration data 4 }\end{array}\right) \div 1000\right) \times \begin{gathered}\text { Command } \\ \text { speed }\end{gathered} \begin{gathered}\text { Speed limit } \\ \text { value }\end{gathered} \begin{gathered}\text { Deceleration } \\ \text { time constant }\end{gathered}$

When the commanded shape is not trapezoidal but a triangle, such as when the movement amount is small, deceleration starts before the command speed is reached. The ratio for each section during acceleration/deceleration is maintained at the values set to the acceleration/deceleration data area.

(1) Point table

Jerk ratio acceleration/deceleration is set as follows in the point table.

Point	Position data [Command units]	Feed speed [Speed units]	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell/ predwell [ms]	Auxiliary command	Other axes start specification	S-curve ratio [\%]	. . .
4 bytes	4 bytes	2 bytes	2 bytes	2 bytes	2 bytes	4 bytes	1 bytes	. ..	

| Reserved | Interpolation
 axis No. | Arc
 coordinate | Acceleration/
 deceleration
 data 1 | Acceleration/
 deceleration
 data 2 | Acceleration/
 deceleration
 data 3 | Acceleration/
 deceleration
 data 4 | Auxiliary
 command
 2 | Reserved |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 bytes | 4 bytes | 4 bytes | 2 bytes | 6 bytes |

(a) Auxiliary command 2

- Acceleration/deceleration method

0: Linear acceleration/deceleration/S-curve acceleration/deceleration
1: Jerk ratio acceleration/deceleration
(b) Acceleration/deceleration data

1) Acceleration/deceleration data 1(Setting range: 0 to 1000)

Set a $[0.1 \%]$ ratio for the section of increasing acceleration.
2) Acceleration/deceleration data 2(Setting range: 0 to 1000) Set a [0.1\%] ratio for the section of decreasing acceleration.
3) Acceleration/deceleration data 3(Setting range: 0 to 1000) Set a $[0.1 \%]$ ratio for the section of increasing deceleration.
4) Acceleration/deceleration data 4(Setting range: 0 to 1000) Set a [0.1\%] ratio for the section of decreasing deceleration.

POINT

- Continuous operation cannot be specified in the deceleration check system (setting in auxiliary command). When continuous operation is set, point table setting error (operation alarm 25, detail No.02) occurs.
- When the acceleration/deceleration method setting value is outside of the setting range, point table setting error (operation alarm 25, detail No.12) occurs.
- When the value of any of acceleration/deceleration data 1 to 4 is outside of the setting range, point table setting error (operation alarm 25 , detail No.13) occurs.
- When the total of the values of acceleration/deceleration data 1 and 2 , or acceleration/deceleration data 3 and 4 exceed 1000, point table setting error (operation alarm 25, detail No.14) occurs.
- When the setting values of all acceleration/deceleration data are 0 , the jerk ratio acceleration/deceleration is invalid for the applicable sections.
- When the setting values of the acceleration time constant or deceleration time constant exceed 1000, the jerk ratio acceleration/deceleration is invalid for the applicable sections.
(2) Operation mode combinations

Only automatic operation is supported.
The jerk ratio acceleration/deceleration function is invalid in other operation modes.

Operation mode	Availability
JOG operation	\times
Incremental feed	\times
Automatic operation	\bigcirc
Interpolation operation	\times
Home positon return	\times
Home position reset	\times

POINT

- When jerk ratio acceleration/deceleration is set in the acceleration/ deceleration method during interpolation operation, point table setting error (operation alarm 25, detail No.15) occurs.
(3) Command change combinations

All command changes at points with jerk ratio acceleration/deceleration specified are not available.

Operation mode	Availability
Speed change	\times
Time constant change	\times
Position change	\times

(4) Operation rapid stop and interlock combinations

When deceleration stops are made with rapid stop time constants such as rapid stop (RSTP) and interlock (ITL), jerk ratio acceleration/deceleration is cancelled, and the acceleration/deceleration method in speed options is used for deceleration. When deceleration stops are made with the deceleration time constant such as operation alarms, the acceleration/deceleration method (refer to Section 6.3) is used for deceleration.

Speed options	Actual deceleration method
Linear acceleration/deceleration	Linear acceleration/deceleration
Smoothing filter	Smoothing filter

6.3.6 Vibration suppression command filter 1 MC300

The vibration suppression command filter 1 removes only designated frequency components by superimposing waveforms whose phase is delayed by only half of the vibration cycle for the position command. Acceleration times and deceleration times are longer by only delay from the filter "1/(frequency $\times 2$)[s]". The attenuation of the filter can be set. When the filter's effect is small, the attenuation can be set to increase the effect of the filter.

POINT

- While vibration suppression command filter 1 can be set to an interpolation operation axis, because the mechanical vibration frequency for each axis performing interpolation operation is generally different, the setting values for parameters are also different. Consequently, the path during interpolation operation cannot be maintained.

(1) Control parameters

Set the following parameters to use vibration suppression command filter 1.

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function			When in tandem drive
025C	FREQ	Vibration suppression command filter 1 frequency	0	0.1 Hz	$\begin{gathered} 0 \text { to } \\ 22500 \end{gathered}$	Set the vibration suppression command filter 1 frequency in increments of 0.1 Hz . The setting range for each control cycle is shown below. When a frequency outside of the range is set, vibration suppression command filter 1 becomes invalid.			Master
025D	ATT	Vibration suppression command filter 1 attenuation	0		0 to 32	Set the attenuation 0 : Maximum filter	of the vibration com attenuation	mponent.	Master
025E	EDRP	Vibration suppression command filter 1 operation ending droop	0	pulse	$\begin{array}{\|c\|} \hline 0 \text { to } \\ 10000 \end{array}$	Set the operation When the amount command filter 1 is remaining pulses ar 0: 5[pulse]	ending droop for whe of droop by vibration equal to or less tha are output and opera	en operation finishes. n suppression an the set value, all ation ends.	Master

Note. When the parameters in the table are changed during operation, the set values become valid the next time operation is start up.

(2) Point table

Vibration suppression command filter 1 is specified in the auxiliary command point table.

(a) Vibration suppression command filter 1 specification Select vibration suppression command filter 1 valid/invalid.

0 : Invalid
1: Valid

POINT

- For continuous operation, point 2 and after on the point table also operate with the vibration suppression command filter 1 specification setting in point 1.
(3) Operation mode combinations

Automatic operation and interpolation operation are supported.
Vibration suppression command filter 1 function is invalid in other operation modes.

Operation mode	Availability
JOG operation	\times
Incremental feed	\times
Automatic operation	\bigcirc
Interpolation operation	\bigcirc
Home positon return	\times
Home position reset	\times

(4) Command change combinations

Speed change/time constant change/position change are all available.

Operation mode	Availability
Speed change	\bigcirc
Time constant change	\bigcirc
Position change	\bigcirc

6.4 Servo off

If an axis has moved due to an external force while the servo was off, the current command position is updated in accordance with the movement amount (Current feedback position). After the servo has been off, coordinate return processing such as return to home position is not necessary.

If the servo on signal (SON) is turned off during operation, an alarm occurs, movement is rapid stopped, and the servo is turned off. Even if the servo on signal (SON) is turned back on, operation does not resume.

Note. If "1: Smoothing filter" is set in Speed options (parameter No.0220), the smoothing time constant is always valid. Therefore, rapid stop as well will use smoothing filter.

API LIBRARY

- To turn ON/OFF the servo ON command (SON), set SSC_CMDBIT_AX_SON to the command bit number of the sscSetCommandBitSignalEx function.
- To check if servo ready (RDY) is ON/OFF, set SSC_STSBIT_AX_RDY to the status bit number with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx functions.

6.5 Forced stop

Commands are turned to " ϕ " at forced stop. Servo amplifiers become free from the control of the position board and stops according to their specifications or settings such as dynamic brake stop and deceleration to a stop. For details, refer to the Servo Amplifier Instruction Manual on your servo amplifier.
During forced stopping, the current command position is updated according to movement (Current feedback position) therefore, after resetting the forced stop, origin coordinate processing such as home position return is not necessary.

For forced stops, there are an external forced stop using an input signal through the forced stop input connector and a software forced stop signal (SEMI) from a system command bit. Also, a system error (system status code E $\square \square \square \mathrm{h}$) such as a SSCNET communication error activates the forced stop. The cause of the forced stop can be confirmed using monitor number 0401.

API LIBRARY

- To turn ON/OFF the software forced stop command (SEMI), set SSC_CMDBIT_SYS_SEMI to the command bit number of the sscSetCommandBitSignalEx function.
- To check if during forced stop (EMIO) is ON/OFF, set SSC_STSBIT_SYS_EMIO with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx function.

6.6 Stop operation

When the stop operation signal (STP) is turned on, movement is stopped. (Alarms and warnings are not set.) Even if the stop operation signal (STP) is turned back off, operation is not resumed. The time constant used for stopping for stop operation is the deceleration time constant. If operation is stopped during linear interpolation operation or automatic operation MC200/interpolation operation MC300, they do not turn on positioning complete signal (PF).

Note. If smoothing filter is set, the smoothing time constant is always valid. Therefore, deceleration stop as well will use smoothing filter.

API LIBRARY

- Use the sscDriveStop or sscDriveStopNoWait functions to perform a stop operation.

6.7 Rapid stop operation

When the rapid stop signal (RSTP) is turned on, movement is stopped abruptly. (Alarms and warnings are not set.) Even if the rapid stop signal (RSTP) is turned back off, operation is not resumed. The deceleration time constant used for stopping for rapid stop operation is the rapid stop time constant (parameter No.0227). If operation is abruptly stopped during linear interpolation operation or automatic operation MC200 /interpolation operation MC300, they do not turn on positioning complete signal (PF).

Note. If smoothing filter is set, the smoothing time constant is always valid. Therefore, rapid stop as well will use smoothing filter.

API LIBRARY

- Use the sscDriveRapidStop or sscDriveRapidStopNoWait functions to perform a rapid stop operation.

6.8 Limit switch (stroke end)

When the limit switch signal corresponding to the movement direction is turned off, an alarm occurs and movement is stopped.
The deceleration time constant used for stopping by the limit switch is the rapid stop time constant.

Note 1. Even if the limit switch signal is turned back on, operation does not resume.
2. The limit switch signal is a signal that is input through the servo amplifier or something similar.

The method for inputting an external signal can be set up using sensor input options (parameter No.0219).
3. The limit switch signal is a normally-closed contact.
4. If operation stopped by the limit switch during linear interpolation operation or automatic operation $M C 200$ /interpolation operation MC300 , they do not turn on the positioning complete signal (PF).
5. If smoothing filter is set, the smoothing filter time constant is always valid. Therefore, rapid stop as well will use smoothing filter.

If the servo is stopped with the limit switch in the off position (prohibited area), the servo can be moved in the movement allowed area. However, execute start operation, after resetting the alarm that has been set.

[^6]
6.9 Software limit

(1) Using a JOG operation

During JOG operation, if the software limit is reached, a reached software limit (operation alarm A2, detail 01) occurs, the deceleration of the servo is started, and the servo is stopped not to exceed the software limit.
(2) Using incremental feed

If the movement amount designated by an incremental feed exceeds the software limit, an out of software limit boundaries (operation alarm A1, detail 01) occurs and the start operation is not performed.
(3) Using automatic operation

If the point designated by a position command exceeds the software limit, an out of software limit boundaries (operation alarm A1, detail 01) occurs and the start operation is not performed. Also, if the point is designated during operation, an out of software limit boundaries (operation alarm A1, detail 01) occurs when the point is designated and servo is decelerated and stopped.
(4) Using linear interpolation MC200 /interpolation operation MC300

If the point designated by a position command for an axis within the group exceeds the software limit, an out of software limit boundaries (operation alarm A1, detail 01) occurs and the start operation is not performed. Also, if the point is designated during operation, an alarm occurs when the point is designated and servo is decelerated and stopped.

POINT

- If the deceleration check method is in continuous operation and the position command after point switching exceeds the software limit, it will output the out of software limit boundaries (operation alarm A1, detail 01) and will come to a decelerated stop. In this case, if the distance to the software limit is shorter than the distance necessary to make a decelerated stop, it may stop outside the software limit.
- The software limit boundaries are set using parameters No. 0228, 0229, 022A, 022B.
- If an alarm set due to exceeding the software limit, the servo is stopped using the deceleration time constant.

API LIBRARY

- Use the sscChange2Parameter/sscCheck2Parameter function to set/get the software limit.

If the current command position is outside the software limit boundaries (prohibited area), the servo can be moved in the direction of the movement allowed area. However, execute the start operation after resetting the alarm that has been set.

Software limit

Current command position

POINT

- If the upper boundary and lower boundary of the software limit are the same value, the software limit are invalid.
- If the lower boundary of the software limit is a higher value than the upper limit, a software limit parameter error (operation alarm A4, detail 01) occurs upon start of operation.
- Software limits are invalid when home position return has not been completed.

Note. By the position board, the range of movement is -2147483648 to 2147483647 . Movement outside the limits is not covered with a guarantee. If software limits have been disabled, be careful not to move it outside of the physical limits.

6.10 Interlock

When the interlock signal (ITL) is turned on, movement is temporarily stopped. During stoppage of movement the interlock stop signal (ISTP) is turned on. When the interlock signal (ITL) is turned off, operation is resumed. The interlock signal (ITL) for normally-open contact or normally-closed contact can be selected using control option 3 (parameter No.0202). (The explanation in this section is for a normally-open contact.) When using interlock to stop the servo, deceleration uses the rapid stop time constant.

If the interlock signal is cancelled during deceleration, operation is re-started after the command speed decreases to 0 . For this case, the interlock stop signal (ISTP) does not turn on.

POINT

- If the stop operation signal (STP) or rapid stop signal (RSTP) is turned on during interlock stop, operation is not resumed even if the interlock signal is turned off.
- If smoothing filter is set, the smoothing time constant is always valid. Therefore, rapid stop as well will use smoothing filter.
- If start up is executed while the interlock signal is on, the interlock is on alarm (operation alarm 13, detail 01) occurs and the start operation is not performed. Execute the start operation after canceling the interlock.
- During linear interpolation ${ }^{M C 200}$ /interpolation operation MC300 , if the interlock signal for any of the axes in the group is turned on, all of the axes in the group are stopped. Also, when the interlock signal (ITL) for all of the axes within a group is cancelled, operation is resumed.

```
API LIBRARY
    - To turn ON/OFF the interlock command (ITL), set SSC_CMDBIT_AX_ITL to the
    command bit number of the sscSetCommandBitSignalEx function.
    - To check if interlock stop (ISTP) is ON/OFF, set SSC_STSBIT_AX_ISTP to the
    status bit number with the sscGetStatusBitSignalEx or
    sscWaitStatusBitSignalEx function.
```


6.11 Rough match output

When the command remaining distance (difference between the command position and the current command position) is less than the rough match output limit (parameter No.0230, 0231), the rough match signal (CPO) is output. Rough match output is only valid at the end points while operating using automatic operation or linear interpolation operation $\sqrt{M C 200} /$ /interpolation operation $\boldsymbol{M C 3 0 0}$. Therefore, it does not turn on when passing points on the way.

API LIBRARY

- Use the sscChange2Parameter/sscCheck2Parameter function to set/get the rough match output limit.

6.12 Torque limit

When the torque limit signal (TL) is turned on, the torque is limited by the torque limit values set in the normal revolution torque limit (parameter No.0210) and the reverse revolution torque limit (parameter No.0211). When torque is limited by the torque limit values, the torque limit effective signal (TLC) is turned on. Even if the torque limit signal (TL) is on, if the actual torque is smaller than the torque limit value, the torque limit effective signal (TLC) is not turned on.

API LIBRARY

- To turn ON/OFF the torque limit command (TL), set SSC_CMDBIT_AX_TL to the command bit number of the sscSetCommandBitSignalEx function.
- To check if selecting torque limit (TLSO) and torque limit effective (TLC) are ON/OFF, set SSC_STSBIT_AX_TLSO, SSC_STSBIT_AX_TLC to the status bit number with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx function.

6.13 Command change

6.13.1 Speed change

Rewriting the command speed followed by turning on the change speed signal (SCHG) changes the speed. For automatic operation and linear interpolation operation MC200/interpolation operation MC300 , rewrite the feed speed in the operating point table and for JOG operation and incremental feed, rewrite the manual feed speed.
Speed change can also be implemented during acceleration or deceleration.

During the following cases, the "speed change error signal" (SCE) turns ON, and speed will not change.

- Operation stop
- Deceleration due to stop command, rapid stop command, alarm etc.
- Home position return
- Home position reset
- The command speed after change is zero or below

API LIBRARY

- Use the sscChangeAutoSpeed function to perform a speed change for automatic operation and linear interpolation operation $\sqrt{M C 200}$ /interpolation operation MC300.
- Use the sscChangeManualSpeed function to perform a speed change for JOG operation and incremental feed.

6.13.2 Change of time constants

After rewriting the time constant, turning the change time constant signal (TACHG, TDCHG) on causes the time constant to change. Time constants can be designated separately as the acceleration time constant and the deceleration time constant.
For automatic operation and linear interpolation operation MC200/interpolation operation $\sqrt{M C 300}$ rewrite the time constant in the operating point table and for JOG operation and incremental feed, rewrite the manual feed time constant.

During the following cases, the "acceleration time constant change error signal" (TACE) or the "deceleration time constant change error signal" (TDCE) turns on, and time constant will not change.

- Operation stop
- Deceleration
- Home position return
- Home position reset

API LIBRARY

- Use the sscChangeAutoAccTime or sscChangeAutoDecTime functions to perform a change of time constants for automatic operation and linear interpolation operation $M C 200$ /interpolation operation $M C 300$.
- Use the sscChangeManualAccTime or sscChangeManualDecTime functions to perform a change of time constants for JOG operation and incremental feed.

6.13.3 Position change

After rewriting the command position, turning the position change signal (PCHG) on causes the command position to be changed. For automatic operation rewrite position data in the operating point table and for incremental feed, rewrite the feed movement amount.
 point table of the axes in the group.

POINT
- Circular interpolation is not compatible with position change. MC300

(1) To change the command position to the position which is not yet passed
(a) For automatic operation and incremental feed

An example of the position change from the command position 1 to the command position 2 is shown below.

API LIBRARY

- Use the sscChangeAutoPosition function to perform a position change for automatic operation.
- Use the sscChangeLinearPosition function to perform a position change for linear interpolation operation.
- Use the sscChangeManualPosition function to perform a position change for incremental feed.
(b) For linear interpolation operation $M C 200$ /interpolation operation $M C 300$

An example of the position change when axis 1 and 2 are linearly interpolated is shown below.

POINT

- Acceleration/deceleration of each axis from the current command speed to the command speed after position change is determined by distributing acceleration amount, which is determined by the acceleration time constant, to each axis according to speed variation ratio of the axes. During this time, S-curve acceleration/deceleration and start up speed are invalid, and acceleration/deceleration reducing the speed variation at position change is performed. (That acceleration/deceleration is similar to the linear acceleration/deceleration. However, smoothing filter is valid.)

The tracks of axis 1 and 2 to each current command position when the position P 1 is changed to the position P 2 are shown below. At this time, the tracks move to the end position, forming a curve from the position where the position change is performed, to keep the speed continuity.

(2) When position change is performed during deceleration

When re-acceleration setting for position change during deceleration for control option 4 (parameter No.0206) is disabled and position change is performed during deceleration, the deceleration continues. After the axis stops, the positioning to the new position is performed.

When re-acceleration setting for position change during deceleration for control option 4 (parameter No.0206) is enabled and position change is performed during deceleration, the axis re-accelerates before stopping, and stops after reaching the new position.

POINT

- Linear interpolation does not support re-acceleration setting for position change during deceleration.

ⒸAUTION

- When conducting position change during deceleration with the S-curve enabled and there is only a minor difference between the end points before and after the change, an overrun may occur. In this case, operation is performed according to control option 2 (parameter No.0201) change of position over-bound processing.
(3) When the new position is already passed

For cases of the new position has already been passed or if the stop position after deceleration will pass the new position, operation depends on operation modes.
(a) For automatic operation and incremental feed

For cases of changing position where the new position has already been passed or if the stop position after deceleration will pass the new position, operation can be selected from "stop with an alarm" or "after deceleration and stop return to new position" using control option 2 (parameter No.0201). The case for returning to the new position after deceleration and stop is shown in the next diagram. At this time the stop position over-bound signal (POV) is turned on (the stop position over-bound signal (POV) is turned off at the next start up).

(b) For linear interpolation operation MC200/interpolation operation MC300

When one or more axes in a group reverse the movement direction because of the position change, all axes in the group automatically decelerate and stop. After the stop, the axes return to the new position. The setting of control option 2 (parameter No.0201) is invalid. At this time, the stop position over-bound signal (POV) remains off.

In the example above, the current command position of the axis 1 exceeds the new position. The following formulas provide the approximate calculation of the excessive travel distance (excessive position amount).

Deceleration quantity [speed unit/s] = Linear interpolation speed limit [speed unit]
\div Deceleration time constant [ms] $\div 1000$
Deceleration time [s] = Vector speed [speed unit] \div Deceleration quantity
Vector travel distance [command unit] =

$$
\sqrt{(\text { Axis } 1 \text { travel distance[command unit] })^{2}+(\text { Axis } 2 \text { travel distance[command unit] })^{2}}
$$

Axis 1 moving speed [speed unit] = Axis 1 travel distance [command unit] \div Vector travel distance \times
Vector speed [speed unit]
Axis 1 excessive position amount [command unit] = Axis 1 moving speed
\times Axis 1 speed units multiplication factor
\times Deceleration time $\div 2$
Note. The same feature is applied to linear interpolation for more than 3 axes.
(4) When position change error occurs

During the following cases, the "position change error signal" (PCE) turns on, and the position will not change.

- Operation stop
- JOG operation, home position return, home position reset
- Deceleration due to stop command, rapid stop command, alarm etc.
- The specified value is out of the software limit setting value.
- A position change command is input to an auxiliary axis in linear interpolation.
- A position change command is input to an axis in circular interpolation. MC300

6.14 Backlash

A function that corrects the mechanical error (backlash) when the movement direction is reverse. The compensation amount for backlash is set in backlash compensation amount (Parameter No.0208).

Condition	Processing details
Normal	The compensation amount is added at the timing of switching movement direction.
Home position return	Backlash compensation is performed as well as normal.

API LIBRARY

- Use the sscChange2Parameter/sscCheck2Parameter function to set/get the backlash compensation amount.

6.15 Position switch

Position switch is turned on when the axis is within setting range (including the boundary line) which set by position switch upper limit (parameter No.022C, 022D), position switch lower limit: parameter No.022E, 022F).

Two options of current command position or current feedback position can be selected for judging the condition for the position switch using control option 2 (parameter No.0201).

POINT

- If the upper limit and lower limit of the position switch are the same value, the position switch is invalid.
- If the lower limit of the position switch is a higher value than the upper limit, a position switch parameter error (operation alarm A5, detail 01) occurs upon start of operation.
- The position will be valid after completion of home position return.

API LIBRARY

- Use the sscChange2Parameter/sscCheck2Parameter function to set/get the upper limit or lower limit of the position switch.
- To check if position switch (PSW) is ON/OFF, set SSC_STSBIT_AX_PSW to the status bit number with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx function.

6.16 Completion of operation signal

The completion of operation signal (OPF) shows a completion of operation status. At the startup, the "completion of operation signal" (OPF) turns off, and the "completion of operation signal" (OPF) turns on when positioning operation is complete.
Interruption of operation due to an alarm also turns on the completion of operation signal (OPF).
A summary of operation for each operation mode is shown.

API LIBRARY

- Use the sscWaitIntDriveFin/sscGetDriveFinStatus function to check the completion of operation.
(1) Using a JOG operation

(2) Using incremental feed

(3) Using an automatic operation

(4) Stop by the stop operation signal

(5) Stop by the rapid stop signal

(6) Stop by the limit switch

(7) Stop by servo alarm occurrence

(8) Stop by operation alarm occurrence

(9) Stop by servo off

(10) Stop by a software limit (Example: In JOG operation)

(11) Stop by forced stop occurrence

6.17 Interference check function

Through setting the standard coordinate system for the interference check function, the current command position of all of the axes and movement direction is changed to the standard coordinate system and interference check using relative position is implemented. Therefore, for data used for change of coordinates, the position and direction of the coordinate system with respect to the home position (where the current command position is 0) standard coordinate system can be set using parameters.
Interference checks are performed when operation is started as well as changing of points and if the target position of positioning of the axis is within the interference check area, a command error in interference area (operation alarm 44, detail 01) is output and start of operation is interrupted.
And, for prevention of collision, the current command position is monitored at all times and if the difference of the current command position of the axis and the interference check axis (relative distance) is less than the width for interference checking, an interference standby error (if moving in the same direction) or an entering to interference area error (operation alarm 45, detail 01) occurs and rapid stop is performed.

POINT

- To validate or invalidate the interference check, use the interference check Options (parameter No.0281). The number of axes for which the interference check can be validated differs depending on the control cycle. Up to 8 axes MC200/32 axes MC300 can be set. When the number is set exceeding the maximum number of axes for which the interference check is valid, the parameter error (operation alarm 37, detail 01) occurs on all the axes for which the interference check is valid.

Control cycle	Maximum number of axes for which the interference check is valid	
	MR-MC2 $\square \square$	MR-MC3 $\square \square$
0.88 ms	8	32
0.44 ms	4	16
0.22 ms	0	8

- Interference check is valid after home position return complete for the axis and interference check.
- Interference standby is only valid for automatic operation, linear interpolation MC200/interpolation operation MC300 operation and incremental feed. If while in other operation modes, the difference of the current command position of between the axis and the interference check axis is less than the width of interference checking, an entering interference area error (operation alarm 45, detail 01) occurs and rapid stop is performed.
- Interference check function is not compatible with circular interpolation MC300. The interference check axis setting error (operation alarm 43, detail 0F) is output at circular interpolation operation start up and operation start up is stopped. For continuous operation, a deceleration stop occurs.
- Interference check is valid only when the travel direction is the same as the interference check direction.

API LIBRARY

- Use the sscChange2Parameter/sscCheck2Parameter function to set/get anything relating to interference check.

\triangle CAUTION

- When the axis or the interference check axis is free from the control of the position board, such as in the following cases, this function may not prevent axes from collision.
- A servo alarm occurs.
- In torque limit status
- The power line is disconnected.
- In inoperable status due to mechanical factors, etc.

6.17.1 Interface

(1) Control parameter

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function
0281	*IOP	Interference check Options	0000h		$\begin{array}{\|c\|} \hline 0000 \mathrm{~h} \text { to } \\ \text { 12F1h } \\ \text { MC200 } \\ \\ 0000 \mathrm{~h} \text { to } \\ \text { 13F1h } \\ \text { MC300 } \end{array}$	
0282	*IOP2	Interference check Options 2	0000h		$\begin{array}{\|c} \text { 0000h to } \\ 0011 \mathrm{~h} \end{array}$	Interference check direction Set the direction for which interference check is performed. $0:+$ direction of coordinate system for the axis 1: - direction of coordinate system for the axis Interference check standby Set validity/invalidity of interference check standby. 0 : Invalid 1: Valid
0284	IOFL	Interference check Offset (lower)	0000h	Command Units	0000h to FFFFh	Set the position on the home position standard coordinate system.
0285	IOFH	Interference check Offset (upper)	0000h		0000h to FFFFh	
0286	IWL	Interference check width (lower)	0000h	Command Units	0000h to FFFFh	Set the width from the interference check axis target position of the area where interference check is
0287	IWH	Interference check width (upper)	0000h		0000h to 7FFFh	

Note 1. The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.
2. If the axis No. is set, an interference check axis setting error (operation alarm 43, detail 01) occurs.
3. If an axis in the same linear interpolation group $\sqrt{M C 200}$ /interpolation group $\sqrt{M C 300}$ as the axis is set, an interference check axis setting error (operation alarm 43, detail 02) occurs.
4. If axes are designated as tandem drive interference check axes, set up a master axis.

6.17.2 Interference check operation image diagram

The following example shows where the direction of the interference check coordinate (the direction of the coordinate system for each axis against the standard coordinate system) is the same direction.

Note 1. The standard coordinate system is virtual, therefore there are not any parameter settings for the standard coordinate system itself.
2. Make sure to set the interference check width. Normally, the same value occurs for independent axes and for interference check axes.
3. The coordinate system direction is positive (direction to which the coordinate values increase).

POINT

- Interference check is valid when the travel direction is the same as the interference check direction.

6.17.3 Checks prior to start up

The interference check area is the relative distance from the target position of the interference check axis positioning. Interference checks are performed when operation is started as well as changing of points (automatic operation and linear interpolation operation $M C 200$ /interpolation operation $M C 300$, and incremental feed) and if the target position of positioning of the axis is not within the interference check area, a command error in interference area (operation alarm 44, detail 01) is output and start of operation is interrupted.

POINT

- For the next, check prior to start up is not performed.
- When the operation mode is JOG operation, Home position return and data set.
-When the axis is stopping for the interference check.
(1) If the interference check axis is moving in the direction such that it is getting closer to the axis.

(2) If the interference check axis is moving in the direction such that it is moving away from the axis.

6.17.4 Operation check

In order to prevent collision, the current command position is monitored at all times and if the difference between the relative distance of the axis and the interference check axis is judged to be less than the interference check width, rapid stop is executed. The monitored current command position stops, with the travel distance during the rapid stop allowed, so that the distance from the interference check axis does not fall below the interference check width.
(1) If the interference check axis is moving in the relative distance such that it is getting closer to the axis. If the distance between the axis and the interference check axis is judged to drop below the interference check width, an entering interference area error (operation alarm 45, detail 01) is output and rapid stop is executed. At the same time, an entering interference area error (operation alarm 45, detail 01) also occurs in the interference check axis and rapid stop is executed.
For the interference check width set the settings so that the following equation is true.

> | Interference check width $(\mathrm{Lc})>($ Offset from axis one coordinate point to load side) |
| :--- |
| |
| $+($ Offset from axis two coordinate point to load side $)$ |

(2) If the interference check axis is moving in the direction such that it is moving away from the axis.
(a) For automatic operation, linear interpolation operation $\sqrt{M C 200}$ /interpolation operation $M C 300$, and for using incremental feed
If the distance between the axis and interference check axis is judged to drop below the interference check width while the interference check axis is moving away from the axis and rapid stop is executed. Then, whether to cancel the operation or to restart the operation automatically by conditions can be selected in Interference check standby (parameter No.0282).

1) When Interference check standby is invalid

If the distance between the axis and interference check axis is judged to drop below the interference check width while the interference check axis is moving away from the axis, output an extending to interference area error (operation alarm 45, detail 01) and execute and rapid stop is executed. At the same time, an entering interference area error (operation alarm 45, detail 01) also occurs in the interference check axis and rapid stop is executed.

2) When interference check standby is valid

If the distance between the axis and interference check axis is judged to drop below the interference check width while the interference check axis is moving away from the axis, turn the during interference check standby signal (IWT) for the axis on and rapid stop is executed. When the distance between the axis and the interference check axis exceeds the interference check width, operation is automatically resumed and the machine resumes moving to the target position.

POINT

- If the interference check axis stops due to an alarm etc. during interference standby, an entering interference area error (operation alarm 45, detail 01) occurs and operation is terminated.
(b) For other than automatic operation, linear interpolation operation $M C 200$ /interpolation operation $M C 300$, and incremental feed
If the distance between the axis and interference check axis is judged to drop below the interference check width while the interference check axis is moving away from the axis, an extending to interference area error (operation alarm 45, detail 01) is output and rapid stop is executed. At the same time, an entering interference area error (operation alarm 45, detail 01) also occurs in the interference check axis and rapid stop is executed.

(3) While the interference check axis is stopped

If the distance between the axis and the interference check axis is judged to drop below the interference check width, an entering interference area error (operation alarm 45, detail 01) is output and rapid stop is executed. At the same time, an entering interference area error (operation alarm 45, detail 01) also occurs in the interference check axis.

The position information for the interference check axis used for making judgment to prevent collision is the following.
(a) If the interference check axis is getting closer to the axis Perform the check using current command position.
(b) If the interference check axis is getting further away from the axis Perform the check using current feedback position.
(c) While the interference check axis is stopped Perform the check using current feedback position.

6.18 Home position search limit

6.18.1 Summary

The home position search limit function is that while returning to home position, through movement operation in the opposite direction of home position return, if the movement exceeds the parameter set for the home position search limit (parameter No.024A, 024B), a home position search limit error (operation alarm 98, detail 01) occurs and home position return operation is terminated. It is a function used to prevent unexpected operation in case the dog signal and limit switch cannot detect correctly due to a failure. The home position search limit function is valid for the following home position return methods.
(1) Home position return using a dog method
(2) Home position return using the dog cradle method
(3) Home position return using a limit switch combined method
(4) Home position return using a limit switch front end method
(5) Home position return using a dog front end method
(6) Home position return using a scale home position signal detection method
(7) Home position return using a scale home position signal detection method 2

6.18.2 Set items

The following items are set for using the home position search limit function.

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function
024 A	ZLL	Home position search limit (lower)	0000 h	Command Units	0000h to FFFFh	Set a limit on the movement amount when searching for the home position. If the setting for the home position search limit is 0, this function does not
024B	ZLH	Home position search limit (upper)	0000 h		0000h to 7FFFh	pperate.

API LIBRARY

- Use the sscChange2Parameter/sscCheck2Parameter function to set/get the home position search limit.

6.18.3 Home position search limit operation example

(1) For home position return using a dog cradle method (example: when the turning off of the proximity dog can not be detected)

(2) For home position return using a limit switch combined method (example: when the limit switch is not released)

6.19 Gain changing

Through turning on the gain changing command signal (GAIN), the gain for the servo amplifier can be changed.
This is used to change the gain during revolution and while stopped, as well as changing gain proportional to amount of movement or speed. When the gain changing function is used, set the following servo parameters.
(1) Servo parameters (MR-J4(Wロ)-ロB)

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Setting value
1159	PB26	*CDP	Gain switching function	Arbitrary within setting range
115A	PB27	CDL	Gain switching condition	Arbitrary within setting range
115B	PB28	CDT	Gain switching time constant	Arbitrary within setting range
115C	PB29	GD2B	Gain switching ratio of load inertia moment/load mass ratio	Arbitrary within setting range
115D	PB30	PG2B	Gain switching position control gain	Arbitrary within setting range
115E	PB31	VG2B	Gain switching speed control gain	Arbitrary within setting range
115F	PB32	VICB	Gain switching speed integral compensation	Arbitrary within setting range
1160	PB33	VRF11B	Gain switching vibration suppression control 1 vibration frequency setting	Arbitrary within setting range
1161	PB34	VRF12B	Gain switching vibration suppression control 1 resonance frequency setting	Arbitrary within setting range
1162	PB35	VRF13B	Gain switching vibration suppression control 1 vibration frequency dumping setting	Arbitrary within setting range
1163	PB36	VRF14B	Gain switching vibration suppression control 1 resonance frequency setting	Arbitrary within setting range
1177	PB56	VRF21B	Gain switching vibration suppression control 2 vibration frequency setting	Arbitrary within setting range
1178	PB57	VRF22B	Gain switching vibration suppression control 2 resonance frequency setting	Arbitrary within setting range
1179	PB58	VRF23B	Gain switching vibration suppression control 2 vibration frequency dumping setting	Arbitrary within setting range
117A	PB59	VRF24B	Gain switching vibration suppression control 2 resonance frequency setting	Arbitrary within setting range
117B	PB60	PG1B	Gain switching model loop gain	Arbitrary within setting range

POINT

- Refer to the Servo Amplifier Instruction Manual on your servo amplifier concerning details for the servo parameters.
- To use the gain switching function, first set the gain adjustment mode to a manual mode by changing an auto-tuning mode (parameter No.1107) to 3 (manual mode). If the gain adjustment mode is in an auto-tuning mode, the gain changing function cannot be used.

API LIBRARY

- To turn ON/OFF the gain changing command (GAIN), set SSC_CMDBIT_AX_GAIN to the command bit number of the sscSetCommandBitSignalEx function.
- To check if during gain switching (GAINO) is ON/OFF, set SSC_STSBIT_AX_GAINO to the status bit number with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx function.

A timing chart using for gain changing is shown below.

6.20 PI-PID switching

By turning on the PID control command signal (CPC), control of the servo amplifier is changed to PID control from PI control. Use this function, for example, to remove any interference (torsion) between tandem drive axes by operating an axis (slave axis) under PID control. When using the PI-PID switching function, set the following servo parameters.
(1) Servo parameters (MR-J4(Wロ)-ロB)

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Setting value
1157	PB24	*MVS	Slight vibration suppression control	$\square \square 0 \square$ (PI control is valid (can be switched to PID control by the command from controller).)

POINT

- Refer to the Servo Amplifier Instruction Manual on your servo amplifier concerning details for the servo parameters.
- To use the PI-PID switching function, first set the gain adjustment mode to a manual mode by changing an auto-tuning mode (parameter No.1107) to 3 (manual mode). If the gain adjustment mode is in an auto-tuning mode, the PIPID switching function cannot be used.

API LIBRARY

- To turn ON/OFF the PI-PID switching command (CPC), set SSC_CMDBIT_AX_CPC to the command bit number of the sscSetCommandBitSignalEx function.
- To check if during PID control (SPC) is ON/OFF, set SSC_STSBIT_AX_PID to the status bit number with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx function.

A timing chart using for PI-PID switching is shown below.

6.21 Absolute position detection system

By using a servo motor compatible with the absolute position detection system, the positioning control can be made by the absolute position detection system.
In the absolute position detection system, if machinery position is determined at the system startup, there is no need to execute the home position return because the absolute position is restored at system startup.
Determination of machinery position is made by the home position return. At home position return and power on, be sure to execute the operation referring to the procedures described in Section 6.21.2.

API LIBRARY

- Use the sscChange2Parameter/sscCheck2Parameter function to set/get the absolute position detection system.

6.21.1 Parameters

The parameters related to the absolute position detection system are shown below.
(1) Servo parameters (MR-J4(WD)-B)

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Initial Value	Units
1102	PA03	*ABS	Absolute position detection system	0000h	

(2) Control parameters

Parameter No.	Symbol (Note)	Name	Initial value	Unit	Setting range	Function
0241	*OPZ2	Home position return option 2	0000h		$\begin{aligned} & \text { 0000h to } \\ & 0011 \mathrm{~h} \end{aligned}$	
024D	*LS0	Home position multiple revolution data	0000h	rev	0000h to FFFFh	Set the home position multiple revolution data.
024E	*CYOL	Home position within 1 revolution position (lower)	0000h	pulse	0000h to FFFFh	Set the within 1 revolution home position.
024F	*CYOH	Home position within 1 revolution position (upper)	0000h		0000h to FFFFh	

Note. The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.

6.21.2 Processing procedure

Be sure to execute the operation referring to the following procedures at home position return and power on.
(1) Processing procedure for returning to home position
(a) Set the absolute position detection system (parameter No.1102) to 1 (Use in absolute position detection system).
(b) If setting the parameter in (a) for the first time, "absolute position erased" (servo alarm 25) occurs. After turning OFF the power supply of servo amplifier, turn power supply ON again and start the system again.
(c) Execute home position return.
(d) When the home position return is completed, the home position return request (ZREQ) turns off and the home position return complete signal (ZP) turns on. Then the home position multiple revolution data (parameter No.024D) and the home position within 1 revolution position (parameter No.024E, 024F) are updated, and the absolute position data of the home position return option 2 (parameter No.0241) is changed to 1 (valid).
(e) After confirming the home position return complete signal (ZP) is on, read the home position multiple revolution data (parameter No.024D) and home position within 1 revolution position (parameter No.024E, 024F) and store a backup copy.
(2) Processing procedure for turning on the power

After executing backup of the position of the home position at (1), execute the following processing before system startup (before setting the system directive code to 000Ah). Performing of this process restores the system to absolute positioning at system startup.
(a) Set the home position multiple revolution data and home position within 1 revolution position stored during backup of (1) to the home position multiple revolution data (parameter No.024D) and home position within 1 revolution position (parameter No.024E, 024F).
(b) Set the absolute position data of the home position return option 2 (parameter No.0241) to 1 (valid).
(3) Cautions for use of absolute position detection system

In the case of the following (a) to (f), the absolute position erased signal (ABSE) is turned on and the absolute position data of the home position return option 2 (parameter No.0241) is changed to 0 (invalid). Furthermore, the servo is not yet finished with home position return, and the home position return request (ZREQ) turns on. Therefore when performing automatic operation, execute home position return again. (In cases other than (a))

POINT

- If the absolute position erased signal (ABSE) is turned on, re-execute home position return and read the home position multiple revolution data and home position within one-revolution position.
(a) When parameters related to the home position return (parameter No.0240, 0246 to 0249, and 024D to 024F), electronic gear (parameter No.020A to 020D), and rotation direction selection (parameter No.110D) are changed. (For software version A5 or later, absolute position erased signal (ABSE) does not turn ON when parameter No. 0240 is changed.)
(b) If "absolute position erased" (servo alarm 25) or "absolute position counter warning" (servo alarm E3) occurs, note that these alarms will be cleared by servo amplifier power OFF/ON.
(c) Parameter error (servo alarm 37) occurs.
(d) The setting value for "home position multiple revolution data" (parameter No.024D) or "home position within 1 revolution position" (parameter No.024E, 024F) is incorrect and overflow in calculating absolute position restoration occurs.
(e) "Tandem drive synchronous valid width error" (operation alarm No. 54, detail 01) or "Tandem drive synchronous alignment error" (operation alarm 58, detail 01) occurs.
(f) Electronic gear setting error (system error E500) occurs. This error causes a forced stop status to prevent operation. Reexamine the setting of an electronic gear and start the system again.

POINT

- The position after startup (restoration of absolute position) is determined using the following.

Restoration absolute position (pulse) $=($ within 1 revolution position at system startup

- home position within 1 revolution position)
+ (multiple revolution data at system startup
- home position multiple revolution data)
\times number of encoder pulses per revolution
Restoration absolute position (command unit) = restoration absolute position (pulse)
\times reciprocal of number of electronic gears (Note)
+ home position coordinate
Note. reciprocal of number of electronic gears = electronic gear denominator (CDV)/electronic gear numerator (CMX)

6.21.3 Sequence example

Prepare a home position return complete memo showing that the home position has been established on the user program. Turn the home position return complete memo on when home position return is complete. When the home position return complete memo is turned on, execution of home position return is not necessary. If the absolute position erased signal (ABSE) is turned on, turn the home position return complete memo off, and re-execute home position return.
(1) Startup procedure

(2) Procedure for when absolute position disappears.

If the absolute position erased signal (ABSE) is turned on, turn off the home position return complete memo being held at the user program.

6.22 Home position return request

The home position return request (ZREQ) shows the home position return incomplete status. In the home position return incomplete status, the home position return request (ZREQ) turns on. When it is necessary to determine the home position, perform the home position return. When the home position return is completed properly and the home position is determined, the home position return request (ZREQ) turns off.
(1) Axis status bit

Address (Note)		Bit	Symbol	Signal name	When in tandem drive
MR-MC2 $\square \square$	MR-MC3 $\square \square$				
1064	0050A4	0	ISTP	Interlock stop	Master
		1	RMRCH	High speed monitor is latched	Each axis
		2	POV	Stop position over-bound	Master
		3	STO	Start up acceptance complete	Master
		4		Reserved	
		5			
		6	ZREQ	Home position return request	Master
		7		Reserved	

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3 $\square \square:+140 \mathrm{~h}$

Example: Dog method home position return

Note. The home position return request (ZREQ) turns on when a home position return starts.

```
API LIBRARY
    - To check if home position return request (ZREQ) is ON/OFF, set
    SSC_STSBIT_AX_ZREQ to the status bit number with the
    sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx function.
```

(2) The following shows the conditions for the home position return request (ZREQ) to turns on/off.
(a) At system startup

1) Condition of turning on
a) When the axis is a tandem drive axis and does not have home position (parameter No.0200).
b) When "absolute position erased" (servo alarm 25) or "absolute position counter warning" (servo alarm E3) occurs
c) The setting value for "home position multiple revolution data" (parameter No.024D) or "home position within 1 revolution position" (parameter No.024E, 024F) is incorrect and overflow in calculating absolute position restoration occurs.
d) When parameter error (servo alarm 37) occurs
e) When electronic gear setting error (system error E500) occurs
f) When setting of absolute position data (parameter No.0241) is invalid and system is startup
2) Condition of turning off
a) When the absolute position is restored properly at the use of the absolute position detection system
b) When the axis is a monopodium (not a tandem drive axis) and does not have home position (parameter No.0200)
(b) While system is running
3) Condition of turning on
a) When home position return is started
b) "Tandem drive synchronous valid width error" (operation alarm No. 54, detail 01) or "Tandem drive synchronous alignment error" (operation alarm 58, detail 01) occurs.
c) When "Condition of turning ON at system startup" ((a) 1)) is satisfied at SSCNET reconnection
4) Condition of turning off
a) When home position return is completed properly
(3) The following shows the restrictions at home position return incomplete status (home position return request (ZREQ): ON).
(a) Operational functions

Automatic operation, linear Interpolation and home position reset are unavailable. At start operation, home position return not complete (operation alarm 90, detail 01) occurs and start operation is canceled.
(b) Application functions

Software limit, rough match output, backlash, position switch and interference check function are invalid.
(c) Tandem drive

Synchronization for turning servo on is not performed.

6.23 Other axes start

6.23.1 Summary

The other axes start function is a function that automatically performs the start operation for other axes, and turns on/off the digital output signal or output device signal according to the conditions for starting other axes (start conditions) and other axes start data consisting of operation (operation content) that is performed when the conditions are satisfied. When using the other axes start, set the other axes start data No. (1 to 32 MC200/ 1 to $64 \sqrt{M C 300}$) to the other axes start specification of the point table.
The start operation for other axes internally turns on the start operation signal (ST). Therefore, before the start operation, set the operation mode and the point table for an axis for which the other axes start is performed. This function can only be used in automatic operation and linear interpolation operation MC200 $/$ /interpolation operation MC300

©CAUTION

- If the digital output signal is updated from the user program during controlling of the digital output signal by the other axes start function, the consistency of the data may not be kept. This condition is applied to the case when the host controller and position board update the data at the same time to the same digital output area number. In this case, read/write the digital output signal after controlling the possessory right of the digital output signal using the exclusive control function. For the output device signal, use the exclusive control function to perform exclusive control in the same way.
(1) Using MR-MC2 $\square \square$
(a) Software version A7 or before

Output to output device signals is not supported.
(b) Software version A8 or later

Output to output device signals is supported.
(2) Using MR-MC3 $\square \square$
(a) No restriction by software version

Output to output device signals is supported.

6.23.2 Settings

When using the other axes start function, set the following data.

POINT

- When "1: Specified position pass specification" is set to the axis judgment condition, a specified position opposite from the movement direction is judged to be already passed, and therefore the condition is satisfied at the start operation. When using together with circular interpolation MC300, segment the arc trajectory and set the point table as necessary so that there is a specified position for self-axis movement direction.
- For tandem drive axes, set this function for the master axes. This function does not operate when set to the slave axis. However, the slave axis can be set as an observed axis.
(1) Point table

Set the other axes start data No. for the other axes start specification.
POINT

- The setting range of the other axes start data No. differs depending on the control cycle. A maximum of 1 to 32 MC200 $/ 1$ to 64 MC300 can be set. When the setting is out of the range of the valid other axes start data No., it causes a point table setting error (operation alarm 25, detail 09).

Control cycle	Valid other axes start data No.	
	MR-MC2 $\square \square$	MR-MC3 $\square \square$
0.88 ms	1 to 32	1 to 64
0.44 ms	1 to 16	1 to 32
0.22 ms	1 to 8	1 to 16

API LIBRARY

- Use the sscSetPointDataEx/sscCheckPointDataEx functions to set/get point table.
- For a detailed procedure for other axes start, refer to the sample programs (InterruptOas/PollingOas/OasDigitalOutput) contained on the utility software.

POINT	$\left[\begin{array}{c}\text { Position data } \\ {[\text { Command unit] }}\end{array}\right]$	Feed speed [Speed unit]	Acceleration time constant [ms]	Deceleration time constant [ms]	Dwell/predwell [ms]	Auxiliary command	Other axes start specification	S-curve ratio [\%]	Reserved
	4 bytes	4 bytes	2 bytes	2 bytes	2 bytes	2 bytes	4 bytes	1 byte	11 bytes
0000	2000	2000	20	30	0	0000h	00000000h	100	0
0001	2000	3000	30	50	0	0000h	00000000h	100	0
0002	1000	1000	20	30	0	0000h	00000000h	100	0
:	:	:	:	:	:	:	:	:	:

(a) Other axes start specification

bit31	24		
Reserved	Reserved	Other axes start specification 2	Other axes start specification 1

- Other axes start specification 1 and 2

0 : Other axes start specification invalid
1 to 32: Other axes start data No. MC200
1 to 64: Other axes start data No. MC300
Example) Set 00000401 h to set 1 and 4 for the other axes start specification 1 and 2 , respectively.

1) Cause of alarm

- When the other axes start data set in the other axes start specification at point switching or the start of operation is being used (when the other axes start notice signal (OSOP口) is on), using other axes start data (operation alarm 5B, detail 01) occurs and operation is terminated.
- If the setting of the other axes start specification is incorrect, it causes a point table setting error (operation alarm 25, detail 09) and operation is stopped.
(2) Other axes start data

For the other axes start data (1 to $32 \sqrt{M C 200} / 1$ to $64 \sqrt{M C 300}$), set the conditions for starting other axes (start conditions) and the operation (operation content) performed when the condition is satisfied. When the other axes start No. (1 to 32 MC200 $/ 1$ to 64 MC300) is set to the other axes start specification (other axes start specification 1 and 2) of the point table, other axes are started according to the settings of the corresponding other axes start data.

Other axes start data table

Add	ress	Content	
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
E100	0FB680	Other axes start data 1	Start condition
:	:		
E117	0FB6A7		
E118	0FB6A8		Operation content
:	:		
E167	0FB6FF		
E168	0FB700	Other axes start data 2	Start condition
:	:		
E17F	0FB727		
E180	0FB728		Operation content
:	:		
E1CF	0FB77F		
E1D0	0FB780	Other axes start data 3	Start condition
:	:		
E1E7	0FB7A7		
E1E8	0FB7A8		Operation content
:	:		
E237	0FB7FF		
E238	0FB800	Other axes start data 4	Start condition
:	:		
E24F	0FB827		
E250	0FB828		Operation content
:	:		
E29F	0FB87F		
E2A0	0FB880	Other axes start data 5	Start condition
:	:		
E2B7	0FB8A7		
E2B8	0FB8A8		Operation content
:	:		
E307	0FB8FF		
E308	0FB900	Other axes start data 6	Start condition
:	:		
E31F	0FB927		
E320	0FB928		Operation content
:	:		
E36F	0FB97F		
E370	0FB980	Other axes start data 7	Start condition
:	:		
E387	0FB9A7		
E388	0FB9A8		Operation content
:	:		
E3D7	0FB9FF		

Add	ress	Content	
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
E3D8	0FBA00	Other axes start data 8	Start condition
:	:		
E3EF	0FBA27		
E3F0	0FBA28		Operation content
:	:		
E43F	0FBA7F		
E440	0FBA80	Other axes start data 9	Start condition
:	:		
E457	0FBAA7		
E458	0FBAA8		Operation content
:	:		
E4A7	OFBAFF		
E4A8	0FBB00	Other axes start data 10	Start condition
:	:		
E4BF	0FBB27		
E4C0	0FBB28		Operation content
:	:		
E50F	0FBB7F		
E510	0FBB80	Other axes start data 11	Start condition
:	:		
E527	0FBBA7		
E528	0FBBA8		Operation content
:	:		
E577	OFBBFF		
E578	0FBC00	Other axes start data 12	Start condition
:	:		
E58F	0FBC27		
E590	0FBC28		Operation content
:	:		
E5DF	0FBC7F		
E5E0	0FBC80	Other axes start data 13	Start condition
:	:		
E5F7	0FBCA7		
E5F8	0FBCA8		Operation content
:	:		
E647	OFBCFF		
E648	0FBD00	Other axes start data 14	Start condition
:	:		
E65F	0FBD27		
E660	0FBD28		Operation content
:	:		
E6AF	0FBD7F		

Address		Content		Add	ress	Content		
MR-MC2■■	MR-MC3 $\square \square$			MR-MC2■■	MR-MC3 $\square \square$			
E6B0	0FBD80	Other axes start data 15	Start condition	E920	0FC080	Other axes start data 21		
:	:			:	:		Start condition	
E6C7	0FBDA7			E637	0FC0A7			
E6C8	0FBDA8		Operation content	E938	0FC0A8		Operation content	
:	:			:	:			
E717	OFBDFF			E987	OFCOFF			
E718	0FBE00	Other axes start data 16	Start condition	E988	0FC100			
:	:			:	:			
E72F	0FBE27							
E730	0FBE28		Operation content					
:	:							
E77F	0FBE7F			ED97	0FC5FF			
E780	0FBE80	Other axes start data 17	Start condition	ED98	0FC600	Other axes start data 32	Start condition	
:	:			:	:			
E797	0FBEA7			EDAF	0FC627			
E798	0FBEA8		Operation content	EDB0	0FC628		Operation content	
:	:			:	:			
E7E7	OFBEFF			EDFF	0FC67F			
E7E8	0FBF00	Other axes start data 18	Start condition		0FC680	Other axes start data 33	Start condition	
:	:			-	:			
E7FF	0FBE27				0FC6A7			
E800	0FBF28		Operation content	-	0FC6A8		Operation content	
:	:				:			
E84F	0FBF7F			,	0FC6FF			
E850	0FBF80	Other axes start data 19	Start condition		0FC700			
:	:				:			
E867	0FBFA7			\rangle				
E868	0FBFA8		Operation content					
E8B7	OFBFFF			,	0FD5FF			
E8B8	0FC000	Other axes start data 20	Start condition		0FD600	Other axes start data 64	Start condition	
:	:				:			
E8CF	0FC027			1	0FD627			
E8D0	0FC028		Operation content		0FD628		Operation content	
:	:				:			
E91F	0FC07F				0FD67F			

POINT

- All axes start data specified in the other axes start specification of the point table upon start of operation are imported. When the other axes start data is changed after the start operation (after the other axes start notice signal (OSOP口) is turned on) the changes will be invalid.

API LIBRARY

> - Use the sscSetOtherAxisStartData/sscGetOtherAxisStartData functions to set/get other axes start data.
(a) Start condition

Address (Note)		Symbol	Name	Initial Value	Unit	Setting range	Function
$\left\|\begin{array}{c} \text { MR- } \\ \text { MC2 } \end{array}\right\|$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$						
E108	0FB688	OSPP	Axis remaining distance data (4 bytes)	0	Command Units	$\begin{array}{\|c\|} \hline 0 \text { to } \\ 2147483647 \end{array}$	Set the remaining distance data for the axis. (When " 0 : Remaining distance specification" is set to the axis judgment condition.)
			Axis pass position data (4 bytes)	0	Command Units	$\begin{gathered} -2147483648 \\ \text { to } \\ 2147483647 \end{gathered}$	Set the pass position data for the axis. (When "1: Specified position pass specification" is set to the axis judgment condition)
E10C	0FB68C	OSMP	Observed axis specified position data (4 bytes)	0	Command Units	$\begin{gathered} \hline-2147483648 \\ \text { to } \\ 2147483647 \end{gathered}$	Set the specified position data of the observed axis set in the observed axis option.
$\begin{array}{\|c\|} \hline \text { E110 } \\ \text { to } \\ \text { E117 } \end{array}$	OFB690 to OFB697 0FB698 to OFB6A7		Reserved (8 bytes) Reserved (16 bytes)				

Note. The addresses in the table are the addresses for the other axes start data 1. For the other axes start data 2 and after, add the following value for each other axes start data.

- Using MR-MC2 $\square \square$: +68h
- Using MR-MC3 $\square \square$: +80h

1) Cause of alarm

a) Using MR-MC2 $\square \square$

An incorrect setting of the other axes start condition causes an other axes start setting error (operation alarm 4D, detail No.01) at the start operation or point switching.

- The setting of the axis option, observed axis option, or axis remaining distance data is outside limits.
- The position specified in the axis pass position data cannot be passed. (When "1: Specified position pass specification" is set to the axis judgment condition) However, the condition above does not cause the error when the specified position is in the opposite direction from the movement direction. In this case, the specified position is judged to be already passed, which satisfies the condition.
- When the observed axis specification is valid, a non-existent axis (Note) is set in the observed axis No.

Note. A non-existent axis means an axis for which " 0 : Not controlled" is set to the control axis of the control option 1 (parameter No.0200), or a temporarily uncontrollable axis due to, for example, the power off of the control power supply of the servo amplifier.
b) Using MR-MC3 $\square \square$

An incorrect setting of the other axes start condition causes an other axes start setting error (operation alarm 4D) at the start operation or point switching. The operation alarm detail No. is as follows.

- The axis judgment condition of the other axes start condition is outside limits. (Operation alarm 4D, detail No.10)
- The axis remaining distance data of other axes start condition is a negative value. (Operation alarm 4D, detail No.11)
- The position specified in the axis pass position data of other axes start condition cannot be passed. (Operation alarm 4D, detail No.12) (Note 1)
- The axis judgment coordinates of other axes start condition is outside limits. (Operation alarm 4D, detail No.13)
- The observed axis specification of other axes start condition is outside limits. (Operation alarm 4D, detail No.14)
- The observe judgment condition of other axes start condition is outside limits. (Operation alarm 4D, detail No.15)
- The observed axis judgment coordinates of other axes start condition is outside limits. (Operation alarm 4D, detail No.16)
- The specified position pass judgment condition of observed axis of other axes start condition is outside limits. (Operation alarm 4D, detail No.17)
- The observed axis No. of other axes start condition is outside limits. (Operation alarm 4D, detail No.18)
- A non-existent axis (Note 2) is set in the observed axis No. of other axes start condition. (Operation alarm 4D, detail No.19)

Note 1. When using circular interpolation, if the self-axis pass data is either "start point coordinate \leq end point coordinate $<$ self-axis pass position data" or "self-axis pass position data < end point coordinate \leq start point coordinate", the selfaxis judgement coordinate is judged as being outside limits. Segment the arc trajectory and set the point table as necessary.
2. A non-existent axis means an axis for which " 0 : Not controlled" is set to the control axis of the control option 1 (parameter No.0200), or a temporarily uncontrollable axis due to, for example, the power off of the control power supply of the servo amplifier.
(b) Operation content

Address (Note 1)		Symbol	Name	Unit	Setting range	Function
MR- MC2	MR- MC3					
E118	0FB6A8	OSAX1	Start axis designation 1 (4 bytes)		$\begin{aligned} & \text { 00000000h } \\ & \text { to } \\ & \text { FFFFFFFFh } \end{aligned}$	Set the axis for which the start operation is performed when the other axes start condition is satisfied. Axis 1 (bit 0) to axis 32 (bit 31) 0 : Start operation invalid 1: Start operation valid
E11C	0FB6AC	OSAX2	Start axis designation 2 (4 bytes) (Note 2)		$\begin{aligned} & \text { 00000000h } \\ & \text { to } \\ & \text { FFFFFFFFh } \end{aligned}$	Set the axis for which the start operation is performed when the other axes start condition is satisfied. Axis 33 (bit 0) to axis 64 (bit 31) 0 : Start operation invalid 1: Start operation valid
E120	0FB6B0	OSPS	Start axis start point No. (2 bytes)		0 to 319 MC200 0 to 2047 MC300	Set the start point No. of the other axes start axis.

Address (Note 1)		Symbol	Name	Unit	Setting range	Function
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$					
E15A	0FB6EA	OSDOE	Digital output signal enable selection (2 bytes)		$\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & \text { FFFFh } \end{aligned}$	(When "0: Use digital I/O table" is selected in I/O table (parameter No.004A)) Set valid/invalid for the digital output signal (DO_ $\square \square \square$) selected in the digital output signal specification. DO_ $\square \square 0$ (bit 0) to DO_ $\square \square \mathrm{F}$ (bit 15) Note. $\square \square$ is set in the digital output signal specification. 0 : Invalid 1: Valid
			Output device signal enable selection (2 bytes)			(When "1: Use I/O device table (MR-MC2 $\square \square$ method)" is selected in I/O table (parameter No.004A)) Set valid/invalid for the output device signal (DVO_ $\square \square \square$) selected in the output device signal specification. DVO_ $\square \square 0$ (bit 0) to DVO_ $\square \square \mathrm{F}$ (bit 15) Note. $\square \square$ is set in the output device signal specification. 0 : Invalid 1: Valid (When "2: Use I/O device table (expanded points method)" is selected in I/O table (parameter No.004A)) Set valid/invalid for the output device signal (DVO_ $\square \square \square \square$) selected in the output device signal specification. DVO_ $\square \square \square 0$ (bit 0) to DVO_ $\square \square \square F$ (bit 15) Note. $\square \square \square$ is set in the output device signal specification. 0 : Invalid 1: Valid
E15C	0FB6EC	OSDOP	Digital output signal command (2 bytes)		$\begin{aligned} & 0000 \mathrm{~h} \\ & \text { to } \\ & \text { FFFFh } \end{aligned}$	(When "0: Use digital I/O table" is selected in I/O table (parameter No.004A)) Set the digital output signal command (ON/OFF) of the digital output signal (DO_ $\square \square \square$) selected in the digital output signal enable selection. $\text { DO_ } \square \square 0 \text { (bit 0) to DO_ } \square \square \mathrm{F} \text { (bit 15) }$ Note. $\square \square$ is set in the digital output signal specification. $0: \text { OFF }$ 1: ON
			Output device signal command (2 bytes)			(When "1: Use I/O device table (MR-MC2 $\square \square$ method)" is selected in I/O table (parameter No.004A)) Set the digital output signal command (ON/OFF) of the output device signal (DVO_ $\square \square \square$) selected in the output device signal enable selection. DVO_ $\square \square 0$ (bit 0) to DVO_ $\square \square \mathrm{F}$ (bit 15) Note. $\square \square$ is set in the output device signal specification. 0: OFF 1: ON (When "2: Use I/O device table (expanded points method)" is selected in I/O table (parameter No.004A)) Set the digital output signal command (ON/OFF) of the output device signal (DVO_ $\square \square \square \square$) selected in the output device signal enable selection. DVO_ $\square \square \square 0$ (bit 0) to DVO_ $\square \square \square$ F (bit 15) Note. $\square \square \square$ is set in the output device signal specification. 0: OFF 1: ON

| Address (Note 1) | | |
| :---: | :---: | :--- | :--- | :--- | :--- | Symbol

Note 1. The addresses in the table are the addresses for the other axes start data 1. For the other axes start data 2 and after, add the following value for each other axes start data.

- Using MR-MC2 $\square \square$: +68h
- Using MR-MC3 $\square \square$: +80h

2. When using MR-MC2 $\square \square$ it is "Reserved".

[Setting example of output signal]

The following is the setting example for when the digital output signals DO_1F0 to DO_1F3 are turned on after the other axes start conditions are satisfied.

Address		Symbol	Name		Setting value

1) Cause of alarm
a) Using MR-MC2 $\square \square$

An incorrect setting of the other axes operation content causes an other axes start setting error (operation alarm 4D, detail 02) at the start operation or point switching.

- The axis is specified in the start axis designation.
- A non-existent axis (Note) is set in the start axis designation.
- The setting of the start axis start point No. or the start axis end point No. is outside limits.
- The setting of the digital output signal specification/output device signal specification is out of the range.
- The general output of the servo amplifier or output of remote I/O module is not assigned to the digital output signal/output device signal specified in the digital output signal selection/output device signal selection.

Note. A non-existent axis means an axis for which " 0 : Not controlled" is set to the control axis of the control option 1 (parameter No.0200), or a temporarily uncontrollable axis due to, for example, the power off of the control power supply of the servo amplifier.
b) Using MR-MC3 $\square \square$

An incorrect setting of the other axes operation content causes an other axes start setting error (operation alarm 4D) at the start operation or point switching. The operation alarm detail No. is as follows.

- A self-axis or non-existent axis (Note) was set in the start axis designation of the other axes operation content. (Operation alarm 4D, detail No.20)
- The start axis starting point No. and start axis end point No. settings of other axes operation content are outside limits. (Operation alarm 4D, detail No.21)
- The digital output signal control/output device signal control of other axes operation content is outside limits. (Operation alarm 4D, detail No.22)
- The output device signal No. of other axes operation content is outside limits. (Operation alarm 4D, detail No.23)
- The digital output signal/digital device signal designated by digital output signal selection/output device signal selection have not been assigned a servo amplifier general output or remote I/O module output. (Operation alarm 4D, detail No.24)

Note. A non-existent axis means an axis for which " 0 : Not controlled" is set to the control axis of the control option 1 (parameter No.0200), or a temporarily uncontrollable axis due to, for example, the power off of the control power supply of the servo amplifier.

The settings required for the main uses of other axes start are as follows.

Name	Main uses		
	Starting operation of other axis at specified position	Turning ON/OFF digital output signal or output device signal	Using observed axis
Axis option	\bigcirc	\bigcirc	\bigcirc
Observed axis option	-	-	\bigcirc
Axis remaining distance data/Axis pass position data	\bigcirc	\bigcirc	\bigcirc
Observed axis specified position data	-	-	\bigcirc
Start axis designation 1	\bigcirc	-	\bigcirc
Start axis start point No.	\bigcirc	-	\bigcirc
Start axis end point No.	\bigcirc	-	\bigcirc
Output signal specification	-	\bigcirc	-
Output signal enable selection	-	\bigcirc	-
			\bigcirc : Required -: O

6.23.3 Interface

(1) Other axes start command/other axes start status bit

The other axes start commands/other axes start statuses related to the other axes start function are shown below.
Other axes start command/status table

		Content	
MR- MC2	MR- MC3		
E080	0FB480	Other axes start command/ status table 1	Other axes start command
E081	0FB481		
E082	0FB482		Other axes start command
E083	0FB483		
E084	0FB484	Other axes start command/ status table 2	Other axes start command
E085	0FB485		
E086	0FB486		Other axes start
E087	0FB487		command
E088	0FB488	Other axes start command/ status table 3	Other axes start command
E089	0FB489		
E08A	0FB48A		Other axes start
E08B	0FB48B		command
E08C	0FB48C	Other axes start command/ status table 4	Other axes start command
E08D	0FB48D		
E08E	0FB48E		Other axes start
E08F	0FB48F		command
E090	0FB490	Other axes start command/ status table 5	Other axes start command
E091	0FB491		
E092	0FB492		Other axes start command
E093	0FB493		
E094	0FB494	Other axes start command/ status table 6	Other axes start command
E095	0FB495		
E096	0FB496		Other axes start command
E097	0FB497		
E098	0FB498	Other axes start command/ status table 7	Other axes start command
E099	0FB499		
E09A	0FB49A		Other axes start command
E09B	0FB49B		
E09C	0FB49C	Other axes start command/ status table 8	Other axes start command
E09D	0FB49D		
E09E	0FB49E		Other axes start command
E09F	0FB49F		
E0A0	0FB4A0	Other axes start command/ status table 9	Other axes start command
E0A1	0FB4A1		
E0A2	0FB4A2		Other axes start command
E0A3	0FB4A3		
E0A4	0FB4A4	Other axes start command/ status table 10	Other axes start command
E0A5	0FB4A5		
E0A6	0FB4A6		Other axes start command
E0A7	0FB4A7		
E0A8	0FB4A8	Other axes start command/ status table 11	Other axes start command
E0A9	0FB4A9		
E0AA	0FB4AA		Other axes start command
E0AB	0FB4AB		

		Content	
MR- MC2	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$		
EOAC	0FB4AC	Other axes start command/ status table 12	Other axes start command
E0AD	0FB4AD		
EOAE	0FB4AE		Other axes start command
E0AF	0FB4AF		
E0B0	0FB4B0	Other axes start command/ status table 13	Other axes start command
E0B1	0FB4B1		
E0B2	0FB4B2		Other axes start
E0B3	0FB4B3		command
E0B4	0FB4B4	Other axes start command/ status table 14	Other axes start command
E0B5	0FB4B5		
E0B6	0FB4B6		Other axes start
E0B7	0FB4B7		command
E0B8	0FB4B8	Other axes start command/ status table 15	Other axes start command
E0B9	0FB4B9		
E0BA	0FB4BA		Other axes start
E0BB	0FB4BB		command
E0BC	0FB4BC	Other axes start command/ status table 16	Other axes start command
E0BD	0FB4BD		
E0BE	0FB4BE		Other axes start command
E0BF	0FB4BF		
E0C0	0FB4C0	Other axes start command/ status table 17	Other axes start command
E0C1	0FB4C1		
E0C2	0FB4C2		Other axes start command
E0C3	0FB4C3		
E0C4	0FB4C4	Other axes start command/ status table 18	Other axes start command
E0C5	0FB4C5		
E0C6	0FB4C6		Other axes start command
E0C7	0FB4C7		
E0C8	0FB4C8	Other axes start command/ status table 19	Other axes start command
E0C9	0FB4C9		
E0CA	0FB4CA		Other axes start command
E0CB	0FB4CB		
E0CC	0FB4CC	Other axes start command/ status table 20	Other axes start command
E0CD	0FB4CD		
E0CE	0FB4CE		Other axes start command
E0CF	0FB4CF		
E0D0	0FB4D0	Other axes start command/ status table 21	Other axes start command
E0D1	0FB4D1		
E0D2	0FB4D2		Other axes start command
E0D3	0FB4D3		
E0D4	0FB4D4	Other axes start command/ status table 22	Other axes start command
E0D5	0FB4D5		
E0D6	0FB4D6		Other axes start command
E0D7	0FB4D7		

		Content	
MR- MC2	MR- MC3		
E0D8	0FB4D8	Other axes start command/ status table 23	Other axes start command
E0D9	0FB4D9		
E0DA	0FB4DA		Other axes start command
E0DB	0FB4DB		
E0DC	0FB4DC	Other axes start command/ status table 23	Other axes start command
E0DD	0FB4DD		
EODE	OFB4DE		Other axes start
E0DF	0FB4DF		command
E0E0	0FB4E0	Other axes start command/ status table 25	Other axes start command
E0E1	0FB4E1		
E0E2	0FB4E2		Other axes start
E0E3	0FB4E3		command
E0E4	0FB4E4	Other axes start command/ status table 26	Other axes start command
E0E5	0FB4E5		
E0E6	0FB4E6		Other axes start
E0E7	0FB4E7		command
E0E8	0FB4E8	Other axes start command/ status table 27	Other axes start command
E0E9	0FB4E9		
E0EA	0FB4EA		Other axes start
E0EB	0FB4EB		command
E0EC	0FB4EC	Other axes start command/ status table 28	Other axes start command
E0ED	0FB4ED		
E0EE	0FB4EE		Other axes start command
E0EF	0FB4EF		
E0F0	0FB4F0	Other axes start command/ status table 29	Other axes start command
E0F1	0FB4F1		
E0F2	0FB4F2		Other axes start command
E0F3	0FB4F3		

Add		Content		
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	MR- MC3			
E0F4	0FB4F4	Other axes start command/ status table 30	Other axes start command	
E0F5	0FB4F5			
E0F6	0FB4F6		Other axes start command	
E0F7	0FB4F7			
E0F8	0FB4F8	Other axes start command/ status table 31	Other axes start command	
E0F9	0FB4F9			
E0FA	0FB4FA		Other axes start command	
E0FB	0FB4FB			
E0FC	0FB4FC	Other axes start command/ status table 32	Other axes start command	
E0FD	0FB4FD			
E0FE	0FB4FE		Other axes start command	
E0FF	0FB4FF			
	0FB500	Other axes start command/ status table 33	Other axes start command	
	0FB501			
-	0FB502		Other axes start command	
	0FB503			
,	0FB504	Other axes start command/ status table 34	Other axes start command	
	0FB505			
	0FB506		Other axes start command	
	0FB507			
	0FB508			
	0FB57B			
	0FB57C	Other axes start command/ status table 64	Other axes start command	
	0FB57D			
	0FB57E		Other axes start command	
	0FB57F			

API LIBRARY

- Use the sscOtherAxisStartAbortOn or sscOtherAxisStartAbortOff functions to turn ON/OFF the other axes start cancel command (OSSTP).
- Use the sscGetOtherAxisStartStatus function to check if the following other axes start statuses are ON/OFF.
- Other axes start notice (OSOPロ)
- Other axes start complete (OSFIND)
- Other axes start incompletion (OSERRロ)
(a) Other axes start command

Address (Note 1)		Bit	Symbol (Note 2)	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
E080	0FB480	0	OSSTP \square	Other axes start cancel
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		
		8		
		9		
		10		
		11		
		12		
		13		
		14		
		15		

Note 1. The addresses in the table are the addresses for the other axes start command/status table 1. For the other axes data 2 and after, increase in units of 4 h for each other axes start command/status table.
2. \square : Other axes start No.

1) Details concerning other axes start command bits

Symbol	Signal name		Function details	
	OSSTP \square	Other axes start cancel	Cancels the other axes start.	

axes start when the other axes start notice

signal (OSOP \square) is on for waiting for the

other axes start condition satisfaction.\end{array}\right]\).
(b) Other axes start status

Address (Note 1)		Bit	Symbol (Note 2)	Signal name
MR-MC2 $\square \square$	MR-MC3口■			
E082	0FB482	0	OSOP \square	Other axes start notice
		1	OSFIN \square	Other axes start complete
		2	OSERR \square	Other axes start incomplete
		3		Reserved
		4		
		5		
		6		
		7		
		8		
		9		
		10		
		11		
		12		
		13		
		14		
		15		

Note 1. The addresses in the table are the addresses for the other axes start command/status table 1. For the other axes data 2 and after, increase in units of 4 h for each other axes start command/status table.
2. \square : Other axes start No.

1) Details concerning other axes start status bits

Symbol (Note)	Signal name	Function details	
		Function	Operation
OSOP■	Other axes start notice	Notifies the monitoring for the other axes start condition.	<Conditions for turning ON> The other axis start data is specified in the other axes start specification of the point table for automatic operation and linear interpolation operation MC200 /interpolation operation MC300 , and the axis is monitored for the other axes start condition. <Conditions for turning OFF> - The other axes start condition is satisfied. - During monitoring for the other axes start condition (when OSOP \square is on), the other axes start cancel signal (OSSTP \square) is turned on.
OSFIND	Other axes start complete	Notifies that the other axes start operation content is executed.	<Conditions for turning ON> The other axes start condition is satisfied, and the other axes start operation content is executed. <Conditions for turning OFF> The other axes start data is specified in the other axes start specification in the point table for automatic operation or linear interpolation operation MC200/interpolation operation MC300 .
OSERR \square	Other axes start incomplete	Notifies that the other axes start has failed.	<Conditions for turning ON> - The axis specified in the start axis designation is being operated when the other axes start operation content should be executed. - The operation mode of the axis specified in the start axis designation is other than automatic operation and linear interpolation operation MC200/interpolation operation MC300 when the other axes start operation content should be executed. - During monitoring for the other axes start condition (when OSOP \square is on), operation is canceled due to an operation alarm on the axis or the (rapid) stop operation signal ((R)STP) turned on. - During monitoring for the other axes start condition (when OSOP \square is on), the other axes start cancel signal (OSSTP \square) is turned on. - The number of axes set in the start axis designation exceeds the maximum number of simultaneous start axes. <Conditions for turning OFF> The other axes start data is specified in the other axes start specification in the point table for automatic operation or linear interpolation operation MC200/interpolation operation MC300.

Note. प: Other axes start No.

6.23.4 Operation example

(1) When other axes start is complete

The other axes start notice (OSOP) turns on between the axis start and the completion of the other axis start. The other axes start complete (OSFIN) turns on when the other axes start notice (OSOP) is turned off on completion of the other axes start.

[Digital output signal setting example]

Address		Symbol		Same	Setting value

(2) When the observed axis is valid

When "1: Valid" is set to the observed axis specification (in the observed axis option of the other axes start condition), the other axes content is not operated until both the axis judgment condition and the observed axis judgment condition are satisfied.
(a) Example of when the monitor axis judgment condition are satisfied after the axis judgment condition is satisfied

(3) When other axes start fails

When the other axes start fails due to, for example, an operation alarm on the axis preceding the satisfaction of other axes start condition, the other axes start incomplete (OSERR) turns on. The other axes start incomplete (OSERR) turns on when:
(a) The axis set in the start axis designation 1 is being operated when the other axes start condition is satisfied.
(b) The operation mode of the axis set in the start axis designation 1 is other than automatic operation and linear interpolation operation MC200/interpolation operation MC300 when the other axes start condition is satisfied.
(c) Operation is canceled by turning on the stop operation signal (STP) or the rapid stop signal (RSTP) before the other axes start condition is satisfied.
(d) Operation is canceled by an operation alarm, etc. before the other axis start condition is satisfied.
(e) Operation of the axis is completed and the in-position signal is turned on before the other axes start condition is satisfied.
[Example of when an operation alarm occurs]

[Example of when operation of the axis is completed]

(4) When other axes start is canceled

When the other axes start cancel (OSSTP) is turned on before the other axes start condition is satisfied, the other axes start incomplete (OSERR) turns on.
[Example of when the other axes start is canceled]

6.24 High response I/F

6.24.1 Summary

The high response I/F function is a function for shortening time required to check commands and statuses by simplifying the process between the position board and the host controller. The high response I/F function is always valid.
This function simplifies the following processes.
(1) Start operation signal (ST)
(2) Interrupt processing complete signal (ITE)

POINT

- The conventional I/F function which uses the start operation signal (ST) and the interrupt processing complete signal (ITE) can also be used. However, use either of the high response I/F function or the conventional I/F function to unify the process between the position board and the host controller.
- The API library uses the high response I/F (except for JOG operation).

API LIBRARY

- High response I/F is implemented by the internal processing of each start operation function (sscAutoStart functions etc.) thus processing by user program is unnecessary.

6.24.2 Interface

(1) System command bits

Address		Bit	Symbol	Signal name
MR-MC2]a	MR-MC3 ${ }^{\text {a }}$			
03E4	000B04	0	ITFE	Interrupt processing high speed complete
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

(2) System status bits

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
0450	000BE0	0	ITO	Outputting with factor of interrupt
		1	IITO	During interface mode interrupt valid
		2	EVDO	Event detection enabled
		3	HRIF	During highly response I/F valid
		4	BMA	During system program memory access
		5	PRINF	Continuous operation to torque control compatible information
		6		Reserved
		7	IFMO	In interface mode

(3) Axis command bits

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
1006	005006	0	FST	Fast start operation
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Note: The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+C 0 h$
- Using MR-MC3 $\square \square:+140 \mathrm{~h}$

6.24.3 Fast start operation

Using the fast start operation signal (FST) as a substitute of the start operation signal (ST) shortens the time required for the second and subsequent start operations.

POINT

- The fast start operation cannot be used in JOG operation. Use the start operation signal (ST).
(1) High response start operation using the fast start operation signal (FST)

In the start operation, the user program turns on the fast start operation signal (FST) as a substitute of the start operation signal (ST). On receiving the fast start operation signal (FST), the position board turns off the signal (FST), and operation is started.

(2) Conventional start operation using the start operation signal (ST)

In the conventional start operation, the next start operation cannot be performed until the start up acceptance complete signal (STO) is turned off by turning off the start operation signal (ST). Therefore, the start operation signal (ST) must be turned off before the next start operation. This procedure, when performed after operation is completed, delays the start operation by about one control cycle until the start up acceptance complete signal (STO) is turned off. In addition, when the start operation signal (ST) is turned off in operation, the start up acceptance complete signal (STO) is off after operation is completed, which provides the same responsiveness as in the start operation using the fast start operation signal (FST).

6.24.4 Interrupt processing high speed completion

Using the interrupt processing high speed complete signal (ITFE) as a substitute of the interrupt processing complete signal (ITE) shortens the time for interrupt processing completion.
(1) High response interrupt processing completion using the interrupt processing high speed complete signal (ITFE)
For interrupt processing completion, the interrupt thread or device driver turns on the interrupt processing high speed complete signal (ITFE) as a substitute of the interrupt processing complete signal (ITE). On receiving the interrupt processing high speed complete signal (ITFE), the position board turns off the signal (ITFE), and the interrupt processing is completed. The interrupt thread or device driver does not need to wait until the outputting with factor of interrupt (ITO) is turned off, and the next operation can be performed.

(2) Conventional interrupt processing completion using the interrupt processing complete signal (ITE) The conventional interrupt processing requires the interrupt processing complete signal (ITE) to be on, then waiting until the outputting with factor of interrupt (ITO) is turned off, and then the interrupt processing complete signal (ITE) to be off. Therefore, interrupt processing completion is delayed by about one control cycle until the outputting with factor of interrupt (ITO) is turned off.

6.25 In-position signal

For the in-position signal (INP), the position board checks the in-position range and controls turning on or off the signal.
The in-position signal controlled by the servo amplifier is displayed as the servo amplifier in-position signal (SINP).

API LIBRARY

- To check if in-position (INP) is ON/OFF, check whether SSC_STSBIT_AX_INP is ON/OFF with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx functions.
(1) For servo parameter (MR-J4(Wロ)-ロB)

Parameter No.	MR-J4B Parameter No.	Symbol	Name	Initial Value	Unit
1109	PA10	INP	In-position range	1600	pulse

(2) Axis data status bit

Address (Note)		Bit	Symbol	Signal name	When in tandem drive	Address (Note)		Bit	Symbol	Signal name	When in tandem drive
MRMC2 \square	MRMC3 $\square \square$					MRMC2 $\square \square$	MRMC3 \square				
1060	0050A0	0	RDY	Servo ready	Each axis	1069	0050A9	0	IWT	Interference check standby	Each axis
		1	INP	In-position	Each axis			1	SINP	Servo amplifier in-position	Each axis
		2	ZSP	Zero speed	Each axis			2		Reserved	
		3	ZPAS	Passed Zphase	Each axis			3			
		4	TLC	Torque limit effective	Each axis			4			
		5	SALM	Servo alarm	Each axis			5			
		6	SWRN	Servo warning	Each axis			6			
		7	ABSE	Absolute position erased	Each axis			7			

Note: The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3 $\square \square$: +140 h

6.26 Digital I/O

6.26.1 Summary

The digital I/O function is a function that controls the general I/O signal of the servo amplifier assigned to the digital I/O table. The user program can check whether the digital I/O signals are on/off by using the digital I/O table. The points for the each I/O signal can be assigned up to 1024.
When using the digital I/O function, set " 0 : Use digital I/O table" in I/O table (parameter No.004A).

\triangle CAUTION

- If the digital output signal is updated from the user program during controlling of the digital output signal by the other axes start function, the consistency of the data may not be kept. This condition is applied to the case when the host controller and position board update the data at the same time to the same digital output area number. In this case, read/write the digital output signal after controlling the possessory right of the digital output signal using the exclusive control function.

POINT

- For detailed specifications and how to assign the I/O signal to the digital I/O table, refer to Section 6.28.
- When using the digital I/O function, the I/O device function cannot be used.
- In relation to the digital I/O function, the following functions are expanded for the I/O device function. We recommend using the I/O device function.
- Expansion of I/O points used
- Supports control of I/O word devices

Refer to Section 6.27 for details of the I/O device function.

API LIBRARY

- Use the sscGetDigitallnputDataBit or sscGetDigitallnputDataWord functions to get digital input.
- Use the sscSetDigitalOutputDataBit or sscSetDigitalOutputDataWord functions to set digital output.
- Use the sscGetDigitalOutputDataBit or sscGetDigitalOutputDataWord functions to get digital output.

6.26.2 Interface

The following shows the interfaces related to the digital I/O.
(1) System parameter

(2) Digital input table/digital output table MC200
(a) Digital input table

Address	Digital input area number	Digital input number	Symbol	Remarks
B000	Digital input area 0 (2 bytes)	Digital input 0 to digital input 15	$\begin{aligned} & \text { DI_000 to } \\ & \text { DI_00F } \end{aligned}$	Notifies the status of the digital input signal. The bits are DI_000 (bit0) to DI_00F (bit15).
B002	Digital input area 1 (2 bytes)	Digital input 16 to digital input 31	$\begin{aligned} & \text { DI_010 to } \\ & \text { DI_01F } \end{aligned}$	Notifies the status of the digital input signal. The bits are DI_010 (bit0) to DI_01F (bit15).
B004	Digital input area 2 (2 bytes)	Digital input 32 to digital input 47	$\begin{gathered} \text { DI_020 to } \\ \text { DI_02F } \\ \hline \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_020 (bit0) to DI_02F (bit15).
B006	Digital input area $3 \text { (2 bytes) }$	Digital input 48 to digital input 63	$\begin{gathered} \text { DI_030 to } \\ \text { DI_03F } \\ \hline \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_030 (bit0) to DI_03F (bit15).
B008	Digital input area 4 (2 bytes)	Digital input 64 to digital input 79	$\begin{gathered} \text { DI_040 to } \\ \text { DI_04F } \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_040 (bit0) to DI_04F (bit15).
B00A	Digital input area 5 (2 bytes)	Digital input 80 to digital input 95	$\begin{gathered} \text { DI_050 to } \\ \text { DI_05F } \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_050 (bit0) to DI_05F (bit15).
B00C	Digital input area $6 \text { (2 bytes) }$	Digital input 96 to digital input 111	$\begin{gathered} \text { DI_060 to } \\ \text { DI_06F } \\ \hline \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_060 (bit0) to DI_06F (bit15).
B00E	Digital input area 7 (2 bytes)	Digital input 112 to digital input 127	$\begin{gathered} \text { DI_070 to } \\ \text { DI_07F } \\ \hline \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_070 (bit0) to DI_07F (bit15).
:	:	:	:	:
B07E	Digital input area 63 (2 bytes)	Digital input 1008 to digital input 1023	$\begin{gathered} \text { DI_3F0 to } \\ \text { DI_3FF } \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_3F0 (bit0) to DI_3FF (bit15).

(b) Digital output table

Address	Digital output area number	Digital output number	Symbol	Remarks
B080	Digital output area 0 (2 bytes)	Digital output 0 to digital output 15	$\begin{aligned} & \text { DO_000 to } \\ & \text { DO_00F } \end{aligned}$	Turns on/off the digital output signal. The bits are DO_000 (bit0) to DO_00F (bit15).
B082	Digital output area 1 (2 bytes)	Digital output 16 to digital output 31	$\begin{gathered} \text { DO_010 to } \\ \text { DO_01F } \end{gathered}$	Turns on/off the digital output signal. The bits are DO_010 (bit0) to DO_01F (bit15).
B084	Digital output area 2 (2 bytes)	Digital output 32 to digital output 47	$\begin{gathered} \text { DO_020 to } \\ \text { DO_02F } \end{gathered}$	Turns on/off the digital output signal. The bits are DO_020 (bit0) to DO_02F (bit15).
B086	Digital output area 3 (2 bytes)	Digital output 48 to digital output 63	$\begin{gathered} \text { DO_030 to } \\ \text { DO_03F } \\ \hline \end{gathered}$	Turns on/off the digital output signal. The bits are DO_030 (bit0) to DO_03F (bit15).
B088	Digital output area 4 (2 bytes)	Digital output 64 to digital output 79	$\begin{gathered} \text { DO_040 to } \\ \text { DO_04F } \\ \hline \end{gathered}$	Turns on/off the digital output signal. The bits are DO_040 (bit0) to DO_04F (bit15).
B08A	Digital output area 5 (2 bytes)	Digital output 80 to digital output 95	$\begin{aligned} & \text { DO_050 to } \\ & \text { DO_05F } \end{aligned}$	Turns on/off the digital output signal. The bits are DO_050 (bit0) to DO_05F (bit15).
B08C	Digital output area 6 (2 bytes)	Digital output 96 to digital output 111	$\begin{gathered} \text { DO_060 to } \\ \text { DO_06F } \\ \hline \end{gathered}$	Turns on/off the digital output signal. The bits are DO_060 (bit0) to DO_06F (bit15).
B08E	Digital output area 7 (2 bytes)	Digital output 112 to digital output 127	$\begin{gathered} \text { DO_070 to } \\ \text { DO_07F } \end{gathered}$	Turns on/off the digital output signal. The bits are DO_070 (bit0) to DO_07F (bit15).
:	:	:	:	:
B0FE	Digital output area 63 (2 bytes)	Digital output 1008 to digital output 1023	$\begin{gathered} \text { DO_3F0 to } \\ \text { DO_3FF } \end{gathered}$	Turns on/off the digital output signal. The bits are DO_3F0 (bit0) to DO_3FF (bit15).

(3) Digital input table/digital output table MC300

The digital input table/digital output table is allocated to the input device table/output device table. The digital input (output) area $\square \square$ corresponds to the input (output) word device $\square \square$, while the digital input (output) $\square \square \square \square$ corresponds to input (output) bit device $\square \square \square \square$.
Refer to Section 6.27 for details of input device table/output device table.

Digital input table	Input device table
Digital input area 0 to 63/ Digital input 0 to 1023	Input word device 000 to 03F/ Input bit device 0000 to 03FF
Digital output table	Output device table
Digital output area 0 to 63/ Digital output 0 to 1023	Output word device 000 to 03F/ Output bit device 0000 to 03FF

6.27 I/O device

6.27.1 Summary

The I/O device function controls the general I/O signals of the servo amplifier and I/O devices of the remote I/O module assigned to the I/O device table. When using the I/O device function, set "1: Use I/O device table (MRMC2 $\square \square$ method)", or "2: Use I/O device table (expanded points method) MC300" in I/O table (parameter No.004A). The user program can check the output of output bit devices and output word devices, and check the status of input bit devices and input word devices using the I/O device table. The number of points that can be assigned to I/O signals is as follows.

I/O table (parameter No.004A)	Number of I/O signal points			
	Bit device		Word device	
	Input	Output	Input	Output
1: Use I/O device table (MR-MC2 $\square \square$ method)	Up to 4096 points	Up to 256 points		
2: Use I/O device table (expanded points method) MC300	Up to 9216 points	Up to 576 points		

\triangle CAUTION

- If the output device signal is updated from the user program during controlling of the output device signal by the other axes start function, the consistency of the data may not be kept. This condition is applied to the case when the host controller and position board update the data at the same time to the same output device area number. In this case, read/write the output device signal after controlling the possessory right of the output device signal using the exclusive control function.

POINT

- When using the I/O device function, the digital I/O function cannot be used.
- Expanded points method is recommended when using MR-MC3 $\square \square$. While some of the parameter settings are different to MR-MC2 $\square \square$ method, it provides upper compatibility with functions.
- Refer to Section 6.28, 6.33, and 6.34 for how to assign I/O signals to the I/O device table and detailed specifications.

API LIBRARY

- Use the sscGetInputDeviceBit function to get input bit device.
- Use the sscGetInputDeviceWord function to get input word device.
- Use the sscSetOutputDeviceBit function to set output bit device.
- Use the sscSetOutputDeviceWord function to set output word device.
- Use the sscGetOutputDeviceBit function to get output bit device.
- Use the sscGetOutputDeviceWord function to get output word device.

6.27.2 Interface

The following shows the interfaces related to the I/O device.
(1) System parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range		Function
004A	*IOTBL	I/O table	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 0001h } \\ & \text { MC200 } \\ & \text { 0000h to } \\ & \text { 0002h } \\ & \text { MC300 } \end{aligned}$	0 0 0	O table selection Set the I/O table to be used. : Use digital I/O table : Use I/O device table (MR-MC2 $\square \square$ method) : Use I/O device table (expanded points method) MC300

(2) Input device table

Address		Input word device number	Input bit device number	Symbol	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$				
DB00	0F9F00	Input word device 00 (2 bytes)	Input bit device 000 to Input bit device 00F	DVI_000 to DVI_00F	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_000 (bit0) to DVI_00F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB02	0F9F02	Input word device 01 (2 bytes)	Input bit device 010 to Input bit device 01F	$\begin{aligned} & \text { DVI_010 to } \\ & \text { DVI_01F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_010 (bit0) to DVI_01F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB04	0F9F04	Input word device 02 (2 bytes)	Input bit device 020 to Input bit device 02F	$\begin{aligned} & \text { DVI_020 to } \\ & \text { DVI_02F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_020 (bit0) to DVI_02F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB06	0F9F06	Input word device 03 (2 bytes)	Input bit device 030 to Input bit device 03F	$\begin{gathered} \text { DVI_030 to } \\ \text { DVI_03F } \end{gathered}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_030 (bit0) to DVI_03F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB08	0F9F08	Input word device 04 (2 bytes)	Input bit device 040 to Input bit device 04F	DVI_040 to DVI_04F	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_040 (bit0) to DVI_04F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB0A	0F9F0A	Input word device 05 (2 bytes)	Input bit device 050 to Input bit device 05F	$\begin{aligned} & \text { DVI_050 to } \\ & \text { DVI_05F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_050 (bit0) to DVI_05F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB0C	0F9F0C	Input word device 06 (2 bytes)	Input bit device 060 to Input bit device 06F	DVI_060 to DVI_06F	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_060 (bit0) to DVI_06F (bit15). [When word device is assigned] Notifies the status of the word device input signal.

Address		Input word device number	Input bit device number	Symbol	Remarks
MR-MC2 $\square \square$	MR-MC3口■				
DB0E	0F9F0E	Input word device 07 (2 bytes)	Input bit device 070 to Input bit device 07F	DVI_070 to DVI_07F	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_070 (bit0) to DVI_07F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
	.	.			
DCFE	OFAOFE	Input word device FF (2 bytes)	Input bit device FF0 to Input bit device FFF	$\begin{gathered} \hline \text { DVI_FF0 to } \\ \text { DVI_FFF } \end{gathered}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_FF0 (bit0) to DVI_FFF (bit15). [When word device is assigned] Notifies the status of the word device input signal.
	0FA100	Input word device 100 (2 bytes) (expanded points method)	Input bit device 1000 to Input bit device 100F (expanded points method)	$\begin{aligned} & \text { DVI_1000 to } \\ & \text { DVI_100F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_1000 (bit0) to DVI_100F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
	:	:	:	:	:
	0FA37E	Input word device 23F (2 bytes) (expanded points method)	Input bit device 23F0 to Input bit device 23FF (expanded points method)	$\begin{aligned} & \text { DVI_23F0 to } \\ & \text { DVI_23FF } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_23F0 (bit0) to DVI_23FF (bit15). [When word device is assigned] Notifies the status of the word device input signal.

(3) Output device table

Address		Output word device number	Output bit device number	Symbol	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$				
DD00	0FA380	Output word device 00 (2 bytes)	Output bit device 000 to Output bit device 00F	$\begin{aligned} & \text { DVO_000 to } \\ & \text { DVO_00F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_000 (bit0) to DVO_00F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD02	0FA382	Output word device 01 (2 bytes)	Output bit device 010 to Output bit device 01F	$\begin{aligned} & \text { DVO_010 to } \\ & \text { DVO_01F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_010 (bit0) to DVO_01F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD04	0FA384	Output word device 02 (2 bytes)	Output bit device 020 to Output bit device 02F	$\begin{aligned} & \text { DVO_020 to } \\ & \text { DVO_02F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_020 (bit0) to DVO_02F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD06	0FA386	Output word device 03 (2 bytes)	Output bit device 030 to Output bit device 03F	$\begin{aligned} & \text { DVO_030 to } \\ & \text { DVO_03F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_030 (bit0) to DVO_03F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD08	0FA388	Output word device 04 (2 bytes)	Output bit device 040 to Output bit device 04F	$\begin{aligned} & \text { DVO_040 to } \\ & \text { DVO_04F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_040 (bit0) to DVO_04F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.

Address		Output word device number	Output bit device number	Symbol	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$				
DD0A	0FA38A	Output word device 05 (2 bytes)	Output bit device 050 to Output bit device 05F	$\begin{aligned} & \text { DVO_050 to } \\ & \text { DVO_05F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_050 (bit0) to DVO_05F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD0C	0FA38C	Output word device 06 (2 bytes)	Output bit device 060 to Output bit device 06F	$\begin{gathered} \text { DVO_060 to } \\ \text { DVO_06F } \end{gathered}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_060 (bit0) to DVO_06F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DDOE	OFA38E	Output word device 07 (2 bytes)	Output bit device 070 to Output bit device 07F	$\begin{aligned} & \text { DVO_070 to } \\ & \text { DVO_07F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_070 (bit0) to DVO_07F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
:	:	.	:	:	:
DEFE	0FA57E	Output word device FF (2 bytes)	Output bit device FF0 to Output bit device FFF	DVO_FF0 to DVO_FFF	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_FFO (bit0) to DVO_FFF (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
	0FA580	Output word device 100 (2 bytes) (expanded points method)	Output bit device 1000 to Output bit device 100F (expanded points method)	$\begin{gathered} \text { DVO_1000 } \\ \text { to } \\ \text { DVO_100F } \end{gathered}$	[When bit device is assigned] Notifies the status of the bit device output signal. The bits are DVO_1000 (bit0) to DVO_100F (bit15). [When word device is assigned] Notifies the status of the word device output signal.
	:	:	:	:	:
	0FA7FE	Output word device 23F (2 bytes) (expanded points method)	Output bit device 23F0 to Output bit device 23FF (expanded points method)	$\begin{gathered} \text { DVO_23F0 } \\ \text { to } \\ \text { DVO_23FF } \end{gathered}$	[When bit device is assigned] Notifies the status of the bit device output signal. The bits are DVO_23F0 (bit0) to DVO_23FF (bit15). [When word device is assigned] Notifies the status of the word device output signal.

6.28 Servo amplifier general I/O

6.28.1 Summary

The servo amplifier general I/O function controls the I/O signal connected to the servo amplifier via SSCNET. The user program can control the I/O signal with the digital I/O table or I/O device table, by assigning the servo amplifier general I/O signal to the digital I/O table or I/O device table. The points of the I/O signal differ depending on the servo amplifier model.

POINT

- When a communication error (system error E401 to E407) occurs or SSCNET is disconnected, all the general I/O signals of the servo amplifier turn off.
- The general input signal of the servo amplifier shares the connector pin with the sensor signal (LSP, LSN, DOG). Therefore, the sensor signal cannot be input if general input signal of the servo amplifier is used as other than the sensor signal. In this case, set the sensor input option (parameter No.0219) to "2: Digital or input device input" and assign a digital input signal or input device signal as a sensor signal in the sensor signal connection specification (parameter No.021A to 021C). The sensor signal can be controlled by a command from the user program (writing of the dual port memory) when the sensor input method (parameter No.0219) is set to "4: Dual port memory".
- The delay time from an input of the general I/O signal of the servo amplifier to the update of the digital input table is "approx. $0.88 \mathrm{~ms}+$ (control cycle $\times 2$)" (approx. 2.7 ms when the control cycle is 0.88 ms). The delay time is also the same for when using an input device table.
- The delay time from the update of the digital output table by the user program to the output of the general output signal of the servo amplifier is "approx. 0.88 ms $+($ control cycle $\times 3$)" (approx. 3.5 ms when the control cycle is 0.88 ms). In the case of the digital output signal using in the other axes start function, the delay time from other axes start condition satisfaction to the output is "approx. $0.88 \mathrm{~ms}+($ control cycle $\times 2$)" (approx. 2.7 ms when the control cycle is 0.88 ms). The delay time is also the same for when using an output device table.

API LIBRARY

- Use the sscChangeParameter function to set servo amplifier general I/O.
[Compatible servo amplifier]

Model	Remarks
Servo amplifier MR-J4- $\square \mathrm{B}$	Input: 3 points/axis Output: 3 points/axis
Servo amplifier MR-J4W $\square-\square \mathrm{B}$	Input: 3 points/axis Output: 1 point/axis + 2 points (common in each axis)

The following shows the connectors of the servo amplifier to be connected to the general I/O signals. Each general I/O signal is assigned to the digital input signal ($\mathrm{DI} _\square \square \square$) and digital output signal (DO_ $\square \square \square$). For details, refer to Section 6.28.2.
(1) For servo amplifier MR-J4- \square
(a) General input

Signal name	Destination connector pin No.	Symbol
DI_ $\square \square 0$	CN3-2	DI1
DI_ $\square \square 1$	CN3-12	DI2
DI_ $\square \square 2$	CN3-19	DI3

(b) General output

Signal name	Destination connector pin No.	Symbol
DO_ $\square \square 0$	CN3-13	MBR
DO_ $\square \square 1$	CN3-9	INP
DO_ $\square \square 2$	CN3-15	ALM

(2) For servo amplifier MR-J4W $\square-\square B$
(a) General input

Signal name	Destination connector pin No.			Symbol
	Axis A	Axis B	Axis C (Note)	
DI_ $\square \square 0$	CN3-7	CN3-20	CN3-1	DI1- \square
DI_ $\square \square 1$	CN3-8	CN3-21	CN3-2	DI2- \square
DI_ $\square \square 2$	CN3-9	CN3-22	CN3-15	DI3- \square

Note: Only MR-J4W3- $\square \mathrm{B}$ is available.
(b) General output

Signal name	Destination connector pin No.			Symbol
	Axis A	Axis B	Axis C (Note1)	(\square : A, B, C)

Note 1. Only MR-J4W3-DB is available.
2. The pin is common for each axis. The axis to be used can be selected by the parameter setting. For details, refer to Section 6.28.2.

6.28.2 Settings

(1) Servo parameters

When using the general output function of the servo amplifier, set the parameter of the output device selection as shown below.
(a) For servo amplifier MR-J4- \square B

Parameter No.	MR-J4-B parameter No.	Symbol	Name	Setting value
11 C 6	PD07	*DO1	Output device selection 1	0021 h
11 C 7	PD08	*DO2	Output device selection 2	0022 h
11 C 8	PD09	*DO3	Output device selection 3	0023 h

(b) For servo amplifier MR-J4W $\square-\square B$

Parameter No.	MR-J4W-B parameter No.	Symbol	Name	Setting value
11C6	PD07	*DO1	Output device selection 1	0021h
$11 \mathrm{C7}$	PD08	*DO2	Output device selection 2 (Note1, 2)	1022h (when using axis A) 2022h (when using axis B) 3022h (when using axis C)
11 C 8	PD09	*DO3	Output device selection 3 (Note1, 2)	1023h (when using axis A) 2023h (when using axis B) 3023h (when using axis C)

Note 1. The parameter is shared with the three axes of axis A, B, and C. Always set the same value to all the axes. When the setting value differs, the value of the axis A is valid.
2. Since the pin is shared by each axis, only one axis can be assigned.
(2) Control parameter

The control parameters are used to set the general I/O and to assign to the digital I/O number. When the sensor input method (parameter No.0219) is "Driver input", the input signal of the servo amplifier is used for the sensor (LSP/LSN/DOG). Therefore, the input signal cannot be used as the general input. To use the general input signal of the servo amplifier, set other than "Driver input" to the sensor input method (parameter No.0219).

Parameter No.	Symbol	Name	Initial value	Unit	Setting range	Function	
0213	*GIOO	General I/O option	0000h		$\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 0011 \mathrm{~h} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0 & 0 \\ \hline \end{array}$	_ Servo amplifier general input setting Set whether to use the general input of the servo amplifier. 0 : Not used 1: Used Note: When the general input is used, the limit switch signal and the dog signal cannot be input from the servo amplifier. Set other than "Driver input" to the sensor input method (parameter No.0219). -Servo amplifier general output setting Set whether to use the general output of the servo amplifier. 0 : Not used 1: Used

Parameter No.	Symbol	Name	Initial value	Unit	Setting range	Function
0215	*GDINA	General input No. assignment MC300	0000h		$\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 023 \mathrm{Fh} \end{aligned}$	Only valid when the I/O table (parameter No.004A) setting is "Use I/O device table (expanded points method)". General input assignment Specify the first input word device number that corresponds with the input bit device number to assign the general input. 000h to 23Fh: Input word device number 000 to 23 F Example: When the input word device number 001 is specified, 16 points are assigned from DVI_0010 to DVI_001F. However, DVI_0013 to DVI 001F are unavailable.
0216	*GDONA	General output No. assignment MC300	0000h		$\begin{aligned} & 0000 \mathrm{~h} \\ & \text { to } \\ & 023 \mathrm{Fh} \end{aligned}$	Only valid when the I/O table (parameter No.004A) setting is "Use I/O device table (expanded points method)". General output assignment Specify the first output word device number that corresponds with the output bit device number to assign the general input. 000h to 23Fh: Output word device number 000 to 23F Example: When the output word device number 002 is specified, 16 points are assigned from DVO_0020 to DVO_002F. However, DVO_0023 to DVI_002F are unavailable.
0219	*SOP	Sensor input option	0000h		$\begin{aligned} & 0000 \mathrm{~h} \\ & \text { to } \\ & 0304 \mathrm{~h} \end{aligned}$	Sensor input system Set the input system of the sensor (LSP, LSN, DOG). 0: Not use 1: Driver input 2: Digital or input device input 3: Not connected (does not detect LSP, LSN, DOG) 4: Dual port memory input Limit switch signal selection Set valid/invalid of limit switch. 0: LSP/LSN are valid 1: LSP is valid, LSN is invalid 2: LSP is invalid, LSN is valid 3: LSP/LSN are invalid

POINT

- Assign the digital I/O table not to overlap other settings. If the assignment is overlapped or exceeds the maximum points of the digital I/O table, the I/O No. assignment error (system error E510) and I/O No. assignment setting error (operation alarm 39, detail 01 and 02) occur.
- Assign the I/O device table not to overlap other settings. If the assignment is overlapped or exceeds the maximum points of the I/O device table, the I/O No. assignment error (system error E510) and I/O No. assignment setting error (operation alarm 39, detail 01 and 02) occur.

6.29 Dual port memory exclusive control

6.29.1 Summary

The dual port memory exclusive control function is a function that keeps the consistency of the memory data by temporarily limiting the system program and user program to read/write data to the limited area of the dual port memory.
The output signals in this section refer to digital output signals or output device signals. The target output signal is selected in I/O table (parameter No.004A).

6.29.2 Exclusive control of output signals

If the output signal is updated from the user program during controlling of the output signal by the other axes start function, the consistency of the data may not be kept. Read/write the output signal using the exclusive control function after controlling the possessory right of the output signal.

API LIBRARY

- The sscSetDigitalOutputDataBit and sscSetDigitalOutputDataWord functions of the API library perform exclusive control of digital output within the function.
- The sscSetOutputDeviceBit function of the API library performs exclusive control of output device within the function.
(1) Interface

Address		Symbol	Description	Detail (Note 1)	User program data writing
MR-MC2 $\square \square$	MR-MC3 $\square \square$		DORH	Output signal host occupy request	0: No request 1: Request
EF80	0FFA80	0FFA82	DORB	During output signal board occupy request (Note 2)	0: No request 1: Request
EF84	0FFA84	DOCS	Output signal occupy selection	0: System program 1: User program	
EF86 to EF8F	0FFA86 to 0FFA8F		Reserved		

Note 1. When the data out of the range is written, the exclusive control error (system error E503) occurs, which stops the import of the output signal and the control of the output signal by the other axes start function.
2. This is the area where the data can be written only from the system program. When the data is written from the user program to this area, the exclusive control operates incorrectly
(2) Exclusive control procedure on user program side

The following shows the procedure to control the output signal exclusively.
(a) Exclusive control procedure

Note 1: Check for occupy permission

(1) Condition for occupy permission

When the during output signal board occupy request (DORB) is " 0 : No request" or the output signal occupy selection (DOCS) is " 0 : System program"
(2) Condition for occupy non-permission When the during output signal board occupy request (DORB) is "1: Request" and the output signal occupy selection (DOCS) is "1: User program"
(b) Condition for occupy permission of output signal

DORH	DORB	DOCS	Occupy status of output signal	Occupy permitted/not permitted
0	0	0	No occupy	No occupy request from user program.
0	0	1	No occupy	
0	1	0	Occupied by system program.	
0	1	1	Occupied by system program.	
1	0	0	Occupied by user program.	Occupy permitted
1	0	1	Occupied by user program.	
1	1	0	Occupied by user program. (Waiting for permission from system program)	
1	1	1	Occupied by system program. (Waiting for permission from user program)	Occupy not permitted

(3) Restrictions

Perform the exclusive control so that the occupy time on the user program side is $5 \mu \mathrm{~s}$ or less. If the possessory right is not shifted to the system program even after 5μ s at the timing in which the system program accesses the output signal, the access to the output signal is stopped. When the access to the output signal is stopped, the access put on hold until the next control cycle.

6.30 Pass position interrupt

6.30.1 Summary

The pass position interrupt function is a function that outputs an interrupt when the pass position condition set in the interrupt table is satisfied. Up to $64 /$ MC200 $/ 128$ MC300 pass position conditions can be specified (total for all 64 axes MC200 / 128 axes MC300) per operation.
To use this function, set the pass position interrupt valid to the auxiliary command of the point table. The pass position condition start and end numbers are imported when the operation is started. The pass position condition is imported and the pass position is judged for each condition from the pass position condition start number.
When the pass position condition is satisfied, the factor of an interrupt corresponding to the pass position condition number is output. Then, the next pass position condition is imported and judged.
The pass position condition is judged until the in-position signal (INP) turns on.
To output the interrupt, set the pass position interrupt to the system interrupt condition (system parameter No.0004) and turn on the interrupt output valid (ITS).

POINT

- This function can be used only in the automatic operation and linear interpolation operation MC200/interpolation operation MC300. For the linear interpolation operation $\sqrt{M C 200}$ /interpolation operation $M C 300$, the pass position condition can be set per axis.
- During the pass position interrupt, the pass position interrupt condition numbers from the start to the end are in use. When the pass position condition is in use in other axes, a pass position interrupt error (operation alarm 5C, detail 05) occurs and the start operation is stopped.
-When the operation is started again before all the interrupts by the pass position interrupt are output, a pass position interrupt error (operation alarm 5C, detail 06) occurs and the start operation is stopped.
- In the synchronous mode of the tandem drive, only the setting of the master axis is valid and this function outputs the interrupt based on the operation of the master axis.

6.30.2 Pass position interrupt setting method

The pass position interrupt setting procedure is as follows.
(1) Set the pass position conditions.
(2) Validate the pass position interrupt specifications of the point data.
(3) Set the pass position condition start number and end number.
(4) Start automatic operation or linear interpolation operation $M C 200$ /interpolation operation $M C 300$.
(5) Wait until the conditions of the pass position interrupt are fulfilled.

API LIBRARY

- Use the sscSetIntPassPositionData function for setting of pass position interrupt in (1) above.
- Use the sscSetPointDataEx function for setting of the point table in (2) above.
- Use the sscSetStartingPassNumber function to set pass position condition start number and end number in (3) above.
- Use the sscAutoStart/sscLinearStart functions for starting operations in (4) above.
- Use the sscWaitlntPassPosition function for wait for pass position interrupt in (5) above.
- For a detailed procedure for pass position interrupt, refer to the sample program (InterruptPassPosition) contained on the utility software.

6.30.3 Interface

(1) Pass position interrupt table

The pass position condition (pass position option and pass position data) is set to the pass position interrupt table.
The pass position condition is imported when the corresponding pass position condition number is started to be judged.

POINT

- When the pass position condition setting is incorrect, a pass position interrupt error (operation alarm 5C, detail 04) occurs and the operation is stopped.

API LIBRARY

- Use the sscSetIntPassPositionData/sscCheckIntPassPositionData functions to set/get pass position interrupt data.

Pass position interrupt table

		Content	
MR- MC2	$\begin{array}{r} \text { MR- } \\ \text { MC3口 } \end{array}$		
A640	0E1000	Pass position condition 1 (8 bytes)	Pass position option
:	:		
A643	0E1003		
A644	0E1004		Pass position data
:	:		
A647	0E1007		
A648	0E1008	Pass position condition 2 (8 bytes)	Pass position option
:	:		
A64B	0E100B		
A64C	0E100C		Pass position data
:	:		
A64F	0E100F		
A650	0E1010	Pass position condition 3 (8 bytes)	Pass position option
:	:		
A653	0E1013		
A654	0E1014		Pass position data
:	:		
A657	0E1017		
A658	0E1018	Pass position condition 4 (8 bytes)	Pass position option
:	:		
A65B	0E101B		
A65C	0E101C		Pass position data
:	:		
A65F	0E101F		
A660	0E1020	Pass position condition 5 (8 bytes)	Pass position option
:	:		
A663	0E1023		
A664	0E1024		Pass position data
:	:		
A667	0E1027		
A668	0E1028	Pass position condition 6 (8 bytes)	Pass position option
:	:		
A66B	0E102B		
A66C	0E102C		Pass position data
:	:		
A66F	0E102F		
A670	0E1030	Pass position condition 7 (8 bytes)	Pass position option
:	:		
A673	0E1033		
A674	0E1034		Pass position data
:	:		
A677	0E1037		
A678	0E1038	Pass position condition 8 (8 bytes)	Pass position option
:	:		
A67B	0E103B		
A67C	0E103C		Pass position data
:	:		
A67F	0E103F		

(a) Details on pass position option

Address (Note)		Name	Initial value	Unit	Setting range	Remarks					
$\left.\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array} \right\rvert\,$	$\left.\begin{array}{\|c} \hline \text { MR- } \\ \text { MC3 } \square \square \end{array} \right\rvert\,$										
A640	0E1000	Pass position option (4 bytes)	00000000h		$\begin{array}{\|l} 00000000 \mathrm{~h} \\ \text { to } \\ 00000011 \mathrm{~h} \end{array}$	0	0	0	0	$\begin{array}{l\|l} 0 & 0 \\ \hline \end{array}$	Pass direction Set the pass direction for the pass position data. 0 : + direction pass position interrupt output 1: - direction pass position interrupt output Judgment condition Set the judgment condition for the pass position data. 0 : Current command position 1: Current feedback position Note. Only the setting for the pass position condition start number is valid.

Note. The addresses in the table are the addresses for the pass position condition 1. For the pass position condition 2 and after, increase in units of 8 h for each pass position condition.
(b) Details on the pass position data

Address (Note)		Name	Initial value	Unit	Setting range	
MR- MC2 $\square \square$	MR- MC3 $\square \square$					

Note. The addresses in the table are the addresses for the pass position condition 1. For the pass position condition 2 and after, increase in units of 8 h for each pass position condition.

POINT

- Set the pass position condition in passing order since the pass position conditions are judged one by one in ascending order of the pass position condition number.
- The interrupt is output only once for each pass position condition.
-When a passed position is the pass position condition, the interrupt is not output until the position is passed again.
- Ensure one control cycle or longer between two pass position conditions.
- Only the judgment condition for the pass position condition start number is valid only for the pass position option. The judgment condition is used for each pass position data as the common setting. (The judgment condition cannot be set individually for each pass position condition.)
- When the current feedback position is selected as the judgment condition for the pass position data, do not set the pass position data within the in-position range. The pass position interrupt may not be output since the pass position judgment ends when the in-position signal (INP) turns on.
(2) Point table

To use the pass position interrupt, set the pass position interrupt valid to the auxiliary command of the point table.

Note 1. "Reserved" when using MR-MC2 $\square \square$.
(a) Pass position interrupt specification

Select valid/invalid for the pass position interrupt.
0: Pass position interrupt invalid
1: Pass position interrupt valid

POINT

- This setting in the point data of the start point No. is valid only. If the point data after the start point No. are set, it causes a point table setting error (operation alarm 25, detail 0 C) and the operation is stopped.

API LIBRARY

- Use the sscSetPointDataEx/sscCheckPointDataEx functions to set/get point data.
(3) Axis command data/axis status data

The pass position is judged according to the pass position condition specified in the start number and end number of the pass position condition.
(a) Axis command data

Address (Note 1)		Name	Setting range		Remarks
MR- MC2	MR- MC3		MR- MC2	MR- MC3	
1034	005044	Pass position condition start number (2 bytes)	1 to 64	1 to 128	Set the start number of the pass position condition for the pass position interrupt.
1036	005046	Pass position condition end number (2 bytes)	1 to 64	1 to 128	Set the end number for the pass position condition for the pass position interrupt.

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+$ C0h
- Using MR-MC3 $\square \square$: +140h

2. When using only one pass position condition, set the same number for the start number and end number.

POINT

- When the pass position condition used in other axis is imported, a pass position interrupt error (operation alarm 5C, detail 05) occurs and the operation is stopped. Do not use the same pass position condition number for multiple axes.
- When the pass position condition start number is out of range, a pass position interrupt error (operation alarm 5C, detail 01) occurs and the operation is stopped.
- When the pass position condition end number is out of range, a pass position interrupt error (operation alarm 5C, detail 02) occurs and the operation is stopped.
- When the pass position condition start number is smaller than the pass position condition end number, a pass position interrupt error (operation alarm 5C, detail 03) occurs and the operation is stopped.

API LIBRARY

- Use the sscSetStartingPassNumber function to set the pass condition start and end numbers.
(b) Axis status data

Address (Note)		Name	Output limits		Remarks
MR- MC2	$\begin{array}{r} \text { MR- } \\ \text { MC3 } \end{array}$		$\begin{array}{r} \text { MR- } \\ \text { MC2 } \end{array}$	MR- MC3	
1094	0050E4	Executing pass position condition number (2 bytes)	0 to 64	0 to 128	Outputs the running pass position condition number. After the pass position condition completion, the last pass position condition number is displayed. When the pass position interrupt processing is canceled due to the pass position condition setting error, an operation alarm, or other factors, the pass position condition number where an error occurs is displayed. When the operation is started with the pass position interrupt invalid, 0 is output.

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+$ C0h
- Using MR-MC3 $\square \square:+140 \mathrm{~h}$
(4) Axis command/axis status bit

The axis status bits related to the pass position interrupt function are shown below.
(a) Axis command bit

Address (Note)		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
1007	0005007	0	PPISTP	Pass position interrupt cancel
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+C 0 h$
- Using MR-MC3 $\square \square:+140 \mathrm{~h}$

1) Details on axis command bit

Symbol	Signal name	Function details	
		Function	Operation
PPISTP	Pass position interrupt cancel	Cancels the pass position interrupt.	Turn on this signal to cancel the pass position interrupt when the pass position interrupt signal (PPIOP) is on.

(b) Axis status bit

Address (Note)		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
1067	000B04	0	PPIOP	Pass position interrupt
		1	PPIFIN	Pass position interrupt complete
		2	PPIERR	Pass position interrupt incomplete
		3		Reserved
		4		
		5		
		6		
		7	AUTLO	In point table loop

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3 $\square \square:+140 \mathrm{~h}$

1) Details on axis status bit

Symbol	Signal name	Function details	
		Function	Operation
PPIOP	Pass position interrupt	Notifies the pass position interrupt is being performed.	<Conditions for turning ON> The start and end number of the pass position interrupt are specified and the pass position interrupt is performed. <Conditions for turning OFF> The pass position interrupt complete signal (PPIFIN) is turned on or the pass position interrupt incomplete signal (PPIERR) is turned on.
PPIFIN	Pass position interrupt complete	Notifies the pass position interrupt is completed.	<Conditions for turning ON> All interrupt outputs are completed in the pass position interrupt. <Conditions for turning OFF> The start and end number of the pass position interrupt are specified and the pass position interrupt is performed.
PPIERR	Pass position interrupt incomplete	Notifies the pass position interrupt is canceled.	<Conditions for turning ON> - The operation is canceled due to an operation alarm, servo alarm, or an operation stop command while the pass position interrupt signal (PPIOP) is on. - Not all pass position interrupt outputs are completed even when the in-position signal (INP) is turned on after the operation completion while the pass position interrupting signal (PPIOP) is on. - The pass position interrupt cancel signal (PPISTP) is turned on while the pass position interrupt (PPIOP) is on. <Conditions for turning OFF> The start and end number of the pass position interrupt are specified and the pass position interrupt is performed.

API LIBRARY

- To turn the pass position interrupt cancel command (PPISTP) ON/OFF, set SSC_CMDBIT_AX_PPISTP to the command bit number of the sscSetCommandBitSignalEx function.
- For the pass position interrupt start statuses below, set the following to the status bit number with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx function to check if the statuses are ON/OFF.
- Pass position interrupt (PPIOP) : SSC_STSBIT_AX_PPIOP
- Pass position interrupt complete (PPIFIN) : SSC_STSBIT_AX_PPIFIN
- Pass position interrupt incomplete (PPIERR): SSC_STSBIT_AX_PPIERR
(5) Interrupt conditions (system parameters)

Set the values that designate ON for the bits that correspond to the factor of pass position interrupt outputting to the parameter interrupt conditions (parameter No.0004) to validate the interrupt output of the pass position interrupt.
Parameter No. 0004 Interrupt conditions

Bit	Symbol	Name
0	SYSE	Current system error
1	CALM	Current system alarm
2	EMIO	During forced stop
3		
4		Reserved
5		
6		Operation cycle alarm
7		

Bit	Symbol	Name
8	OASF	Outputting with factor of other axes start interrupt
9	PPI	Outputting with factor of pass position interrupt
10		Reserved
11		
12		
13		
14		
15		

API LIBRARY

- Use the sscChange2Parameter/sscCheck2Parameter functions to set/get interrupt conditions.
(6) Factor of system interrupt

API LIBRARY

- Use the sscResetIntPassPosition/sscSetIntPassPosition/
sscWaitIntPassPosition functions for reset/set/wait of pass position interrupt events.

Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
0590	002220	Factor of system interrupt
0591	002221	
0592	002222	Reserved
0593	002223	
	002224	
	002225	
	002226	
	002227	
0594	002228	Factor of other axes start interrupt MC200 Factor of other axes start interrupt 1 MC300
0595	002229	
0596	00222A	
0597	00222B	
	00222C	Factor of other axes start interrupt 2
	00222D	
	00222E	
	00222F	
	002230	Reserved
	002231	
	002232	
	002233	
	002234	
	002235	
	002236	
	002237	

Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
0598	002238	Factor of pass position interrupt 1
0599	002239	
059A	00223A	
059B	00223B	
059C	00223C	Factor of pass position interrupt 2
059D	00223D	
059E	00223E	
059F	00223F	
	002240	Factor of pass position interrupt 3
	002241	
	002242	
	002243	
	002244	Factor of pass position interrupt 4
	002245	
	002246	
	002247	
05A0	002248	Reserved
:	:	
05AF	00229F	

(a) Details on factor of system interrupt

When the pass position data is passed, the factor of outputting with factor of pass position interrupt (iPPI) of the details on factor of system interrupt is turned on. For details on the factor of interrupt according to the pass position condition, refer to Section 6.30.3 (6) (b).

Address		Bit	Symbol (Note)	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{gathered} 0590 \\ \text { to } \\ 0591 \end{gathered}$	$\begin{gathered} 002220 \\ \text { to } \\ 002221 \end{gathered}$	0	iSYSE	System error (interrupt)
		1	iCALM	System alarm (interrupt)
		2	iEMIO	During forced stop (interrupt)
		3		Reserved
		4		
		5		
		6		
		7	iOCME	Operation cycle alarm (interrupt)
		8	iOASF	Outputting with factor of other axes start interrupt (interrupt)
		9	iPPI	Outputting with factor of pass position interrupt (interrupt)
		10		Reserved
		11		
		12		
		13		
		14		
		15		

Note. OFF: No factor of interrupt exists.
ON: A factor of interrupt exists.
(b) Factor of pass position interrupt

When the outputting with factor of pass position interrupt (iPPI) is on, the bit corresponding to the pass position condition number of the factor of the pass position interrupt turns on.

1) Factor of pass position interrupt 1

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{gathered} 0598 \\ \text { to } \\ 059 \mathrm{~B} \end{gathered}$	$\begin{aligned} & 002238 \\ & \text { to } \\ & 00223 B \end{aligned}$	0	iPPI1	Pass position condition 1 (interrupt)
		1	iPPI2	Pass position condition 2 (interrupt)
		2	iPPI3	Pass position condition 3 (interrupt)
		3	iPPI4	Pass position condition 4 (interrupt)
		4	iPPI5	Pass position condition 5 (interrupt)
		5	iPPI6	Pass position condition 6 (interrupt)
		6	iPPI7	Pass position condition 7 (interrupt)
		7	iPPI8	Pass position condition 8 (interrupt)
		8	iPPI9	Pass position condition 9 (interrupt)
		9	iPPI10	Pass position condition 10 (interrupt)
		10	iPPI11	Pass position condition 11 (interrupt)
		11	iPPI12	Pass position condition 12 (interrupt)
		12	iPPI13	Pass position condition 13 (interrupt)
		13	iPPI14	Pass position condition 14 (interrupt)
		14	iPPI15	Pass position condition 15 (interrupt)
		15	iPPI16	Pass position condition 16 (interrupt)
		16	iPPI17	Pass position condition 17 (interrupt)
		17	iPPI18	Pass position condition 18 (interrupt)
		18	iPPI19	Pass position condition 19 (interrupt)
		19	iPPI20	Pass position condition 20 (interrupt)
		20	iPPI21	Pass position condition 21 (interrupt)
		21	iPPI22	Pass position condition 22 (interrupt)
		22	iPPI23	Pass position condition 23 (interrupt)
		23	iPPI24	Pass position condition 24 (interrupt)
		24	iPPI25	Pass position condition 25 (interrupt)
		25	iPPI26	Pass position condition 26 (interrupt)
		26	iPPI27	Pass position condition 27 (interrupt)
		27	iPPI28	Pass position condition 28 (interrupt)
		28	iPPI29	Pass position condition 29 (interrupt)
		29	iPPI30	Pass position condition 30 (interrupt)
		30	iPPI31	Pass position condition 31 (interrupt)
		31	iPPI32	Pass position condition 32 (interrupt)

2) Factor of pass position interrupt 2

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{gathered} 059 \mathrm{C} \\ \text { to } \\ 059 \mathrm{~F} \end{gathered}$	$\begin{gathered} 00223 \mathrm{C} \\ \text { to } \\ 00223 \mathrm{~F} \end{gathered}$	0	iPPI33	Pass position condition 33 (interrupt)
		1	iPPI34	Pass position condition 34 (interrupt)
		2	iPPI35	Pass position condition 35 (interrupt)
		3	iPPI36	Pass position condition 36 (interrupt)
		4	iPPI37	Pass position condition 37 (interrupt)
		5	iPPI38	Pass position condition 38 (interrupt)
		6	iPPI39	Pass position condition 39 (interrupt)
		7	iPPI40	Pass position condition 40 (interrupt)
		8	iPPI41	Pass position condition 41 (interrupt)
		9	iPPI42	Pass position condition 42 (interrupt)
		10	iPPI43	Pass position condition 43 (interrupt)
		11	iPPI44	Pass position condition 44 (interrupt)
		12	iPPI45	Pass position condition 45 (interrupt)
		13	iPPI46	Pass position condition 46 (interrupt)
		14	iPPI47	Pass position condition 47 (interrupt)
		15	iPPI48	Pass position condition 48 (interrupt)
		16	iPPI49	Pass position condition 49 (interrupt)
		17	iPPI50	Pass position condition 50 (interrupt)
		18	iPPI51	Pass position condition 51 (interrupt)
		19	iPPI52	Pass position condition 52 (interrupt)
		20	iPPI53	Pass position condition 53 (interrupt)
		21	iPPI54	Pass position condition 54 (interrupt)
		22	iPPI55	Pass position condition 55 (interrupt)
		23	iPPI56	Pass position condition 56 (interrupt)
		24	iPPI57	Pass position condition 57 (interrupt)
		25	iPPI58	Pass position condition 58 (interrupt)
		26	iPPI59	Pass position condition 59 (interrupt)
		27	iPPI60	Pass position condition 60 (interrupt)
		28	iPPI61	Pass position condition 61 (interrupt)
		29	iPPI62	Pass position condition 62 (interrupt)
		30	iPPI63	Pass position condition 63 (interrupt)
		31	iPPI64	Pass position condition 64 (interrupt)

3) Factor of pass position interrupt 3

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
	$\begin{gathered} 002240 \\ \text { to } \\ 002243 \end{gathered}$	0	iPPI65	Pass position condition 65 (interrupt)
		1	iPPI66	Pass position condition 66 (interrupt)
		2	iPPI67	Pass position condition 67 (interrupt)
		3	iPPI68	Pass position condition 68 (interrupt)
		4	iPPI69	Pass position condition 69 (interrupt)
		5	iPPI70	Pass position condition 70 (interrupt)
		6	iPPI71	Pass position condition 71 (interrupt)
		7	iPPI72	Pass position condition 72 (interrupt)
		8	iPPI73	Pass position condition 73 (interrupt)
		9	iPPI74	Pass position condition 74 (interrupt)
		10	iPPI75	Pass position condition 75 (interrupt)
		11	iPPI76	Pass position condition 76 (interrupt)
		12	iPPI77	Pass position condition 77 (interrupt)
		13	iPPI78	Pass position condition 78 (interrupt)
		14	iPPI79	Pass position condition 79 (interrupt)
		15	iPPI80	Pass position condition 80 (interrupt)
		16	iPPI81	Pass position condition 81 (interrupt)
		17	iPPI82	Pass position condition 82 (interrupt)
		18	iPPI83	Pass position condition 83 (interrupt)
		19	iPPI84	Pass position condition 84 (interrupt)
		20	iPPI85	Pass position condition 85 (interrupt)
		21	iPPI86	Pass position condition 86 (interrupt)
		22	iPPI87	Pass position condition 87 (interrupt)
		23	iPPI88	Pass position condition 88 (interrupt)
		24	iPPI89	Pass position condition 89 (interrupt)
		25	iPPI90	Pass position condition 90 (interrupt)
		26	iPPI91	Pass position condition 91 (interrupt)
		27	iPPI92	Pass position condition 92 (interrupt)
		28	iPPI93	Pass position condition 93 (interrupt)
		29	iPPI94	Pass position condition 94 (interrupt)
		30	iPPI95	Pass position condition 95 (interrupt)
		31	iPPI96	Pass position condition 96 (interrupt)

4) Factor of pass position interrupt 4

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
	$\begin{gathered} 002244 \\ \text { to } \\ 002247 \end{gathered}$	0	iPPI97	Pass position condition 97 (interrupt)
		1	iPPI98	Pass position condition 98 (interrupt)
		2	iPPI99	Pass position condition 99 (interrupt)
		3	iPPI100	Pass position condition 100 (interrupt)
		4	iPPI101	Pass position condition 101 (interrupt)
		5	iPPI102	Pass position condition 102 (interrupt)
		6	iPPI103	Pass position condition 103 (interrupt)
		7	iPPI104	Pass position condition 104 (interrupt)
		8	iPPI105	Pass position condition 105 (interrupt)
		9	iPPI106	Pass position condition 106 (interrupt)
		10	iPPI107	Pass position condition 107 (interrupt)
		11	iPPI108	Pass position condition 108 (interrupt)
		12	iPPI109	Pass position condition 109 (interrupt)
		13	iPPI110	Pass position condition 110 (interrupt)
		14	iPPI111	Pass position condition 111 (interrupt)
		15	iPPI112	Pass position condition 112 (interrupt)
		16	iPPI113	Pass position condition 113 (interrupt)
		17	iPPI114	Pass position condition 114 (interrupt)
		18	iPPI115	Pass position condition 115 (interrupt)
		19	iPPI116	Pass position condition 116 (interrupt)
		20	iPPI117	Pass position condition 117 (interrupt)
		21	iPPI118	Pass position condition 118 (interrupt)
		22	iPPI119	Pass position condition 119 (interrupt)
		23	iPPI120	Pass position condition 120 (interrupt)
		24	iPPI121	Pass position condition 121 (interrupt)
		25	iPPI122	Pass position condition 122 (interrupt)
		26	iPPI123	Pass position condition 123 (interrupt)
		27	iPPI124	Pass position condition 124 (interrupt)
		28	iPPI125	Pass position condition 125 (interrupt)
		29	iPPI126	Pass position condition 126 (interrupt)
		30	iPPI127	Pass position condition 127 (interrupt)
		31	iPPI128	Pass position condition 128 (interrupt)

(c) Details on factor of pass position interrupt

When the outputting with factor of pass position interrupt (iPPI口) is on, the pass position status bit corresponding to the pass position condition number turns on.

Address		Content	
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
0FA0	0047E0	Details on factor of pass position interrupt	Details on factor of pass position interrupt 1
0FA1	0047E1		Details on factor of pass position interrupt 2
0FA2	0047E2		Details on factor of pass position interrupt 3
0FA3	0047E3		Details on factor of pass position interrupt 4
:	:		:
OFDF	00481F		Details on factor of pass position interrupt 64
	004820		Details on factor of pass position interrupt 65
	:		:
	00485F		Details on factor of pass position interrupt 128

1) Details on factor of pass position interrupt \square

Address (Note 1)		Bit	Symbol (Note 2)	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
OFA0	0047E0	0	iPPIF \square	Pass position interrupt complete \square (interrupt)
		1	iPPIE \square	Pass position interrupt incompletion \square (interrupt)
		2 3 4 5 6 7		Reserved

Note 1. The addresses in the table are the addresses for the pass position condition number 1. For the pass position condition number 2 and after, increase in units of 01 h for each pass position condition number.
2. \square : Pass position condition number.

6.30.4 Operation example

(1) When the pass position interrupt is complete

The pass position interrupt (PPIOP) turns on between the operation start and the completion of all pass position interrupt outputs. When the pass position condition is satisfied, the factor of interrupt of the "pass position interrupt complete \square " (\square : pass position condition number) turns on and the interrupts are output. The pass position interrupt (PPIOP) turns off and the pass position interrupt complete (PPIFIN) turns on when all of pass position interrupts are output.

(2) When the pass position interrupt fails

When the operation is canceled due to an operation alarm preceding the satisfaction of the pass position condition, the pass position interrupt incomplete (PPIERR) turns on. The pass position interrupt incomplete (PPIERR) turns on under the following conditions.
At this time, the factor of interrupt of the "pass position interrupt error condition \square " (\square : pass position condition number) turns on to the running and unexecuted pass position interrupt conditions and the interrupt is output.
(a) The setting of the pass position condition is incorrect.
(b) Operation is canceled by turning on the stop operation signal (STP) or the rapid stop signal (RSTP) before the pass position condition is satisfied.
(c) Operation is canceled by an operation alarm, etc. before the pass position condition is satisfied.
(d) Operation is completed and the in-position signal is turned on before the pass position condition is satisfied.
[Example of when an operation alarm occurs]

[Example of when operation is completed]

(3) When the pass position interrupt is canceled

When the pass position interrupt cancel (PPISTP) is turned on preceding the satisfaction of the pass position condition, the pass position interrupt incomplete (PPIERR) turns on. At this time, the factor of interrupt of the "pass position interrupt error condition \square " (\square : pass position condition number) turns on to the running and unexecuted pass position interrupt conditions and the interrupt is output.
[Example of when the pass position interrupt is canceled]

POINT

- When the operation is started with the pass position specification of the point table and auxiliary command valid while the pass position interrupt cancel signal (PPISTP) is on, a pass position interrupt error (operation alarm 5C, detail 07) occurs and the start operation is canceled. At this time, the pass position interrupt incomplete signal (PPIERR) turns on.

6.31 Mark detection

6.31.1 Summary

Mark detection is a function that gets the positioning data at the timing of when a mark detection signal is input to the servo amplifier, and outputs to the dual port memory. This function is compatible with SSCNETII/H communication method only.

Three methods for mark detection modes can be selected.

- Continuous detection mode
- Specified number of detection mode
- Ring buffer mode

Additionally, the range of the mark detection positioning data can be specified, so only data within the specified range is latched.
When interrupt conditions 2 (parameter No.0205) is enabled and mark detection signal is detected, an interrupt can be generated. However, when not using the interrupt, or in interface mode, the mark detection counter must be monitored at all times.

Item	Performance specifications
Number of mark detection settings	Up to 2 settings for each axis
Input signal	External input signal (within DI1 to DI3, 2 points) of each servo amplifier
Input signal detection direction	Leading edge/trailing edge detection in logic setting (ON edge detection setting, OFF edge detection setting) of external input signal can be selected
Detection accuracy	$55 \mu \mathrm{~s}$ (input signal filter (0 to $444 \mu \mathrm{~s}$) can be selected in parameter setting)
Detection delay	0.3 ms or less + filter setting value (0 to 0.444 ms) Note. Sensor delay time is not included
Input signal minimum width	0.88 ms (make ON/OFF width 0.88 ms or more)
Latch data	2 types (current feedback position [command units], current feedback position [pulse])
Number of continuous latch data storages	- Using MR-MC2 Up to 64 (the whole system) - Using MR-MC3 $\square \square$ Up to 128 (the whole system)
Latch data range	Within the range of -2147483648 to 2147483647 can be specified

The following shows the update timing of mark detection positioning data and mark detection edge data when a mark detection signal is detected and both ON/OFF edges are enabled in the mark detection data settings.

Use a software version that supports mark detection for the servo amplifier. Mark detection is compatible with SSCNETIII/H communication method only. Servo amplifier software versions that support mark detection are shown in the table below.

Servo amplifier model	Software version
MR-J4- \square B $\square(-R J)$	B4 or later
MR-J4W2- \square B	Not supported
MR-J4W3- \square B	Not supported

POINT

- For communication methods other than SSCNETII/H, a mark detection setting error (operation alarm 3B, detail No.01) occurs.
- When a servo amplifier that does not support mark detection is used, a mark detection setting error (operation alarm 3B, detail No.02) occurs.
- Check that the user program does not omit any detections to avoid cases where mark detection signals are not properly detected, and communication errors occurrences etc.
- In the following cases, depending on the specifications of the servo amplifier, the correct positioning data may not be got.

1) The ON/OFF width of mark detection signals is shorter than the control cycle of 0.88 ms .
2) Servo alarm has occurred.

- When an input other than driver input is set to sensor input method (parameter No.0219), and general input setting is set to "Used" for general I/O option (parameter No.0213), the current status of mark detection signals can be checked with servo amplifier general input.
- When driver input is set to sensor input method (parameter No.0219), the current status of mark detection signals can be checked with sensors (LSP/LSN/DOG).
(1) Continuous detection mode

Mark detection data is stored in the mark detection data storage area (one buffer) for every mark detection.

(2) Specified number of detection mode

Only the mark detection data for a set number of detections is stored. When the mark detection signal is continuously input at a high frequency, positions for a set number of mark detections can be collected.

Example: When the number of detections is 4

(3) Ring buffer mode

Latched data is stored in a ring buffer for the specified number of detections (number of continuous latch data storages in parameter settings).

Example: When the number of detections is 4

POINT

- Because of the time taken to get latch data by SSCNET communication, the delay time for the data to reach the user program side is approximately 0.88 ms + (control cycle $\times 2$).
(Approximately 2.7 ms when control cycle is 0.88 ms .)

6.31.2 Interface

(1) Servo parameter (MR-J4- $\square B \square(-R J)$)

(2) Control parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function

Note 1. When changed while system is running, changes are enabled when a mark detection settings enable command is input.
2. The set units are regarded as command units, or pulse units (the unit set in mark detection data type (parameter No.02B1)).

API LIBRARY

> - Use the sscChange2Parameter/sscCheck2Parameter functions to set/get mark detection.
(3) Mark detection command/status data
(a) Mark detection command table

Address (Note)			Setting range	Name	

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 20h for each axis.
(b) Mark detection status table

Address (Note)		Name	Output limits		Remarks	When in tandem drive
MR-MC2 $\square \square$	MR-MC3 $\square \square$		MR-MC2 $\square \square$	MR-MC3 $\square \square$		
B500	0E2A10	Start data storage area 1	0 to 63	0 to 127	Stores the start number of latch data storage for the mark detection signal set in mark detection signal number specification 1 (parameter No.02B0).	Each axis
B501	0E2A11	Number of continuous latch data storages 1	0 to 64	0 to 128	Stores the number of continuous latch data storages set in mark detection signal number specification 1 (parameter No.02B0). (Stores 0 for axes not using the mark detection function.)	Each axis
B502	0E2A12	Mark detection counter 1	Continuous detection: 0 to 255 Specified No. of detection, Ring buffer: 0 to 64	Continuous detection: 0 to 255 Specified No. of detection, Ring buffer: 0 to 128	Counter that is incremented when latch data for the mark detection signal set in mark detection signal number specification 1 (parameter No.02B0) is stored. In continuous detection mode, the count starts again from 1 after the 255th count. In ring buffer mode, the count starts again from 1 after the number of continuous latch data storages has been reached. In specified number of detection mode, and ring buffer mode use a "clear command" to clear to 0 .	Each axis
B503	0E2A13	Mark detection mode 1		2	Stores the mark detection mode for mark detection set in mark detection signal number specification 1 (parameter No.02B0). - 0: Continuous detection mode - 1: Specified number of detection mode - 2: Ring buffer mode	Each axis
B504	0E2A14	Start data storage area 2	0 to 63	0 to 127	Same as start data storage area 1.	Each axis
B505	0E2A15	Number of continuous latch data storages 2	0 to 64	0 to 128	Same as number of continuous latch data storages 1.	Each axis

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 20h for each axis.

Address (Note)		Name	Output limits		Remarks	When in tandem drive
MR-MC2 $\square \square$	MR-MC3 $\square \square$		MR-MC2 $\square \square$	MR-MC3 $\square \square$		
B506	0E2A16	Mark detection counter 2	Continuous detection: 0 to 255 Specified No. of detection, Ring buffer: 0 to 64	Continuous detection: 0 to 255 Specified No. of detection, Ring buffer: 0 to 128	Same as mark detection counter 1.	Each axis
B507	0E2A17	Mark detection mode 2	0 to 2		Same as mark detection mode 1.	Each axis
B50C	0E2A18	Reserved				
:	:					
B50F	0E2A1F					

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 20h for each axis.
(4) Mark detection data table
(a) Mark detection edge data table

0 : Not detected 1: OFF edge 2: ON edge

Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
BAF0	0E3A00	Mark detection edge data 0
BAF1	0E3A01	Mark detection edge data 1
BAF2	0E3A02	Mark detection edge data 2
BAF3	0E3A03	Mark detection edge data 3
BAF4	0E3A04	Mark detection edge data 4
BAF5	0E3A05	Mark detection edge data 5
BAF6	0E3A06	Mark detection edge data 6
BAF7	0E3A07	Mark detection edge data 7

Address		Content
MR-MC2 $\square \square$	MR-MC3 \square	
BAF8	0E3A08	Mark detection edge data 8
BAF9	0E3A09	Mark detection edge data 9
BAFA	0E3A0A	Mark detection edge data 10
$:$	$:$	$:$
BB2F	0E3A3F	Mark detection edge data 63
	0E3A40	Mark detection edge data 64
	$:$	0E3A7F
	Mark detection edge data 127	

(b) Mark detection positioning data table

Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
BB30	0E3B00	Mark detection positioning data 0
BB31	0E3B01	
BB32	0E3B02	
BB33	0E3B03	
BB34	0E3B04	Mark detection positioning data 1
BB35	0E3B05	
BB36	0E3B06	
BB37	0E3B07	
BB38	0E3B08	Mark detection positioning data 2
BB39	0E3B09	
BB3A	0E3B0A	
BB3B	0E3B0B	
BB3C	0E3B0C	Mark detection positioning data 3
BB3D	0E3B0D	
BB3E	0E3B0E	
BB3F	0E3B0F	

Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
BB40	0E3B10	Mark detection positioning data 4
BB41	0E3B11	
BB42	0E3B12	
BB43	0E3B13	
BB44	0E3B14	Mark detection positioning data 5
BB45	0E3B15	
BB46	0E3B16	
BB47	0E3B17	
BB48	0E3B18	Mark detection positioning data 6
BB49	0E3B19	
BB4A	0E3B1A	
BB4B	0E3B1B	
BB4C	0E3B1C	Mark detection positioning data 7
BB4D	0E3B1D	
BB4E	0E3B1E	
BB4F	0E3B1F	

Address		Content	Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$		MR-MC2 $\square \square$	MR-MC3 $\square \square$	
BB50	0E3B20	Mark detection positioning data 8	BC2C	0E3BFC	Mark detection positioning data 63
BB51	0E3B21		BC2D	0E3BFD	
BB52	0E3B22		BC2E	0E3BFE	
BB53	0E3B23		BC2F	0E3BFF	
BB54	0E3B24	Mark detection positioning data 9		0E3C00	Mark detection positioning data 64
BB55	0E3B25			0E3C01	
BB56	0E3B26			0E3C02	
BB57	0E3B27			0E3C03	
BB58	0E3B28	Mark detection positioning data 10		0E3C04	.
BB59	0E3B29				
BB5A	0E3B2A				
BB5B	0E3B2B			0E3CFB	
BB5C	0E3B2C	:		0E3CFC	Mark detection positioning data 127
.				0E3CFD	
.	-			0E3CFE	
BC2B	0E3BFB			0E3CFF	

POINT

- The mark detection data table allocates continuous latch data storage area automatically from the lowest axis to the highest axis.
- When the current feedback position set in mark detection data settings is specified in command units, the fraction that comes about when converting from pulse units is round down then stored.
- The lower 32 bits of data are latched for data in pulse units that exceeds 32 bits.

API LIBRARY

- Use the sscGetMarkDetectionData function to get mark detection data (mark detection edge data \square, mark detection positioning data \square).
(5) Axis command/status bit
(a) Axis command bit

Address (Note)		Bit	Symbol	Signal name	When in tandem drive
MR-MC2 $\square \square$	MR-MC3 $\square \square$				
100B	00500B	0		Reserved	
		1	MKC1	Mark detection clear command 1	Each axis
		2	MKD1	Mark detection disable command 1	Each axis
		3	MKSEN1	Mark detection setting enable command 1	Each axis
		4	-	Reserved	
		5	MKC2	Mark detection clear command 2	Each axis
		6	MKD2	Mark detection disable command 2	Each axis
		7	MKSEN2	Mark detection setting enable command 2	Each axis

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3 $\square \square:+140 \mathrm{~h}$

1) Details on axis command bit

Symbol	Signal name	Function details	
		Function	Operation
MKC \square	Mark detection clear command	Clears the mark detection positioning data table, mark detection edge data table, and mark detection counter.	When the mark detection clear signal is turned ON, the following data is cleared. - Mark detection positioning data table - Mark detection edge data table - Mark detection counter
MKD \square	Mark detection disable command	Disables data latch at the time of mark detection.	When the mark detection disable command is turned ON, data is not latched regardless of the latch data range settings.
MKSEN \square	Mark detection setting enable command	Reflects the settings for mark detection.	Reflects the following settings. - Mark detection edge settings - Mark detection data type - Latch data range

POINT
 - Mark detection data that is received while the mark detection clear command is ON is discarded.

(b) Axis status bit

Address (Note)		Bit	Symbol	Signal name	When in tandem drive
MR-MC2 $\square \square$	MR-MC3 $\square \square$				
106B	0050AB	0	MKIF1	Mark detection compatible information 1	Each axis
		1	MKCF1	Mark detection clear complete 1	Each axis
		2	MKDO1	Mark detection disabled 1	Each axis
		3	MKSEF1	Mark detection setting enable complete 1	Each axis
		4	MKIF2	Mark detection compatible information 2	Each axis
		5	MKCF2	Mark detection clear complete 2	Each axis
		6	MKD02	Mark detection disabled 2	Each axis
		7	MKSEF2	Mark detection setting enable complete 2	Each axis

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2al: +COh
- Using MR-MC3ロa: +140h

1) Details on axis status bit

Symbol	Signal name	Function details	
		Function	Operation
MKIF \square	Mark detection compatible information	Notifies that mark detection function can be used.	<Conditions for turning ON> The following conditions are satisfied. - Servo amplifier supports mark detection function. - Mark detections settings are enabled. <Conditions for turning OFF> One of the following conditions is satisfied. - Servo amplifier does not support mark detection function. - Mark detections settings are disabled. - Mark detection compatible axis is disconnected.
MKCF \square	Mark detection clear complete	Notifies that clearing of mark detection information was completed.	<Conditions for turning ON> Clearing of mark detection information is complete. <Conditions for turning OFF> The mark detection clear command signal (MKC口) was turned OFF.
MKD0■	Mark detection disabled \square	Notifies that data latch at the time of mark detection is disabled.	<Conditions for turning ON> The mark detection disable command signal (MKD \square) was turned ON. <Conditions for turning OFF> The mark detection disable command signal (MKD \square) was turned OFF.
MKSEF \square	Mark detection setting enable complete	Notifies that the mark detection settings have been applied.	<Conditions for turning ON> The mark detection setting enable command signal (MKSEN \square) was turned ON. <Conditions for turning OFF> The mark detection setting enable command signal (MKSEN \square) was turned OFF.

API LIBRARY

- Use the sscClearMarkDetectionData function for clearing mark detection data.
- To turn ON/OFF the following axis command bits, set the command bit numbers of the sscSetCommandBitSignalEx function to the following.
- Mark detection disable (MKD \square): SSC_CMDBIT_AX_MKD \square
- Mark detection setting enable (MKSEN \square): SSC_CMDBIT_AX_MKSEN \square
- To turn ON/OFF the following axis status bits, set the status bit numbers of the sscGetStatusBitSignalEx function or sscWaitStatusBitSignalEx function to the following.
- Mark detection compatible information (MKIF \square): SSC_STSBIT_AX_MKIF \square
- Mark detection disabled (MKDO■): SSC_STSBIT_AX_MKDO■
- Mark detection setting enable complete (MKSEF \square): SSC_STSBIT_AX_MKSEF \square

6.31.3 Function details

(1) Combinations with sensor input method

By setting the sensor input method to driver input, and setting the mark detection signal numbers (DI1 to DI3), sensors (LSP/LSN/DOG) can be used in combination with the mark detection function.

Example 1: When sensor input method is set to driver input and mark detection signal number specification 1 is set to DI3

Name	Signal allocation
DI1	LSP
DI2	LSN
DI3	DOG(mark detection 1)

Example 2: When sensor input method is set to a setting other than driver input and mark detection signal number specification 2 is set to DI1

Name	Signal allocation
DI1	General input 1 (mark detection 2)
DI2	General input 2
DI3	General input 2

(2) Continuous latch data storage allocation

The mark detection data table (the table where the current feedback position data at the input of the mark detection signal is stored) used by each axis allocates according to the number of continuous latch data storages (parameter No.02B0, 02B2) automatically from the lowest axis to the highest axis.
The following is an example for when continuous latch data storages is 4 points for axis 1,1 point for axis 2 , and 2 points for axis 3 .

Mark detection data table	Allocation		
Mark detection data table 0	Axis 1		
Mark detection data table 1			
Mark detection data table 2			
Mark detection data table 3	Axis 2		
Mark detection data table 4	Axis 3		
Mark detection data table 5			
Mark detection data table 6	$:$		
$:$			

(3) Latch data range

When data at mark detection is within the latch data range, the data is stored in the mark detection storage device and the mark detection counter increases by one. When the data is outside of the range the mark detection is not processed. The following explains the upper limit value and lower limit value.
(a) Upper limit value > lower limit value

When the mark detection data is more than the lower limit value and also less than or equal to the upper limit value, the mark detection is processed.

(b) Upper limit value < lower limit value

When the mark detection data is less than the upper limit value or more than the lower limit value, the mark detection is processed.

(c) Upper limit value $=$ lower limit value

The range of the mark detection data is not checked. Mark detection is processed for all ranges.
(4) Mark detection clear command

When a mark detection clear command is input the mark detection counter becomes 0 , and mark detection edge data and mark detection positioning data is cleared.

6.31.4 Operation example

(1) Continuous detection mode

The mark detection counter is incremented at mark detection. After mark detection, read the mark detection data and update the read complete buffer number. When mark detection data is not read before the next mark detection, a mark detection write/read error (operation alarm A6, detail No.01) occurs, followed by a rapid stop.

Example: When both ON/OFF edges are enabled.

POINT

- Mark detection interrupt cannot be used for interface mode. The mark detection counter can be continuously monitored by polling.

API LIBRARY

- Use the sscGetMarkDetectionData function to get mark detection data.
- The read number setting for the read complete buffer number is conducted within the sscGetMarkDetectionData function therefore user program processing is not required.
- Use the sscGetMarkDetectionCounter function to get the mark detection counter.
- When using mark detection interrupt, use the sscWaitlntEvent function and wait until interrupt is output. If not using mark detection interrupt, use polling. When using polling, use the sscGetMarkDetectionCounter function to periodically check that the mark detection counter is updated.
(2) Specified number of detection mode

The mark detection counter is incremented at mark detection. After mark detection, read the mark detection data and update the read complete buffer number. If performing mark detection again after the specified number of mark detections, conduct a mark detection clear. The mark detection data that is detected after the mark detection clear is latched.

Example: When both ON/OFF edges are enabled and specified number of mark detections is three.

POINT

- Data for mark detections after the specified number of detections is not latched.

API LIBRARY

- Use the sscGetMarkDetectionData function to get mark detection data.
- The read number setting for the read complete buffer number is conducted within the sscGetMarkDetectionData function therefore user program processing is not required.
- Use the sscGetMarkDetectionCounter function to get the mark detection counter.
- When using mark detection interrupt, use the sscWaitIntEvent function and wait until interrupt is output. If not using mark detection interrupt, use polling. When using polling, use the sscGetMarkDetectionCounter function to periodically check that the mark detection counter is updated.
(3) Ring buffer mode

When using ring buffer mode, the mark detection count is started again from 1 if the number of mark detections exceeds the number of continuous latch data storages. When mark detection data is not read before the next mark detection, a mark detection write/read error (operation alarm A6, detail No.01) occurs with a rapid stop.

Example: When both ON/OFF edges are enabled.

API LIBRARY

- Use the sscGetMarkDetectionData function to get mark detection data.
- The read number setting for the read complete buffer number is conducted within the sscGetMarkDetectionData function therefore user program processing is not required.
- Use the sscGetMarkDetectionCounter function to get the mark detection counter.
- When using mark detection interrupt, use the sscWaitlntEvent function and wait until interrupt is output. If not using mark detection interrupt, use the sscGetMarkDetectionCounter function to periodically check that the mark detection counter is updated.

6.32 Continuous operation to torque control

6.32.1 Summary

Continuous operation to torque control is a control method that achieves torque control during positioning control without stopping.
To perform continuous operation to torque control, the servo amplifier control mode must be switched to "continuous operation to torque control mode". By setting the "continuous operation to torque control specification" auxiliary command in the point table to "continuous operation to torque control valid", torque control is performed from the position (command position or current feedback position) set in the switch conditions without stopping operation. Continuous operation to torque control is completed based on the continuous operation to torque control data, then returned to position control.
Also, when the continuous operation to torque control operation condition "start switch to continuous operation to torque control condition" is set to "manual switch", a switch to continuous operation to torque control can be made at any given time.
The continuous operation to torque control data becomes valid at the start of operation for the points set to continuous operation to torque control valid (hereinafter referred to as continuous operation to torque control points).

POINT

- Continuous operation to torque control data that is changed during the operation of a continuous operation to torque control point becomes valid at the operation of the next continuous operation to torque control point.
(1) Operation example

Two-point operation (deceleration check system: In-position stop) including continuous operation to torque control point.

Note. Returning to position control mode after the completion of continuous operation to torque control operation is part of the continuous operation to torque control point, and is performed as a one-point operation.

POINT

- When continuous operation to torque control specification is set to valid and automatic operation is started for a servo amplifier that is not supported, continuous operation to torque control error (operation alarm 5D, detail No.06) occurs, and operation does not start.

API LIBRARY

- Refer to the sample program "InterruptPressDrive" contained in the utility software for a more specific procedure on continuous operation to torque control.

6.32.2 Interface

Set the following data when using continuous operation to torque control.
(1) Parameter
(a) Servo parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
110 D	*POL	Rotation direction selection/travel direction selection	0		0 to 1	Select the rotation direction or travel direction for the command input pulse.
1142	TFBGN	Torque feedback loop gain	18000	rad/s	0 to 18000	Set the torque feedback gain for continuous operation to torque control. By setting a smaller value, the contact load at continuous operation to torque control can be reduced. When setting value is less than 6[rad/s], a setting value of $6[r a d / s]$ is set.

(b) Control parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
0205	ITM2	Interrupt condition 2	0000h		0000h to FFFFh	Set interrupt condition 2.
0222	SPLL	Speed limit value (lower)	0BB8h	Speed units	0000h to FFFFh	Set the value for the moving speed limit.
0223	SPLH	Speed limit value (upper)	0000h		0000h to 7FFFh	

API LIBRARY

- Use the sscChange2Parameter/sscCheck2Parameter functions to set/get parameters.

(2) Point table

Set the points where continuous operation to torque control is performed in "continuous operation to torque control specification" in the auxiliary command.

Note 1. "Reserved" when using MR-MC2 $\square \square$.
(a) Position command method

0 : Absolute position command
1: Relative position command
(b) Deceleration check system

Operation is complete at the completion of continuous operation to torque control. Continuous operation is invalid.
(c) Speed switching point specification

Speed switching point specification is invalid.
(d) Dwell specification

0 : Dwell (Specify the time for after switching to position control mode)
1: Predwell (point movement starts when the time specified by predwell has passed.)
(e) Pass position interrupt specification

0: Pass position interrupt invalid
1: Pass position interrupt valid
(f) Continuous operation to torque control specification

0 : Continuous operation to torque control invalid
1: Continuous operation to torque control valid

API LIBRARY

- Use the sscSetPointDataEx/sscCheckPointDataEx functions to set/get point data.

POINT

- Position data is the stopping position when switching to continuous operation to torque control could not be made. Set the position data after the continuous operation to torque control switching position (PRCPS) and before the pressing position in continuous operation to torque control.
- When switching to continuous operation to torque control could not be made, a continuous operation to torque control error (operation alarm 5D, detail No.02) occurs at the completion of position control.
It is determined that switching to continuous operation to torque control could not be made under the following conditions.
- When position data is before the continuous operation to torque control switching position.
- When switching is not performed when manual switch is selected.
- When the control mode switch command (CTLMC) turns ON during the time specified by predwell, control mode switch error (CTLMCE) turns ON, and control mode cannot be switched.
[Setting image]

Position data of continuous operation to torque control point

Continuous operation to torque control direction (Stop position for when switch to continuous operation to torque control cannot be made)
(3) Continuous operation to torque control data

Set the conditions for performing continuous operation to torque control in the continuous operation to torque control data.
(a) Continuous operation to torque control data

Address		Symbol	Name	Units	Setting range	Function	At manual switch selection
MR- MC2 $\square \square$	$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC3 } \square \square \end{array}$						
A840	0E1800	PRCPS	Continuous operation to torque control switching position (4 bytes)	Command units	$\begin{array}{\|c} -2147483648 \\ \text { to } \\ 2147483647 \end{array}$	Set the position for switching to continuous operation to torque control. The position command system depends on the setting of the auxiliary command of the point table.	Invalid
A844	0E1804	PRLMPS	Press limit position (4 bytes)	Command units	$\begin{array}{\|c} \hline-2147483648 \\ \text { to } \\ 2147483647 \end{array}$	Set the limit position for which continuous operation to torque control can operate. It is determined by the feedback position. The position command system depends on the setting of the auxiliary command of the point table.	Valid
A848	0E1808	PRCTSP	Continuous operation to torque control speed limit value (4 bytes)	Speed units	$\begin{gathered} 1 \text { to } \\ 2147483647 \end{gathered}$	Set the speed limit value during continuous operation to torque control.	Valid
A84C	0E180C	PRTGTR	Target torque (2 bytes)	0.1\%	0 to 32767	Set the target torque during continuous operation to torque control.	Valid
A84E	OE180E	PRTM	Press time (2 bytes)	ms	0 to 65535	Set the press time during continuous operation to torque control.	Invalid
A850	0E1810	PRTRW	Torque settle width (2 bytes)	0.1\%	0 to 65535	Set the range (difference from the target torque) at which it is regarded that the target torque has been reached during continuous operation to torque control.	Valid
A852	0E1812	PRWTM	Torque settle waiting time (2 bytes)	ms	0 to 65535	Set the time where it is determined that press is occurring (from when entering the torque settle width until during continuous operation to torque control (PRSMO) is output.)	Valid
A854	0E1814	PRCA	Continuous operation to torque control acceleration time constant (2 bytes)	ms	0 to 20000	Set the acceleration time constant for during continuous operation to torque control.	Valid

Address		Symbol	Name	Units	Setting range	Function		At manual switch selection
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array}$	$\begin{array}{\|c} \hline \text { MR- } \\ \text { MC3 } \square \square \end{array}$							
A856	0E1816	PRCD	Continuous operation to torque control deceleration time constant (2 bytes)	ms	0 to 20000	Set the continu	tion time constant for during ation to torque control.	Valid
A858	0E1818	PRCOP	Continuous operation to torque control operating conditions (2 bytes)		$\begin{aligned} & \hline \text { 0000h to } \\ & \text { 0012h } \end{aligned}$	0	—Start switch to continuous operation to torque control condition Set the condition for determining the continuous operation to torque control switching position. 0 : Automatic switch (command position) 1: Automatic switch (current feedback position) 2: Manual switch End switch to continuous operation t torque control condition Set the condition for determining the control mode switch from continuous operation to torque control. 0 : Automatic switch 1: Manual switch	Valid
$\begin{gathered} \mathrm{A} 85 \mathrm{~A} \\ \text { to } \\ \mathrm{A} 85 \mathrm{~F} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 0E181A } \\ \text { to } \\ \text { 0E181F } \\ \hline \end{array}$		Reserved					

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 20h for each axis.

API LIBRARY

- Use the sscSetPressDataEx/sscGetPressDataEx functions to set/get continuous operation to torque control data.

1) When the continuous operation to torque control switching position has not be reached at the start of operation

2) When the continuous operation to torque control switching position has been passed at the start of operation

POINT

- The value for continuous operation to control data at the start of operation at the continuous operation to torque control point is valid.
- Continuous operation to torque control data that is changed during the operation of a continuous operation to torque control point becomes valid at the operation of the next continuous operation to torque control point.
- The press time is the time passed since torque within the torque settle width is continuously output during the torque settle waiting time. (The press time continues even if a value outside the torque settle width occurs part of the way through.)
- When a value outside of the range is set to continuous operation to torque control data and automatic operation is startup, a continuous operation to torque control setting error (operation alarm 5E, detail No. 01 to 05) occurs, and the operation is not started.
- When a press limit position is set in the opposite direction of the position control travel direction, a continuous operation to torque control error (operation alarm 5D, detail No.05) occurs, and the operation is not started.
- When a press limit position is set before the positioning data, a continuous operation to torque control error (operation alarm 5D, detail No.08) occurs, and the operation is not started. (A press limit position is not reached during position control mode)
- The press limit position is determined by the current feedback position. When the press limit position is reached during continuous operation to torque control, a continuous operation to torque control error (operation alarm 5D, detail No.03) occurs, and stops at the position where the press limit position was exceeded.
- When target torque is reached during acceleration, it is determined that press has started and the press time measurement begins.
- When the continuous operation to torque control switching position is in the opposite direction of the movement direction, the continuous operation to torque control switching position is judged to be passed.
(4) System status bit

Address (Note)		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
0450	000BE0	0	ITO	Outputting with factor of interrupt
		1	IITO	During interface mode interrupt invalid
		2	EVDO	Event detection enabled
		3	HRIF	During highly response I/F valid
		4	BMA	During system program memory access
		5	PRINF	Continuous operation to torque control compatible information
		6	-	Reserved
		7	IFMO	In interface mode

(a) Details on system status bits

Symbol	Signal name	Function details	
		Function	Operation
PRINF	Continuous operation to torque control compatible information	Notifies that continuous operation to torque control is compatible.	<Conditions for turning ON> Continuous operation to torque control is compatible.
<Conditions for turning OFF>			
Continuous operation to torque control is not			
compatible.			

API LIBRARY

- To check if the following system status bits are ON/OFF, set the status bit numbers of the sscGetStatusBitSignalEx function or sscWaitStatusBitSignalEx function to the following.
- Continuous operation to torque control compatible information (PRINF): SSC_STSBIT_AX_PRINF
(5) Axis command/status bit

The axis command/status bits for continuous operation to torque control are shown below.
(a) Axis command bits

Address (Note)		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MR- MC3				
1008	005008	0	GAIN	Gain switching command	Each axis
		1	FCLS	Fully closed loop control change command	Each axis
		2	-	Reserved	
		3	CPC	PID control command	Each axis
		4 5 6 7		Reserved	

Address (Note)		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\left.\begin{array}{\|c} \hline \text { MR- } \\ \text { MC3 } \square \square \end{array} \right\rvert\,$				
100C	00500C	0 1 1 2 3		Reserved	
		4	CTLMC	Control mode switch command	Not supported
		5 6 7		Reserved	

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3 $\square \square$: +140h

1) Details on axis command bit

Symbol	Signal name	Function details	
		Function	Operation
CTLMC	Control mode switch command	Switch the control mode of the servo amplifier based on the control mode command.	When all of the following conditions are satisfied, the control mode is switched to the specified control mode. - "Continuous operation to torque control specification" within the "auxiliary command" of the point in operation is set to "continuous operation to torque control valid". - Control mode switch condition is set to "2: Manual switch". - "Control mode command" is set to "Position control mode" or "continuous operation to torque control mode".

(b) Axis status bits

Address (Note)		Bit	Symbol	Signal name	When in tandem drive	Address (Note)		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	$\begin{array}{\|c} \text { MR- } \\ \text { MC3 } \square \square \end{array}$					MR- MC2 $\square \square$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$				
1068	0050A8	0	GAINO	During gain switching	Each axis	106C	0050AC	0		Reserved	
		1	FCLSO	Fully closed loop control changing	Each axis			1			
		2	TLSO	Selecting torque limit	Each axis			2			
		3	SPC	During PID control	Each axis			3			
		4		Reserved				4	CTLMCF	Control mode switch complete	Not supported
		5						5	CTLMCE	Control mode switch error	Not supported
		6						6			
		7	PRSMO	During continuous operation to torque control	Not supported			7		Reserved	

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+$ COh
- Using MR-MC3 $\square \square$: +140h

1) Details on axis status bit

Symbol	Signal name	Function details	
		Function	Operation
PRSMO	During continuous operation to torque control	Notifies that torque within the torque settle width of the target torque has been output during the torque settle waiting time of continuous operation to torque control.	<Conditions for turning ON> Torque within the torque settle width of the target torque has been output during the torque settle waiting time of continuous operation to torque control. <Conditions for turning OFF> Control mode was changed to position control mode.
CTLMCF	Control mode switch complete	Notifies that switching of control mode of the servo amplifier was completed.	<Conditions for turning ON> The switching of the control mode of the servo amplifier was completed normally. (Turns ON even when switching to a control mode the same as the current control mode) <Conditions for turning OFF> The control mode switch command signal (CTLMC) was turned OFF.
CTLMCE	Control mode switch error	Notifies that switching of control mode of the servo amplifier could not be performed.	<Conditions for turning ON> When one of the following conditions below is satisfied and the control mode switch command is turned ON. - Switch command is input during automatic operation during an operation other than continuous operation to torque control points. - A mode other than position control mode and continuous operation to torque control mode, or a mode outside of the range is specified. - A control mode switch command set to other than manual switch was input during operation. <Conditions for turning OFF> The control mode switch command signal (CTLMC) was turned OFF.

API LIBRARY

- Use the sscChangeControlMode function for switching the control mode of the servo amplifier.
- To check if the following system status bits are ON/OFF, set the status bit numbers of the sscGetStatusBitSignalEx function or sscWaitStatusBitSignalEx function to the following.
- During continuous operation to torque control (PRSMO):

SSC_STSBIT_AX_PRSMO
(6) Axis command/status data

The axis command/status data for continuous operation to torque control are shown below.
(a) Axis command table

Address (Note)		Name	Setting range	Remarks	When in tandem drive
MR-MC2 $\square \square$	MR-MC3 $\square \square$				
1032	005042	Control mode command	Refer to remarks	Set the mode to switch to. 0000h: Position control mode 0001h: Speed control mode (interface mode only) 0002h: Torque control mode (interface mode only) 0010h: Continuous operation to torque control mode (standard mode only)	Not supported
1033	005043				

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3 $\square \square$: +140h
(b) Axis status table

Address (Note 1)		Name	Output limits	Remarks	When in tandem drive
MR-MC2 $\square \square$	MR-MC3 $\square \square$				
1092	0050E2	Control mode status	Refer to remarks	The current control mode is shown below.	Not supported
1093	0050E3				

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+C 0 h$
- Using MR-MC3 $\square \square$: +140h

2. When the control mode switch error (CTLMCE) is ON, the status is control mode switch error.

API LIBRARY

- Use the sscChangeControlMode function for switching the control mode of the servo amplifier.

6.32.3 Control mode switch

For control mode switch, there are the two following methods that can be selected for both "switching from position control mode to continuous operation to torque control mode" and "switching from continuous operation to torque control to position control mode"

- Automatic switch
- Manual switch
(1) Control mode switch setting

The setting contents and setting values required for each switch pattern are shown in the following table.

Switch pattern	Switch method	Setting items	Setting values
Switching from position control mode to continuous operation to torque control mode	Automatic switch	Continuous operation to torque control switching position	Position to switch to continuous operation to torque control mode [command units]
		Start switch to continuous operation to torque control condition	0000h, 0001h: Automatic switch (position command) 0010h, 0011h: Automatic switch (current feedback position)
	Manual switch	Start switch to continuous operation to torque control condition	0002h, 0012h: Manual switch
Switching from continuous operation to torque control mode to position control mode	Automatic switch	End switch to continuous operation to torque control condition	0000h to 0002h: Automatic switch
	Manual switch	End switch to continuous operation to torque control condition	0010h to 0012h: Manual switch

(2) Procedure for switching from position control mode to continuous operation to torque control mode
(a) Switch method: Automatic switch

1) The position board automatically switches the control mode thus processing by user program is not required.
(The position board determines the continuous operation to torque control switching position, and automatically switches to continuous operation to torque control mode once the position is reached.)
(b) Switch method: Manual switch
2) Set the control mode command to "3: Continuous operation to torque control mode".
3) Turn ON control mode switch command (CTLMC). (Have the switch timing determined by user program)
4) After confirming control mode switch complete (CTLMCF) is ON, turn OFF control mode switch command (CTLMC).
(3) Procedure for switching from continuous operation to torque control mode to position control mode
(a) Switch method: Automatic switch
5) The position board automatically switches the control mode thus processing by user program is not required.
(Control mode is automatically returned to position control mode after the press time has passed since the starting of torque output within the torque settle width of the target torque.)
(b) Switch method: Manual switch
6) Set the control mode command to " 0 : Position control mode".
7) Turn ON control mode switch command (CTLMC). (Have the switch timing determined by user program)
8) After confirming control mode switch complete (CTLMCF) is ON, turn OFF control mode switch command (CTLMC).

POINT

- Operation is completed with the switching completion to position control mode.
- When operation is stopped by forced stop, operation alarms etc., the position board automatically switches to position control mode regardless of "start continuous operation to torque control switch conditions".
-When a control mode that cannot be switched to is input to the control mode command and control mode switch command (CTLMC) is turned ON, control mode switch error (operation alarm 2E, detail No. 02 or 04) occurs, followed by a deceleration stop.

API LIBRARY

- Use the sscChangeControlMode function for switching the control mode of the servo amplifier.

6.32.4 Operation timing

(1) Automatic switch (Start switch and end switch)

POINT

- It takes approximately 4 to 6 ms for the servo amplifier to switch modes after reaching the continuous operation to torque control switching position and press time has passed.
- The rough match (CPO) turns ON based on the distance remaining to the position data of the point table.
- Positioning complete (PF), during smoothing of stopping (SMZ), turn ON at completion of operation.
- The current command position is matched with the current feedback position at the timing of switch to continuous operation to torque control.
-When operation is completed without reaching the continuous operation to torque control switching position, a continuous operation to torque control error (operation alarm 5D, detail No.02) occurs.

API LIBRARY

- Use the sscAutoStart function for operation startup.
- Refer to the sample program "InterruptPressDrive" contained in the utility software for a more specific procedure on continuous operation to torque control.
Operate by automatic switch by setting chg_ctrl_mode_condition to CHG_CTRL_MODE_AUTO.
(2) Manual switch (Start switch and end switch)

POINT

- After confirming the leading edge of control mode switch complete (CTLMCF), turn OFF the control mode switch command (CTLMC).
- Switch the control mode command to position control mode before input of control mode switch command (CTLMC). Turn ON the control mode switch command (CTLMC) after continuous operation to torque control switching conditions are satisfied (manage press conditions with user program).
- Operation is complete at the completion of switching to position control mode.

API LIBRARY

- Use the sscAutoStart function for operation startup.
- Refer to the sample program "InterruptPressDrive" contained in the utility software for a more specific procedure on continuous operation to torque control.
Operate by manual switch by setting chg_ctrl_mode_condition to CHG_CTRL_MODE_MANUAL.
- Use the sscChangeControlMode function for switching the control mode of the servo amplifier.
(3) Timing of during continuous operation to torque control determination

The misjudgment of continuous operation to torque control when the torque fluctuation range is large can be managed by setting the torque settle waiting time. When torque within the torque settle width is continuously output during the torque settle waiting time, during continuous operation to torque control (PRSMO) is turned ON.

POINT

- When a value outside the torque settle width occurs part of the way through torque settle waiting time, the torque settle waiting time is measured again from the beginning.

6.32.5 Operation during continuous operation to torque control mode

When switching to continuous operation to torque control mode, torque is controlled so that it becomes the torque set as "target torque", while speed is accelerated/decelerated from the current speed to the speed set in "continuous operation to torque control speed limit value". During this time, the command speed immediately after the switch is a value converted from the position command.
While a positive value is set for the "continuous operation to torque control speed limit value", the motor rotation direction of the motor conforms to the travel direction specified by the point table.
For the current torque value, check the electrical current feedback of the high speed monitor.

The acceleration/deceleration processes are trapezoidal acceleration/deceleration.
The "continuous operation to torque control speed limit value" is restricted by the speed limit value (parameter No.0222, 0223). When a speed that exceeds the speed limit value is commanded, and a continuous operation to torque control point operation is conducted, speed is restricted to the speed limit value.
For the command speed to the servo amplifier, check "movement speed" (monitor No.0304, 0305, or No.1304).
6.32.6 Stop factors during continuous operation to torque control

Stop factor		Operation
	Stop method	Alarm/Error
The press limit position was reached.	Immediate stop	Operation alarm 5D, detail No.03
Control mode was changed to position control mode during travel in continuous operation to torque control mode (before target torque is reached).	Deceleration stop	Operation alarm 5D, detail No.07
Interference check conditions were satisfied. (Including interference check standby)	Immediate stop	Operation alarm 45, detail No.01
A control mode that cannot be switched to was input to the control mode command, and control mode switch was conducted.	Deceleration stop	Operation alarm 2E, detail No.02 or 04
Operation mode was changed.	Deceleration stop	Operation alarm 23, detail No.01
Servo off was performed.	Rapid stop	Operation alarm B3, detail No.01
Forced stop (external forced stop or software forced stop) was turned ON.	Immediate stop	Operation alarm 12, detail No.01
Stop operation (STP) was turned ON.	Deceleration stop	
Rapid stop (RSTP) was turned ON.	Rapid stop	
Limit switch was turned ON.	Immediate stop	Operation alarm A0, detail No.01 or 02
Interlock was turned ON.	Rapid stop	Operation alarm 5D, detail No.04
Control of servo amplifier is no longer possible. (disconnected)	Immediate stop	System error E400 Operation alarm B0, detail No.02
A servo alarm occurred.	Immediate stop	Operation alarm B1, detail No.01

POINT

- For all patterns, the control mode is automatically changed to position control by the position board after zero speed (ZSP) turns ON.
- The stopping process for each stop factor is a deceleration process in continuous operation to torque control mode. (For immediate stops, control mode switches to position control mode at the current position and stops immediately.)
- The time constant at a rapid stop is that of rapid stop time constant (control parameter No.0227).
- The press limit position is determined by the current feedback position. The position after a stop is a position exceeding the press limit position. Therefore, a position that takes into account the operation after exceeding the press limit position should be set.
- The software limit is determined by the current feedback position during continuous operation to torque control. As there is a possibility of stopping at a position that exceeds the software limit, set the press limit position before the software limit. When the software limit is set before the press limit position, continuous operation to torque control error (operation alarm 5D, detail No.05) occurs, and operation does not start.
- If interlock (ITL) turns ON during position control mode for points with continuous operation to torque control set to valid, continuous operation to torque control error (operation alarm 5D, detail No.04) occurs.
- The interference check standby is invalid during position control mode in continuous operation to torque control points.
- The above also applies when a stop factor occurs during switching to continuous operation to torque control mode.
- An immediate stop occurs when a stop factor occurs during switching to position control mode from continuous operation to torque control mode.

6.32.7 Combinations of continuous operation to torque control and other functions

The following shows the combinations of continuous operation to torque control with each function.

Classification	Function		Compatibility	Remarks
System function	Control mode	Standard mode	\bigcirc	
		Interface mode	\times	
Operation function	JOG operation		-	
	Incremental feed		-	
	Automatic operation		\bigcirc	Automatic switch/Manual switch can be selected.
	Linear interpolation MC200I Interpolation operation (linear interpolation, circular interpolation) WC300		\times	When starting up a continuous operation to torque control point, "continuous operation to torque control error (operation alarm 5D, detail No.OA)" occurs.
	Home position return		-	
	Home position reset function		-	
Application function	Command unit	Electronic gear	\bigcirc	
	Speed unit	Speed unit	\bigcirc	Set the continuous operation to torque control speed limit value in speed units.
		Speed units multiplication factor	\bigcirc	
		Speed limit	\bigcirc	The continuous operation to torque control speed limit value is restricted by speed limit value (control parameter No.0222, No.0223)
	Acceleration/ deceleration	Linear acceleration/deceleration	\bigcirc	
		Smoothing filter	\triangle	Invalid during continuous operation to torque control.
		Start up speed enable	\triangle	Valid when starting up operation point. However, it is invalid during continuous operation to torque control.
		S-curve acceleration/deceleration (Sine acceleration/deceleration)	\triangle	Invalid during continuous operation to torque control.
		Jerk ratio acceleration/ deceleration MC300	\triangle	Invalid during continuous operation to torque control.
		Vibration suppression command filter 1 MC300	\triangle	Invalid during continuous operation to torque control.
	Servo off		\bigcirc	Control mode is automatically changed to position control mode after an operation alarm occurrence.
	Forced stop		\bigcirc	Control mode is automatically changed to position control mode after an operation alarm occurrence.
	Stop operation		\bigcirc	Control mode is automatically changed to position control mode after an operation alarm occurrence.
	Rapid stop operation		\bigcirc	Control mode is automatically changed to position control mode after an operation alarm occurrence.
	Limit switch (stroke end)		\bigcirc	Control mode is automatically changed to position control mode after an operation alarm occurrence.
	Software limit		\bigcirc	Control mode is automatically changed to position control mode after an operation alarm occurrence.
	Interlock		\times	Control mode is automatically changed to position control mode after an operation alarm occurrence.
	Rough match output		\triangle	At continuous operation to torque control points the rough match turns ON when the distance remaining based on the position data of the point table is within the rough match output range.
	Torque limit		\times	During continuous operation to torque control and torque limit, torque limit stays OFF.

Classification	Function		Compatibility	Remarks
Application function	Command change	Speed change	\times	Speed change error signal (SCE) turns ON.
		Change of time constants	\times	Acceleration time constant change error signal (TACE), or deceleration time constant change error signal (TDCE) turns ON.
		Position change	\times	Position change error signal turns ON.
	Backlash		\bigcirc	When following up by current feedback position, a position that takes into account the backlash is followed up.
	Position switch		\triangle	Determined by the current feedback position.
	Completion of operation signal		\bigcirc	Output after position control switch.
	Interference check function		\triangle	Interference check function is invalid.
	Home position search limit		-	
	Gain switching		\bigcirc	
	PI-PID switching		\bigcirc	
	Home position set		-	
	Absolute position detection system		\bigcirc	
	Home position return request		\bigcirc	
	High response I/F		\bigcirc	
	Other axes start		\triangle	When current command position is set to the axis judgment coordinate of start condition, a current command position matching the current feedback position is determined.
	Digital I/O		-	
	I/O device		-	
	Servo amplifier general I/O		-	
	Dual port memory exclusive control		-	
	Pass position interrupt		\triangle	When current command position is set to the axis judgment coordinate of start condition, a current command position matching the current feedback position is determined. Therefore when a current command position is specified, it may not be correctly determined.
	Mark detection		\bigcirc	
	SSCNETII/H head module connection		-	
	Sensing module connection		-	
Auxiliary function	Reading/writing parameters		-	
	Changing parameters at the servo		-	
	Alarm and system error		\bigcirc	
	Monitor function		\bigcirc	The speed limit value output to the servo amplifier is output for the "travel speed" during continuous operation to torque control mode.
	High speed monitor function		\bigcirc	The speed limit value output to the servo amplifier is output for the "travel speed" during continuous operation to torque control mode.
	Interrupt		\bigcirc	During continuous operation to torque control is notified from when the output torque reaches the torque settle width and press time passes, until return to position control mode.
	Interrupt output cycle		-	
	Command data update cycle		-	
	User watchdog function		-	
	Software reboot function		-	

\bigcirc : Usable $\quad \times$: Unusable \triangle : Restriction \quad - Not applicable

Classification	Function	Compatibility	
Auxiliary function	Parameter backup	-	Remarks
	Test mode	-	
	Reconnect/disconnect function	-	When reconnecting, startup is in position control mode.
	Sampling	-	
	Log	-	
	Operation cycle monitor function	Amplifier-less axis function	After reaching the continuous operation to torque control speed limit value, it is regarded that the torque settle width has been reached, and operation is completed after the continuous operation to torque control time has passed. For electrical current feedback, torque 0\% occurs before reaching the speed limit value, and target torque occurs after reaching the speed limit value.
			\bigcirc

\bigcirc : Usable $\quad \times$: Unusable \triangle : Restriction \quad-: Not applicable

6.32.8 Restrictions on servo amplifier functions

The following servo amplifier functions cannot be used during continuous operation to torque control mode.

- Base cut delay time function
- Forced stop deceleration function
- Vertical axis freefall prevention function

6.33 SSCNETII/H head module connection

6.33.1 Summary

The SSCNETIII/H head module can connect MELSEC-L series I/O modules and intelligent function modules on SSCNETII/H. The SSCNETII/H head module controls input and output of I/O modules and intelligent function modules using link devices.
By assigning inputs and outputs of modules mounted to the SSCNETII/H head module to the I/O device table, they can be used as position board inputs and outputs.
Additionally, by using the transient transmit function, the SSCNETII/H head module can access the buffer memory of intelligent function modules.
Settings for the SSCNETII/H head module and modules mounted to the SSCNETII/H head module are made in GX Works2.

(1) Number of connectable stations

The SSCNETIII/H head module can use up to 4 stations.
The following shows the number of stations that can be controlled depending on the control cycle.
(a) Using MR-MC2 $\square \square$

Control cycle	Maximum number of stations connected	Maximum number of stations connected per line	Recommended number of control axes (Note 1)
0.88 ms	4 stations	4 stations	32 axes
0.44 ms	2 stations	2 stations	12 axes
0.22 ms	1 station	1 station	4 axes

(b) Using MR-MC3 $\square \square$

Control cycle	Maximum number of stations connected	Maximum number of stations connected per line	Recommended number of control axes (Note 1)
0.88 ms	16 stations	8 stations	64 axes
0.44 ms	16 stations	8 stations	38 to 49 axes
0.22 ms	8 stations	4 stations	17 to 23 axes

Note 1. The recommended number of control axes when the maximum number of stations are connected.
2. Processing times vary depending on the number of axes and functions used.

When operation cycle alarm (OCME), and operation cycle warning (OCMW) turn ON, review the following:

- Make the control cycle longer. (Example: When control cycle is 0.44 ms , change it to 0.88 ms)
- Reduce the number of control axes.
- Review the operation pattern so that the operation startup times of each axis do not overlap.

6.33.2 Supported functions

Classification	Function	Compatibility	Remarks
Application function	Forced stop	\times	Inputting a forced stop has no affect on the I/O status of bit devices.
	Other axes start	\bigcirc	Can turn ON/OFF output bit devices in line with other axes start conditions.
Auxiliary function	Reading/writing parameters	\triangle	Supports RIO control parameters only (Cannot read/write parameters for the SSCNETII/H head module).
	Alarm and system error	\bigcirc	Detail RIO module alarm No. are fixed at 0 .
	Remote I/O disconnect	\bigcirc	
	Monitor function	\bigcirc	
	Interrupt	\bigcirc	
	Parameter backup	\triangle	Supports RIO control parameters only (Cannot backup RIO module parameters).
	Test mode	\times	
	Reconnect/disconnect function	\bigcirc	
	Sampling	\triangle	Sampling of I/O devices is supported in the test tool only.
	Log	\bigcirc	
	Alarm history function	\bigcirc	When a RIO module alarm occurs, the RIO module alarm No. (upper/lower) is stored in alarm history data. (Detail RIO module alarm No. are not stored)
	Transient transmit	\bigcirc	
			Note. \bigcirc : Usable $\quad \triangle$: Restriction \times : Unusable

6.33.3 System startup

(1) Station No. setting parameter

Station No. settings are made with the station No. setting switch.

The station No. and station No. setting switch number are correlated as shown on the table below. Set the station No. so that it will not duplicate in the same line. If it is duplicated, the "An axis that has not been mounted exists" (system error E400) will occur at the time of system startup (system command code: 000Ah).

Station No. on remote I/O module	Station No. setting switch	Available/unavailable	
		MR-MC2 $\square \square$	MR-MC3 $\square \square$
Station 1	1		
Station 2	2		
Station 3	3		
Station 4	4		
Station 5	5		
Station 6	6		
Station 7	7		
Station 8	8		
Station 9	9		
Station 10	10	navailable	
Station 11	11		
Station 12	12		
Station 13	13		
Station 14	14		
Station 15	15		
Station 16	16		Unavailable
Station 17	17		Unavailable
Station 18	18		
Station 19	19		
Station 20	20		
Station 21	21		
Station 22	22	Available	
Station 23	23		
Station 24	24		
Station 25	25		
Station 26	26		
Station 27	27		
Station 28	28	Unavailable	
Station 29	29		
Station 30	30		
Station 31	31		
Station 32	32		

Station No. on remote I/O module	Station No. setting switch	Available/unavailable	
		MR-MC2 $\square \square$	MR-MC3 $\square \square$
Station 33	33		
Station 34	34		
Station 35	35		
Station 36	36		
Station 37	37		
Station 38	38		
Station 39	39		
Station 40	40		vailable
Station 41	41		Unavailable
Station 42	42		
Station 43	43		
Station 44	44		
Station 45	45		
Station 46	46		
Station 47	47		
Station 48	48		
Station 49	49	e	
Station 50	50		
Station 51	51		
Station 52	52		Availab
Station 53	53		Availa
Station 54	54		
Station 55	55		
Station 56	56		
Station 57	57		
Station 58	58		
Station 59	59		
Station 60	60		avail
Station 61	61		Unavailable
Station 62	62		
Station 63	63		
Station 64	64		

(2) Station No. assignment

With station No. assignment, station No. (station No. on the position board) are assigned to station No. on remote I/O modules.
Also refer to axis No. assignment (Section 4.5.6) for station No. assignment.
When station No. assignment is invalid, correspondence between the station No. on a remote I/O module and the station No. is shown in the following table.
(a) Using MR-MC2 $\square \square$

Station No. on remote I/O module		Line 1				
	21	22	23	24		
Station	0.88 ms	1	2	3	4	
	0.44 ms	1	2	-	-	
	0.22 ms	1	-	-	-	

(b) Using MR-MC3 $\square \square$

Station No. on remote I/O module		Line 1							
		49	50	51	52	53	54	55	56
Station No.	0.88 ms	1	2	3	4	5	6	7	8
	0.44 ms	1	2	3	4	5	6	7	8
	0.22 ms	1	2	3	4	-	-	-	-

Station No. on remote I/O module		Line									49	50	51	52	53	54	55	56
Station No.	0.88 ms	9	10	11	12	13	14	15	16									
	0.44 ms	9	10	11	12	13	14	15	16									
	0.22 ms	5	6	7	8	-	-	-	-									

API LIBRARY
• When setting the API function argument "Axis No." to a station No., set a
negative value. (Example: Station 1: -1 , station $2:-2$, station 3: -3 ,
station 4: -4)

(3) Remote I/O module I/O setting

When using remote I/O modules, set the I/O table selection of I/O table (parameter No.004A) to "1: Use I/O device table (MR-MC2 $\square \square$ method)" or " 2 : Use I/O device table (expanded points method) MC300 ". Also, set the points of the I/O devices controller by the position board, and the start No. to be assigned to the I/O device table.
(4) Vendor ID and type code setting

Available functions, parameter settings and ranges will vary by remote I/O module type. At the time the communication with the remote I/O module has started, the position board will perform consistency check between vendor ID and type code of the module connected and the parameter set. If a consistency check error occurs, driver type code error (system error E405) will be output, therefore set correct vendor ID (parameter No.021D) and type code (parameter No.021E).

POINT

- If driver type code error (system error E405) occurred, the station that has set an incorrect type code can be confirmed with "type code erroneous station information" (system information monitor No.04C1).

6.33.4 Interface

(1) Parameter
(a) System parameter

(b) RIO control parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function		
0200	*OPC1	Control option 1	0000h		0000h to 0011h	0	0	Control station Set to 1 for implementing control of a remote I/O module. 0 : Not controlled 1: Controlled - Remote I/O disconnect Set to 1 when remote I/O communication is not implemented. When set to 1 together with the control station, it is possible to run without a remote I/O (simulate). 0 : Invalid 1: Valid
0201	OPC2	Control option 2	0000h		0000h to 0001h		$\begin{array}{\|l\|l} \hline 0 & 0 \\ \hline \end{array}$	- RI control at communication error Set input device control at communication error(system error E401 to E407) 0 : All points OFF 1: Maintain status
0202	*UTALC	Station No. assignment	0000h		0000h to 011Fh MC200 0000h to 013Fh MC300	0		- Remote I/O station No. Set the remote I/O station No. to be assigned to the station No. on the position board. 00h : No station No assignment 15h to 18 h : Station No. MC200 31h to 38h : Station No. MC300 Example) 16h: Remote I/O station No. 22 - Remote I/O line No. Set the remote I/O line No. to be assigned to the station No.on the position board 0 to 1: Line No. - 1

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
0203	ITM	Interrupt condition	0000h		0000h to FFFFh	Set interrupt condition.
0210	*BDIO	Input bit device points	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 0200h } \end{aligned}$	Set the points used for input bit device. 0000h to 0200h: 0 to 512 Note. Only a multiple of 16 can be selected.
0211	*BDINA	Input bit device start number	0000h		0000h to OFFOh MC200 0000h to 2FFOh MC300	Set the start of the input bit device number assigned to RX. The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2 $\square \square$ method) is set] 0000h to 0FFOh: DVI_000 to DVI_FF0 [When use I/O device table (expanded points method) is set] MC300 0000h to 23F0h: DVI_000 to DVI_23F0 Note. Only a multiple of 16 can be selected. Example: When the input points are 64, and input bit device 020 is specified as the start, assign the 64 points of DVI_020 to DVI_05F.
0212	*WDIO	Input word device points	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 0020h } \end{aligned}$	Set the points used for input word device. 0000h to 0020h: 0 to 32 Note. The size used is 1 word \times set value.
0213	*WDINA	Input word device start number	0000h		0000h to 00FFh MC200 0000h to 02FFh MC300	Set the start of the input word device number assigned to RWr. The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2 $\square \square$ method) is set] 0000h to 00FFh: Input word device 00 to input word device FF [When use I/O device table (expanded points method) is set] MC300 0000h to 23F0h: Input word device 00 to input word device 23F Example: When the input points are 2, and input word device 06 is specified as the start, assign input word devices 06 to 07.
0214	*BDOO	Output bit device points	0000h		$\begin{aligned} & \text { 0000h to } \\ & 0200 \mathrm{~h} \end{aligned}$	Set the points used for output bit device. 0000h to 0200h: 0 to 512 Note. Only a multiple of 16 can be selected.
0215	*BDONA	Output bit device start number	0000h		0000h to OFFOh MC200 0000h to 2FFOh MC300	Set the start of the output bit device number assigned to RY. The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2 $\square \square$ method) is set] 0000h to 0FFOh: DVO_000 to DVO_FF0 [When use I/O device table (expanded points method) is set] MC300 0000h to 23F0h: DVO_000 to DVO_23F0 Note. Only a multiple of 16 can be selected. Example: When the output points are 64, and output bit device 040 is specified as the start, assign the 64 points of DVO_040 to DVO_07F.
0216	*WDOO	Output word device points	0000h		$\begin{aligned} & \text { 0000h to } \\ & 0020 \mathrm{~h} \end{aligned}$	Set the points used for output word device. 0000h to 0020h: 0 to 32 Note. The size used is 1 word \times set value.

$\begin{gathered} \text { Parameter } \\ \text { No. } \\ \hline \end{gathered}$	Symbol	Name	Initial value	Units	Setting range	Function
0217	*WDONA	Output word device start number	0000h		0000h to 00FFh MC200 0000h to 2FFOh MC300	Set the start of the output word device number assigned to RWw. The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2 $\square \square$ method) is set] 0000h to 00FFh: Output word device 00 to output word device FF [When use I/O device table (expanded points method) is set] WC300 0000h to 23FOh: Output word device 00 to output word device 23F Example: When the output points are 2, and output word device 08 is specified as the start, assign output word devices 08 to 09 .
021D	*VEND	Vendor ID	0000h		0000h to FFFFh	Set the vendor ID. 0000h: Mitsubishi Electric
021E	*CODE	Type code	3000h		0000h to FFFFh	Set the type code. 3000h: SSCNETII/H head module

POINT

- Set "1: Use I/O device table (MR-MC2口 \square method)" or "2: Use I/O device table (expanded points method) MC300 " for the I/O table setting. When "0: Use digital I/O table" is set, system setting error (operation alarm No. 38, detail 05 to 06) will occur.
- Assign the I/O device table not to overlap other settings. If the assignment is overlapped or exceeds the maximum points of the I/O device table, the I/O No. assignment error (system error E510) and I/O No. assignment setting error (RIO control alarm 39, detail 01 and 02) occur.
(2) RIO data command/status table
(a) RIO status bit

Address (Note)		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
3440	00F060	0	RURDY	Receiving controller ready on
		1	RUA	Outputting DO
		2		
		3		Reserved
		4		
		5	RUALM	RIO module alarm
		6	RUWRN	RIO module warning
		7		Reserved

Note. The addresses in the table are the addresses for the first station. For the second station and after, add the following value for each station.

- Using MR-MC2a■: +80h
- Using MR-MC3ロロ: +C0h

1) Details on RIO status bit

Symbol	Signal name	Function details
RURDY	Receiving controller ready on	Shows the operating status of remote I/O module. RURDY: OFF, RUA: OFF \qquad .No communication
RUA	Outputting DO	RURDY: ON, RUA: OFF \qquad Stop RURDY: ON, RUA: ON \qquad Run RURDY: OFF, RUA: ON \qquad Error

(3) I/O device table
(a) Input device table

Address		Input word device number	Input bit device number	Symbol	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$				
DB00	0F9F00	Input word device 00 (2 bytes)	Input bit device 000 to Input bit device 00F	$\begin{aligned} & \text { DVI_000 to } \\ & \text { DVI_00F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_000 (bit0) to DVI_00F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB02	0F9F02	Input word device 01 (2 bytes)	Input bit device 010 to Input bit device 01F	$\begin{aligned} & \text { DVI_010 to } \\ & \text { DVI_01F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_010 (bit0) to DVI_01F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB04	0F9F04	Input word device 02 (2 bytes)	Input bit device 020 to Input bit device 02F	DVI_020 to DVI_02F	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_020 (bit0) to DVI_02F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB06	0F9F06	Input word device 03 (2 bytes)	Input bit device 030 to Input bit device 03F	$\begin{aligned} & \text { DVI_030 to } \\ & \text { DVI_03F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_030 (bit0) to DVI_03F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB08	0F9F08	Input word device 04 (2 bytes)	Input bit device 040 to Input bit device 04F	DVI_040 to DVI_04F	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_040 (bit0) to DVI_04F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB0A	0F9F0A	Input word device 05 (2 bytes)	Input bit device 050 to Input bit device 05F	DVI_050 to DVI_05F	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_050 (bit0) to DVI_05F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
:	:	:		:	:
DCFE	OFAOFE	Input word device FF (2 bytes)	Input bit device FF0 to Input bit device FFF	DVI_FF0 to DVI_FFF	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_FF0 (bit0) to DVI_FFF (bit15). [When word device is assigned] Notifies the status of the word device input signal.
	0FA100	Input word device 100 (2 bytes) (expanded points method)	Input bit device 1000 to Input bit device 100F (expanded points method)	$\begin{aligned} & \text { DVI_1000 to } \\ & \text { DVI_100F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_1000 (bit0) to DVI_100F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
	:	:	:	:	:
	0FA37E	Input word device 23F (2 bytes) (expanded points method)	Input bit device 23F0 to Input bit device 23FF (expanded points method)	$\begin{gathered} \text { DVI_23F0 to } \\ \text { DVI_23FF } \end{gathered}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_23F0 (bit0) to DVI_23FF (bit15). [When word device is assigned] Notifies the status of the word device input signal.

(b) Output device table

Address		Output word device number	Output bit device number	Symbol	Remarks
MR-MC2口]	MR-MC3D]				
DD00	0FA380	Output word device 00 (2 bytes)	Output bit device 000 to Output bit device 00F	$\begin{aligned} & \hline \text { DVO_000 to } \\ & \text { DVO_00F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_000 (bit0) to DVO_00F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD02	0FA382	Output word device 01 (2 bytes)	Output bit device 010 to Output bit device 01F	DVO_010 to DVO_01F	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_010 (bit0) to DVO_01F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD04	0FA384	Output word device 02 (2 bytes)	Output bit device 020 to Output bit device 02F	$\begin{array}{\|l\|} \hline \text { DVO_020 to } \\ \text { DVO_02F } \end{array}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_020 (bit0) to DVO_02F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD06	0FA386	Output word device 03 (2 bytes)	Output bit device 030 to Output bit device 03F	$\begin{aligned} & \hline \text { DVO_030 to } \\ & \text { DVO_03F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_030 (bit0) to DVO_03F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD08	OFA388	Output word device 04 (2 bytes)	Output bit device 040 to Output bit device 04F		[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_040 (bit0) to DVO_04F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DDOA	0FA38A	Output word device 05 (2 bytes)	Output bit device 050 to Output bit device 05F	$\begin{aligned} & \hline \text { DVO_050 to } \\ & \text { DVO_05F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_050 (bit0) to DVO_05F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
.	.	.		:	
DEFE	0FA57E	Output word device FF (2 bytes)	Output bit device FF0 to Output bit device FFF	$\begin{gathered} \hline \text { DVO_FF0 to } \\ \text { DVO_FFF } \end{gathered}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_FFO (bit0) to DVO_FFF (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
	0FA580	Output word device 100 (2 bytes) (expanded points method)	Output bit device 1000 to Output bit device 100F (expanded points method)	$\begin{gathered} \hline \text { DVO_1000 } \\ \text { to } \\ \text { DVO_100F } \end{gathered}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_1000 (bit0) to DVO_100F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
	:			:	
	OFA7FE	Output word device 23F (2 bytes) (expanded points method)	Output bit device 23F0 to Output bit device 23FF (expanded points method)	$\begin{aligned} & \text { DVO_23F0 } \\ & \text { to } \\ & \text { DVO_23FF } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_23F0 (bit0) to DVO_23FF (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.

POINT

- When a communication error (system error E401 to E407) occurs or SSCNET is disconnected, the status of the input device table is the same as RI control at communication error of control option 2 (parameter No.0201). The status of the output device table is maintained.
- When using remote I/O modules, set the I/O table selection of I/O table (parameter No.004A) to "1: Use I/O device table (MR-MC2 $\square \square$ method)" or "2: Use I/O device table (expanded points method)" ${ }^{M C 300}$. When " 0 : Use digital I/O table" is set and I/O devices are assigned, I/O table select error (system error E511), and system setting error (RIO control alarm 38, detail 05 to 06) occur.
- Assign the I/O device not to overlap other settings. If the assignment is overlapped or exceeds the range of the I/O device table, the I/O No. assignment error (system error E510) and I/O No. assignment setting error (RIO control alarm 39, detail 01 and 02) occur.
- Set the total points of the I/O devices assigned to remote I/O when setting I/O device points (parameter No.0210, 0212, 0214, 0216).
- The delay time for the input device table to be updated after the signals of an input module or intelligent function module are input is SSCNETII/H head module input response time + (control cycle $\times 2$). Refer to "MELSEC-L SSCNETII/H Head Module User's Manual" for input response time of SSCNETIII/H head module.
- The delay time for the host controller to update the output device table, and signals of an output module or intelligent function module to be output is SSCNETIII/H head module output response time + (control cycle $\times 3$). Also, for output of output bit devices using the other axes start function, the delay time from when other axes start conditions are established is SSCNETII/H head module output response time + (control cycle $\times 2$). Refer to "MELSEC-L SSCNETIII/H Head Module User's Manual" for output response time of SSCNETIII/H head module.
- When using I/O modules and intelligent function modules the I/O status may not be updated every control cycle depending on the control cycle setting and points used. Refer to "MELSEC-L SSCNETIII/H Head Module User's Manual" for I/O status update times.
When the time for the I/O status of the SSCNETII/H head module to be updated does not fit in the control cycle, the I/O status of I/O devices may not be updated every control cycle.
When the I/O status is not updated every control cycle, perform any of the following.
- Change the control cycle.
- If more than one SSCNETIII/H head module is being used, change the distribution of I/O modules and intelligent function modules.
- Increase the number of SSCNETIII/H head modules.

API LIBRARY

- Use the sscGetInputDeviceBit function to get input bit device.
- Use the sscGetInputDeviceWord function to get input word device.
- Use the sscSetOutputDeviceBit function to set output bit device.
- Use the sscSetOutputDeviceWord function to set output word device.
- Use the sscGetOutputDeviceBit function to get output bit device.
- Use the sscGetOutputDeviceWord function to get output word device.

6.33.5 Example of setting procedure

The following shows the settings for two SSCNETII/H head modules (station 21 and station 22).
(1) Entire system configuration diagram

Station No.	Input/Output	Setting for SSCNETII/H head module (link device assignment)			I/O device table	
		Device name	Points		Points	Start
1	Input	RX	64	\rightarrow	64	Input bit device 000
		RWr	1 (1 word)	\rightarrow	1 (1 word)	Input word device 0A
	Output	RY	64	\leftarrow	64	Output bit device 000
2	Input	RX	32	\rightarrow	32	Input bit device 070
		RWr	1 (1 word)	\rightarrow	1 (1 word)	Input word device 10
	Output	RY	32	\leftarrow	32	Output bit device 080
		RWw	2 (2 words)	\leftarrow	2 (2 words)	Output word device 14

(2) SSCNETIII/H head module setting

Use GX Works2 to assign I/O of modules and buffer memory to the SSCNETII/H head module link devices.
Refer to "MELSEC-L SSCNETII/H Head Module User's Manual" for SSCNETII/H head module settings.

POINT
•When setting SSCNETII/H head module in GX Works2, check that the mode of
"SSCNETII/H Network Setting" on the "Communication Head Setting" tab is set
to "Online". If the mode is not set to "Online", the position board cannot
communicate with the SSCNETII/H head module. If the system is startup in this
state, it stays in a waiting for SSCNET response (system status code 0009)
state, or an axis that has not been mounted exists (system error E400) occurs.

(3) Position board setting

In order to allocate SSCNETIII/H head module link devices to the position board I/O device table, set the total number of points (in units of 16) of each link device, and the start I/O device number to be assigned.
(a) Station parameter

Module No.	Parameter No.	Symbol	Name	Setting value
1	0210	*BDIO	Input bit device points	64
	0211	*BDINA	Input bit device start number	0000h
	0212	*WDIO	Input word device points	1
	0213	*WDINA	Input word device start number	000Ah
	0214	*BDOO	Output bit device points	64
	0215	*BDONA	Output bit device start number	0000h
	0216	*WDOO	Output word device points	0
	0217	*WDONA	Output word device start number	0000h
2	0210	*BDIO	Input bit device points	32
	0211	*BDINA	Input bit device start number	0070h
	0212	*WDIO	Input word device points	1
	0213	*WDINA	Input word device start number	0010h
	0214	*BDOO	Output bit device points	32
	0215	*BDONA	Output bit device start number	0080h
	0216	*WDOO	Output word device points	2
	0217	*WDONA	Output word device start number	0014h

(4) Setting/getting I/O devices with API functions

Examples of getting input devices and setting/getting output devices are shown in the table below.
Note that the board ID is 0 , and channel number is 1 .

Module No.	Device name	Set/get	Setting value
1	RX	Get input bit device 002	sscGetInputDeviceBit (0, 1, 0×0002, \&data);
	RWr	Get one word of input word device 0A	sscGetInputDeviceWord (0, 1, 0×0000A, 1, \&data);
	RY	Set output bit device 087 to ON	sscSetOutputDeviceBit (0, 1, 0×0087, SSC_ON);
2	RWw	Set output word device 14 to 000Ah (one word)	sscSetOutputDeviceWord (0, 1, 0×0014, 1, 0×000A);

6.33.6 SSCNETII/H head module disconnect

The system can be startup with the SSCNETIII/H head module disconnected, and simulate can be performed by making remote I/O disconnect valid in control option 1 (parameter No.0200) of the RIO module parameter. However, the input bit devices allocated to SSCNETII/H head module are OFF, and input word devices are 0 and are not updated. Also, any changes made to the status of output bit devices and output word devices allocated to SSCNETII/H head module are not output to the SSCNETIII/H head module. (The status of output bit devices and output word devices can only be checked.)

6.34 Sensing module (station mode) connection

6.34.1 Summary

The sensing module consists of a SSCNETII/H communication module (sensing SSCNETIII/H head module), and sensing extension modules (sensing I/O module, sensing pulse I/O module, sensing analog I/O module, sensing encoder I/F module) and fetches and outputs signals synchronized with SSCNETII/H communication. The sensing module controls input and output of sensing SSCNETIII/H head module and sensing extension module I/O using link devices.
By assigning inputs and outputs of sensing SSCNETIII/H head module and sensing extension modules to the I/O device table, they can be used as position board inputs and outputs.
This section is for sensing module station mode. Refer to Section 6.35 for sensing module axis mode.

(1) Number of connectable stations

The sensing module can use up to 4 stations.
The following shows the number of stations that can be controlled depending on the control cycle.
(a) Using MR-MC2 $\square \square$

Control cycle	Maximum number of stations connected	Maximum number of stations connected per line	Recommended number of control axes (Note 1)
0.88 ms	4 stations	4 stations	32 axes
0.44 ms	2 stations	2 stations	12 axes
0.22 ms	1 station	1 station	4 axes

(b) Using MR-MC3 $\square \square$

Control cycle	Maximum number of stations connected	Maximum number of stations connected per line	Recommended number of control axes (Note 1)
0.88 ms	16 stations	8 stations	64 axes
0.44 ms	16 stations	8 stations	38 to 49 axes
0.22 ms	8 stations	4 stations	17 to 23 axes

Note 1. The recommended number of control axes when the maximum number of stations are connected.
2. Processing times vary depending on the number of axes and functions used.

When operation cycle alarm (OCME), and operation cycle warning (OCMW) turn ON, review the following:

- Make the control cycle longer. (Example: When control cycle is 0.44 ms , change it to 0.88 ms)
- Reduce the number of control axes.
- Review the operation pattern so that the operation startup times of each axis do not overlap.

POINT

- For details on the stations of the sensing module, refer to the Sensing Module Instruction Manual.
- When using the sensing module and SSCNETII/H head module at the same time, the maximum number of stations connected is the total number of stations connected by the sensing module and SSCNETIII/H head module combined.
-When 2 or more sensing extension modules are connected to a sensing SSCNETIII/H head module, set the control station to "1: Controlled" for the RIO module parameter control option 1 (parameter No.0200) of all connected stations.
If the control station is not set to "1: Controlled" for the RIO module parameter control option 1 (parameter No.0200) of all connected stations, an axis that has not been mounted exists (system error E400) occurs.

6.34.2 Supported functions

The following sensing module and position board functions are supported when the sensing module is used.
(1) Sensing module functions supported by the position board

Classification	Function	Compatibility	Remarks
Sensing SSCNETII/H head module	Digital input function	\bigcirc	Returns the current ON/OFF state of the DI signals (12 points) to the position board.
	Timing-latch input function	\times	
	Digital output function	\bigcirc	Turns ON/OFF the DO signal (2 points) according to the command from the position board.
	Level output function	\bigcirc	Provides digital output according to the level of the monitor values of the sensing pulse I/O module, sensing analog I/O module, and sensing encoder I/F module. Digital output is provided without going through the position board.
	Output CLEAR/HOLD function	\bigcirc	Specifies the state of output of external DO signals of the sensing module when communication is disconnected.
Sensing I/O module	Digital input function	\bigcirc	Returns the current ON/OFF state of the DI signals (16 points) to the position board.
	Timing-latch input function	\times	
	Digital output function	\bigcirc	Turns ON/OFF the DO signal (16 points) according to the command from the position board.
	Level output function	\bigcirc	Provides digital output according to the level of the monitor values of the sensing pulse I/O module, sensing analog I/O module, and sensing encoder I/F module. Digital output is provided without going through the position board.
	Output CLEAR/HOLD function	\bigcirc	Specifies the state of output of external DO signals of the sensing module when communication is disconnected.
Sensing pulse I/O module	Axis mode	\bigcirc	Available for the following software versions. - MR-MC2■ロ: Software version B3 or later. - MR-MC3 \square : No software restrictions.
	Pulse input function	\bigcirc	Enables the sending of feedback pulses to the position board. (Maximum 2 points)
	Pulse output function	\bigcirc	Enables the output of pulses. (Maximum 2 points)
	Digital input function	\bigcirc	Returns the current ON/OFF state of the DI signals (14 points) to the position board.
	Digital output function	\bigcirc	Turns ON/OFF the DO signal (maximum 10 points) according to the command from the position board.
	Pulse coincidence output function	\bigcirc	Controls the DO signal when pulse output coincides with the pulse counter value specified by the position board. (Maximum 2 points)
	Output CLEAR/HOLD function	\bigcirc	Specifies the state of output of external DO signals of the sensing module when communication is disconnected.
Sensing analog I/O module	Analog input function	\bigcirc	Enables the sending of analog input to the position board. (Maximum 4 channels)
	Analog output function	\bigcirc	Enables the output of analog signals. (Maximum 4 channels)
	Analog input averaging function	\bigcirc	Averages multiple analog channel data, and notifies the position board. (Maximum 2 groups)
	Maximum/minimum value holding function	\bigcirc	Enables checking of the values held in the analog I/O module with the position board.
Sensing encoder I/F module	Encoder input function	\bigcirc	Sends the position data from the encoder to the position board. Compatible with open specification encoder interface.

(2) Supported position board functions

Classification	Function	Compatibility	Remarks
Application functions	Forced stop	\bigcirc	Controller forced stop warning (RIO module warning E7) occurs. Refer to Sensing Module Instruction Manual for operation at a controller forced stop warning occurrence.
	Other axes start	\bigcirc	
	Digital I/O	\times	
	I/O device	\bigcirc	
	Dual port memory exclusive control	\bigcirc	
	SSCNETII/H head module	-	
Auxiliary functions	Reading/writing parameters	\triangle	Do not write RIO module parameters when the system is running.
	Changing parameters at the servo	\times	
	Alarm and system error	\bigcirc	
	Remote I/O disconnect	\bigcirc	
	Monitor function	\bigcirc	
	Interrupt	\bigcirc	
	User watchdog function	-	When user watchdog function is used, there is no effect on the state of the link device I/O.
	Software reboot function	-	The I/O devices on the dual port memory are cleared to 0 regardless of the control option 2 setting. The output state of the external DO signal of the sensing module depends on the output CLEAR/HOLD function.
	Parameter backup	\bigcirc	
	Test mode	\times	
	Reconnect/disconnect function	\triangle	Only the start station of the sensing module can be specified as disconnecting axis No.
	Sampling	\triangle	Only the test tool supports the sampling of I/O device.
	Log	\bigcirc	
	Operation cycle monitor function	-	
	Alarm history function	\bigcirc	
	Transient transmission	\times	

Note. \bigcirc : Usable $\quad \triangle$: Restriction $\quad \times$: Unusable —: Not applicable

6.34.3 System startup

(1) Station No. setting parameter

Station No. settings are made with the station number selection rotary switch.

The station No. and station number selection rotary switch combinations are correlated as shown on the table below. Set the station No. so that it will not duplicate in the same line. If it is duplicated, the "An axis that has not been mounted exists" (system error E400) will occur at the time of system startup (system command code: 000Ah).

Station number selection rotary switch		Station No. on remote I/O module (Note 1)				Available/unavailable	
SW1	SW2	Start station	Second station	Third station	Fourth station	MR-MC2■■	MR-MC3 $\square \square$
5	0	Station 51	Station 52	Station 53	Station 54	Unavailable	Available
	1	Station 52	Station 53	Station 54	Station 55		
	2	Station 53	Station 54	Station 55	Station 56		
	3	Station 54	Station 55	Station 56	(Note 2)		
	4	Station 55	Station 56		2)		
	5	Station 56		(Note 2)			
	6	Station 57	Station 58	Station 59	Station 60		Unavailable
	7	Station 58	Station 59	Station 60	Station 61		
	8	Station 59	Station 60	Station 61	Station 62		
	9	Station 60	Station 61	Station 62	Station 63		
6	0	Station 61	Station 62	Station 63	Station 64		
	1	Station 62	Station 63	Station 64	-		
	2	Station 63	Station 64	-	-		
	3	Station 64	-	-	-		

Note 1. When connecting sensing SSCNETII/H head module + sensing extension module, the station No. for the second sensing extension module and after is assigned in ascending order from the sensing SSCNETI/H head module.
2. Set so that the remote I/O station No. of last connected sensing extension module does not exceed the station below. If the station below is exceeded, the "An axis that has not been mounted exists" (system error E400) will occur at the time of system startup (system command code: 000Ah).

- Using MR-MC2 $\square \square$: Station 24
- Using MR-MC3 $\square \square$: Station 56
(2) Station No. assignment

With station No. assignment, station No. (station No. on the position board) are assigned to station No. on remote I/O modules.
Also refer to axis No. assignment (Section 4.5.6) for station No. assignment.
When station No. assignment is invalid, correspondence between the station No. on a remote I/O module and the station No. is shown in the following table.
(a) Using MR-MC2 $\square \square$

Station No. on remote I/O module		Line 1					21	22	23	24
Station	0.88 ms	1	2	3	4					
	0.44 ms	1	2	-	-					
	0.22 ms	1	-	-	-					

(b) Using MR-MC3 $\square \square$

Station No. on remote I/O module		Line 1							
		49	50	51	52	53	54	55	56
Station No.	0.88 ms	1	2	3	4	5	6	7	8
	0.44 ms	1	2	3	4	5	6	7	8
	0.22 ms	1	2	3	4	-	-	-	-

Station No. on remote I/O module	Line 2								
	0.88 ms	9	50	51	52	53	54	55	56
	0.44 ms	9	10	11	12	13	14	15	16
	0.22 ms	5	6	7	11	12	13	14	15
16									

API LIBRARY

- When setting the API function argument "Axis No." to a station No., set a negative value. (Example: Station 1: -1 , station 2: -2 , station $3:-3$, station $4:-4$)
(3) Remote I/O module I/O setting

When using remote I/O modules, set the I/O table selection of I/O table (parameter No.004A) to "1: Use I/O device table (MR-MC2םI method)", or "2: Use I/O device table (expanded points method) MC300".
Also, set the points of the I/O devices controller by the position board, and the start No. to be assigned to the I/O device table.
(4) Vendor ID and type code setting

Available functions, parameter settings and ranges will vary by remote I/O module type. At the time the communication with the remote I/O module has started, the position board will perform consistency check between vendor ID and type code of the module connected and the parameter set. If a consistency check error occurs, driver type code error (system error E405) will be output, therefore set correct vendor ID (parameter No.021D) and type code (parameter No.021E).

POINT

- If driver type code error (system error E405) occurred, the station that has set an incorrect type code can be confirmed with "type code erroneous station information" (system information monitor No.04C1).

6.34.4 Interface

(1) Parameter
(a) System parameter

(b) RIO module parameter

The parameter Nos. for each sensing module are shown below.

Module	Parameter No.	Sensing module parameter No.
Sensing SSCNET世/H head module	1100 to 117F	PTA001 to PTA128
Sensing I/O module	1180 to 127F	PTB001 to PTB256
Sensing pulse I/O module	1280 to 12FF	PTC001 to PTC128
Sensing analog I/O module	1300 to 137F	PTD001 to PTD128
Sensing encoder I/F module	1380 to 13 FF	PTE001 to PTE128

POINT

- Do not write RIO module parameters when the system is running.
(c) RIO control parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
0211	*BDINA	Input bit device start number	0000h		0000h to OFFOh MC200 0000h to 2FFOh MC300	Set the start of the input bit device number assigned to RX. The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2 $\square \square$ method) is set] 0000h to 0FF0h: DVI_000 to DVI_FF0 [When use I/O device table (expanded points method) is set] MC300 0000h to 23F0h: DVI_000 to DVI_23F0 Note. Only a multiple of 16 can be selected. Example: When the input points are 64, and input bit device 020 is specified as the start, assign the 64 points of DVI_020 to DVI_05F.
0212	*WDIO	Input word device points	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 0020h } \end{aligned}$	Set the points used for input word device. 0000h to 0020h: 0 to 32 Note. The size used is 1 word \times set value.
0213	*WDINA	Input word device start number	0000h		0000h to 00FFh MC200 0000h to 02FFh MC300	Set the start of the input word device number assigned to RWr. The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2 $\square \square$ method) is set] 0000h to 00FFh: Input word device 00 to input word device FF [When use I/O device table (expanded points method) is set] MC300 0000h to 23FOh: Input word device 00 to input word device 23 F Example: When the input points are 2, and input word device 06 is specified as the start, assign input word devices 06 to 07.
0214	*BDOO	Output bit device points	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 0200h } \end{aligned}$	Set the points used for output bit device. 0000h to 0200h: 0 to 512 Note. Only a multiple of 16 can be selected.
0215	*BDONA	Output bit device start number	0000h		0000h to OFFOh MC200 0000h to 2FFOh MC300	Set the start of the output bit device number assigned to RY. The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2 $\square \square$ method) is set] 0000h to 0FF0h: DVO_000 to DVO_FF0 [When use I/O device table (expanded points method) is set $]$ MC300 0000h to 23F0h: DVO_000 to DVO_23F0 Note. Only a multiple of 16 can be selected. Example: When the output points are 64, and output bit device 040 is specified as the start, assign the 64 points of DVO_040 to DVO_07F.
0216	*WDOO	Output word device points	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 0020h } \end{aligned}$	Set the points used for output word device. 0000h to 0020h: 0 to 32 Note. The size used is 1 word \times set value.

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
0217	*WDONA	Output word device start number	0000h		0000h to 00FFh MC200 0000h to 2FFOh MC300	Set the start of the output word device number assigned to RWw. The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2 $\square \square$ method) is set] 0000h to 00FFh: Output word device 00 to output word device FF [When use I/O device table (expanded points method) is set] MC300 0000h to 23F0h: Output word device 00 to output word device 23F Example: When the output points are 2, and output word device 08 is specified as the start, assign output word devices 08 to 09.
021D	*VEND	Vendor ID	0000h		0000h to FFFFh	Set the vendor ID. 0000h: Mitsubishi Electric
021E	*CODE	Type code	3000h		0000h to FFFFh	Set the type code. 3000h: SSCNETII/H head module 3010h: Sensing SSCNETII/H head module 3011h: Sensing SSCNETII/H head module+Sensing I/O module 3012h: Sensing SSCNETIII/H head module+Sensing pulse I/O module 3013h: Sensing SSCNETII/H head module+Sensing analog I/O module 3014h: Sensing SSCNETII/H head module+Sensing encoder I/F module 3021h: Sensing I/O module 3022h: Sensing pulse I/O module 3023h: Sensing analog I/O module 3024h: Sensing encoder I/F module

POINT

- Set "1: Use I/O device table (MR-MC2 $\square \square$ method)" or "2: Use I/O device table (expanded points method) MC300 " for the I/O table setting. When "0: Use digital I/O table" is set, system setting error (operation alarm No. 38, detail 05 to 06) will occur.
- Assign the I/O device table not to overlap other settings. If the assignment is overlapped or exceeds the maximum points of the I/O device table, the I/O No. assignment error (system error E510) and I/O No. assignment setting error (RIO control alarm 39, detail 01 and 02) occur.
- Refer to Sensing Module Instruction Manual for points used for I/O devices.
(2) RIO data command/status table
(a) RIO status bit

Note. The addresses in the table are the addresses for the first station. For the second station and after, add the following value for each station.

- Using MR-MC2 $\square \square:+80 h$
- Using MR-MC3 $\square \square:+C 0 h$

1) Details on RIO status bit

Symbol	Signal name	Function details
RURDY	Receiving controller ready on	Shows the operating status of remote I/O module. RURDY: OFF, RUA: OFF \qquad No communication RURDY: ON, RUA: OFF \qquad Stop RURDY: ON, RUA: ON \qquad Run RURDY: OFF, RUA: ON. \qquad Error
RUA	Outputting DO	

Note 1. When I/O No. assignment error (system error E510), and I/O table select error (system error E511) have occurred, Outputting DO (RUA) does not turn ON.
(3) I/O device table
(a) Input device table

Address		Input word device number	Input bit device number	Symbol	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$				
DB00	0F9F00	Input word device 00 (2 bytes)	Input bit device 000 to Input bit device 00F	$\begin{aligned} & \text { DVI_000 to } \\ & \text { DVI_00F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_000 (bit0) to DVI_00F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB02	0F9F02	Input word device 01 (2 bytes)	Input bit device 010 to Input bit device 01F	$\begin{aligned} & \text { DVI_010 to } \\ & \text { DVI_01F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_010 (bit0) to DVI_01F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB04	0F9F04	Input word device 02 (2 bytes)	Input bit device 020 to Input bit device 02F	DVI_020 to DVI_02F	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_020 (bit0) to DVI_02F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB06	0F9F06	Input word device 03 (2 bytes)	Input bit device 030 to Input bit device 03F	$\begin{aligned} & \text { DVI_030 to } \\ & \text { DVI_03F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_030 (bit0) to DVI_03F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB08	0F9F08	Input word device 04 (2 bytes)	Input bit device 040 to Input bit device 04F	DVI_040 to DVI_04F	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_040 (bit0) to DVI_04F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
DB0A	0F9F0A	Input word device 05 (2 bytes)	Input bit device 050 to Input bit device 05F	DVI_050 to DVI_05F	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_050 (bit0) to DVI_05F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
:	:	:		:	:
DCFE	OFAOFE	Input word device FF (2 bytes)	Input bit device FF0 to Input bit device FFF	DVI_FF0 to DVI_FFF	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_FF0 (bit0) to DVI_FFF (bit15). [When word device is assigned] Notifies the status of the word device input signal.
	0FA100	Input word device 100 (2 bytes) (expanded points method)	Input bit device 1000 to Input bit device 100F (expanded points method)	$\begin{aligned} & \text { DVI_1000 to } \\ & \text { DVI_100F } \end{aligned}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_1000 (bit0) to DVI_100F (bit15). [When word device is assigned] Notifies the status of the word device input signal.
	:	:	:	:	:
	0FA37E	Input word device 23F (2 bytes) (expanded points method)	Input bit device 23F0 to Input bit device 23FF (expanded points method)	$\begin{gathered} \text { DVI_23F0 to } \\ \text { DVI_23FF } \end{gathered}$	[When bit device is assigned] Notifies the status of the bit device input signal. The bits are DVI_23F0 (bit0) to DVI_23FF (bit15). [When word device is assigned] Notifies the status of the word device input signal.

(b) Output device table

Address		Output word device number	Output bit device number	Symbol	Remarks
MR-MC2口]	MR-MC3D]				
DD00	0FA380	Output word device 00 (2 bytes)	Output bit device 000 to Output bit device 00F	$\begin{aligned} & \hline \text { DVO_000 to } \\ & \text { DVO_00F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_000 (bit0) to DVO_00F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD02	0FA382	Output word device 01 (2 bytes)	Output bit device 010 to Output bit device 01F	DVO_010 to DVO_01F	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_010 (bit0) to DVO_01F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD04	0FA384	Output word device 02 (2 bytes)	Output bit device 020 to Output bit device 02F	$\begin{array}{\|l\|} \hline \text { DVO_020 to } \\ \text { DVO_02F } \end{array}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_020 (bit0) to DVO_02F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD06	0FA386	Output word device 03 (2 bytes)	Output bit device 030 to Output bit device 03F	$\begin{aligned} & \hline \text { DVO_030 to } \\ & \text { DVO_03F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_030 (bit0) to DVO_03F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DD08	OFA388	Output word device 04 (2 bytes)	Output bit device 040 to Output bit device 04F		[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_040 (bit0) to DVO_04F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
DDOA	0FA38A	Output word device 05 (2 bytes)	Output bit device 050 to Output bit device 05F	$\begin{aligned} & \hline \text { DVO_050 to } \\ & \text { DVO_05F } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_050 (bit0) to DVO_05F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
.	.	.		:	
DEFE	0FA57E	Output word device FF (2 bytes)	Output bit device FF0 to Output bit device FFF	$\begin{gathered} \hline \text { DVO_FF0 to } \\ \text { DVO_FFF } \end{gathered}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_FFO (bit0) to DVO_FFF (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
	0FA580	Output word device 100 (2 bytes) (expanded points method)	Output bit device 1000 to Output bit device 100F (expanded points method)	$\begin{gathered} \hline \text { DVO_1000 } \\ \text { to } \\ \text { DVO_100F } \end{gathered}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_1000 (bit0) to DVO_100F (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.
	:			:	
	OFA7FE	Output word device 23F (2 bytes) (expanded points method)	Output bit device 23F0 to Output bit device 23FF (expanded points method)	$\begin{aligned} & \text { DVO_23F0 } \\ & \text { to } \\ & \text { DVO_23FF } \end{aligned}$	[When bit device is assigned] Turns ON/OFF the bit device output signal. The bits are DVO_23F0 (bit0) to DVO_23FF (bit15). [When word device is assigned] Turns ON/OFF the word device output signal.

(4) Sensing module link devices

The contents of the devices (Input: RX, RWr/Output: RY, RWw) for storage of link data for communicating between the position board and sensing module (station mode) are different for each module. The contents of the devices for storage of link data for each module are shown below.
(a) Sensing SSCNETIII/H head module

1) Input device
a) Bit data area (RX)

Note. The offset is the bit units from the start of the input device table that assigned the input bit device.
b) Word data area (RWr)

Offset(Note)	Signal name	Description
+0	DO output state (DO for each signal)	Stores the DO output state of the sensing SSCNETIII/H head module.
+1	Unusable	-
+2		
+3		
+4		
+5		
+6		
+7		
+8		
+9		
+10		
+11		
+12		
+13		
+14		
+15		
+16		
+17		
+18		
+19		
+20		
+21		
+22		
+23		
+24		
+25		
+26		
+27		
+28		
+29		
+30		
+31		

Note. The offset is the word units from the start of the input device table that assigned the input bit device.
2) Output device
a) Bit data area (RY)

Offset(Note)	Signal name	Description
+0	External output DO1	Sets the command for DO1, DO2 of sensing SSCNETII/H head module.$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
+1	External output DO2	
+2	Unusable	-
+3		
+4		
+5		
+6		
+7		
+8		
+9		
+10		
+11		
+12		
+13		
+14		
+15		
+16	DO1 output enable	Enables output of DO1, DO2 of the sensing SSCNETII/H head module. 0: Disable 1: Enable
+17	DO2 output enable	
+18	Unusable	-
+19		
+20		
+21		
+22		
+23		
+24		
+25		
+26		
+27		
+28		
+29		
+30		
+31		

Note. The offset is the bit units from the start of the output device table that assigned the output bit device.
b) Word data area (RWw)

Offset(Note)	Signal name	Description
+0	Unusable	-
+1		
+2		
+3		
+4		
+5		
+6		
+7		
+8		
+9		
+10		
+11		
+12		
+13		
+14		
+15		
+16		
+17		
+18		
+19		
+20		
+21		
+22		
+23		
+24		
+25		
+26		
+27		
+28		
+29		
+30		
+31		

Note. The offset is the word units from the start of the output device table that assigned the output bit device.
(b) Sensing SSCNETIII/H head module+Sensing extension module

1) Input device
a) Bit data area (RX)

Offset(Note)	Signal name	Description
+0	External input DI1	Stores the input state of DI1 to DI12 of sensing SSCNETII/H head module.$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
+1	External input DI2	
+2	External input DI3	
+3	External input DI4	
+4	External input DI5	
+5	External input DI6	
+6	External input DI7	
+7	External input DI8	
+8	External input DI9	
+9	External input DI10	
+10	External input DI11	
+11	External input DI12	
+12	Unusable	-
+13		
+14		
+15		
+16	DO1 output enabling	Stores the output enable state of DO1 and DO2 of sensing SSCNETIII/H head module. 0: Disable 1: Enable
+17	DO2 output enabling	
+18	Unusable	-
+19		
+20		
+21		
+22		
+23		
+24		
+25		
+26		
+27		
+28		
+29		
+30		
+31		
+32	Sensing extension module bit data area	Stores the bit data area (RX) of the sensing extension module set to first station.
:		
+63		

[^7]b) Word data area (RWr)

Offset(Note)	Signal name	Description
+0	DO output state (DO for each signal)	Stores the DO output state of the sensing SSCNETM/H head module.
+1	Unusable	-
+2		
+3		Stores the word data area (RWr) of the sensing extension module set to first station.
+4	Word data area	

Note. The offset is the word units from the start of the input device table that assigned the input bit device.
2) Output device
a) Bit data area (RY)

Offset(Note)	Signal name	Description
+0	External output DO1	Sets the command for DO1, DO2 of sensing SSCNETII/H head module. $0: \text { OFF }$ 1: ON
+1	External output DO2	
+2	Unusable	-
+3		
+4		
+5		
+6		
+7		
+8		
+9		
+10		
+11		
+12		
+13		
+14		
+15		
+16	DO1 output enable	Enables output of DO1, DO2 of the sensing SSCNETII/H head module. 0: Disable 1: Enable
+17	DO2 output enable	
+18	Unusable	-
+19		
+20		
+21		
+22		
+23		
+24		
+25		
+26		
+27		
+28		
+29		
+30		
+31		
+32	Sensing extension module bit data area	Stores the bit data area (RY) of the sensing extension module set to first station.
:		
+63		

Note. The offset is the bit units from the start of the output device table that assigned the output bit device.
b) Word data area (RW w)

Offset(Note)	Signal name	Description
+0	Unusable	-
+1		
+2		
+3		
+4		
+5		
+6	Sensing extension module word data area	Stores the word data area (RWw) of the sensing extension module set to first station.
:		
+27		

Note. The offset is the word units from the start of the output device table that assigned the output bit device.
(c) Sensing I/O module

1) Input device
a) Bit data area (RX)

Offset(Note)	Signal name	Description
+0	External input DI1	Stores the input state of DI1 to DI16 of sensing I/O module. 0: OFF 1: ON
+1	External input DI2	
+2	External input DI3	
+3	External input DI4	
+4	External input DI5	
+5	External input DI6	
+6	External input DI7	
+7	External input DI8	
+8	External input DI9	
+9	External input DI10	
+10	External input DI11	
+11	External input DI12	
+12	External input DI13	
+13	External input DI14	
+14	External input DI15	
+15	External input DI16	
+16	DO1 output enabling	Stores the output enable state of DO1 to DO16 of sensing I/O module. 0: Disable 1: Enable
+17	DO2 output enabling	
+18	DO3 output enabling	
+19	DO4 output enabling	
+20	DO5 output enabling	
+21	DO6 output enabling	
+22	D07 output enabling	
+23	DO8 output enabling	
+24	D09 output enabling	
+25	DO10 output enabling	
+26	DO11 output enabling	
+27	DO12 output enabling	
+28	DO13 output enabling	
+29	DO14 output enabling	
+30	D015 output enabling	
+31	DO16 output enabling	

Note. The offset is the bit units from the start of the input device table that assigned the input bit device.
b) Word data area (RWr)

Offset(Note)	Signal name	Description
+0	DO output state (DO for each signal)	Stores the DO output state of the sensing I/O module.
+1	Unusable	-
+2		
+3		
+4		
+5		
+6		
+7		
+8		
+9		
+10		
+11		
+12		
+13		
+14		
+15		
+16		
+17		
+18		
+19		
+20		
+21		

Note. The offset is the word units from the start of the input device table that assigned the input bit device.
2) Output device
a) Bit data area (RY)

Offset(Note)	Signal name	Description
+0	External output DO1	Sets the command for DO1 to DO16 of sensing I/O module.$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
+1	External output DO2	
+2	External output DO3	
+3	External output DO4	
+4	External output DO5	
+5	External output DO6	
+6	External output DO7	
+7	External output DO8	
+8	External output DO9	
+9	External output DO10	
+10	External output DO11	
+11	External output DO12	
+12	External output DO13	
+13	External output DO14	
+14	External output DO15	
+15	External output DO16	
+16	DO1 output enable	Enables output of DO1 to DO16 of the sensing I/O module. 0: Disable 1: Enable
+17	DO2 output enable	
+18	DO3 output enable	
+19	DO4 output enable	
+20	DO5 output enable	
+21	DO6 output enable	
+22	DO7 output enable	
+23	DO8 output enable	
+24	DO9 output enable	
+25	D010 output enable	
+26	DO11 output enable	
+27	DO12 output enable	
+28	DO13 output enable	
+29	DO14 output enable	
+30	DO15 output enable	
+31	DO16 output enable	

Note. The offset is the bit units from the start of the output device table that assigned the output bit device.
b) Word data area (RWw)

Offset(Note)	Signal name	Description
+0	Unusable	-
+1		
+2		
+3		
+4		
+5		
+6		
+7		
+8		
+9		
+10		
+11		
+12		
+13		
+14		
+15		
+16		
+17		
+18		
+19		
+20		
+21		

Note. The offset is the word units from the start of the output device table that assigned the output bit device.
(d) Sensing pulse I/O module

1) Input device
a) Bit data area (RX)

Offset(Note)		Signal name	Description
+0	CN1	External input DI1A	Stores the input state of CN1-DI1A to CN1-DI7A of sensing pulse I/O module. $0: \text { OFF }$ 1: ON
+1		External input DI2A	
+2		External input DI3A	
+3		External input DI4A	
+4		External input DI5A	
+5		External input DI6A	
+6		External input DI7A	
+7		Unusable	-
+8		D01A output enabling	Stores the output enable state of CN1-DO1A to CN1-DO5A of sensing pulse I/O module. 0: Disable 1: Enable
+9		DO2A output enabling	
+10		DO3A output enabling	
+11		DO4A output enabling	
+12		D05A output enabling	
+13		Unusable	-
+14			
+15			
+16	CN2	External input DI1B	Stores the input state of CN2-DI1B to CN2-DI7B of sensing pulse I/O module. 0: OFF 1: ON
+17		External input DI2B	
+18		External input DI3B	
+19		External input DI4B	
+20		External input DI5B	
+21		External input DI6B	
+22		External input DI7B	
+23		Unusable	-
+24		D01B output enabling	Stores the output enable state of CN2-DO1B to CN2-DO5B sensing pulse I/O module. 0 : Disable 1: Enable
+25		DO2B output enabling	
+26		DO3B output enabling	
+27		D04B output enabling	
+28		D05B output enabling	
+29		Unusable	-
+30			
+31			

Note. The offset is the bit units from the start of the input device table that assigned the input bit device.
b) Word data area (RWr)

Offset(Note)		Signal name	Description	
+0	CN1	Pulse accumulated value	Stores the pulse accumulated value input to CN1 of sensing pulse I/O module.	
+1				
+2		Latch counter DI4A (pulse counter value)	Stores the pulse count value when the CN1-DI4A of sensing pulse I/O module were input.	
+3				
+4		DO output state (for each DO signal)	Stores the output state of CN1-DO of sensing pulse I/O module.	
+5		Unusable	-	
+6				
+7				
+8	CN2	Pulse accumulated value	Stores the pulse accumulated value input to CN2 of sensing pulse I/O module.	
+9				
+10		Latch counter DI4B (pulse counter value)	Stores the pulse count value when the CN2-DI4B of sensing pulse I/O module were input.	
+11				
+12		DO output state (for each DO signal)	Stores the output state of CN2-DO of sensing pulse I/O module.	
+13		Unusable	-	
+14				
+15				
+16	Unusable		-	
+17				
+18				
+19				
+20				
+21				

Note. The offset is the word units from the start of the input device table that assigned the input bit device.
2) Output device
a) Bit data area (RY)

Offset(Note)		Signal name	Description
+0	CN1	External output DO1A	Sets the command for CN1-DO1A to CN1-DO5A of sensing pulse I/O module. 0: OFF 1: ON
+1		External output DO2A	
+2		External output DO3A	
+3		External output DO4A	
+4		External output DO5A	
+5		Unusable	-
+6			
+7			
+8		DO1A output enable	Enables output of CN1-DO1A to CN1-DO5A of sensing pulse I/O module. 0: Disable 1: Enable
+9		DO2A output enable	
+10		DO3A output enable	
+11		DO4A output enable	
+12		DO5A output enable	
+13		Unusable	-
+14			
+15			
+16	CN2	External output DO1B	Sets the command for CN2-DO1B to CN2-DO5B of sensing pulse I/O module. 0: OFF 1: ON
+17		External output DO2B	
+18		External output DO3B	
+19		External output DO4B	
+20		External output DO5B	
+21		Unusable	-
+22			
+23			
+24		D01B output enable	Enables output of CN2-DO1B to CN2-DO5B of sensing pulse I/O module. 0: Disable 1: Enable
+25		DO2B output enable	
+26		DO3B output enable	
+27		DO4B output enable	
+28		DO5B output enable	
+29		Unusable	-
+30			
+31			

Note. The offset is the bit units from the start of the output device table that assigned the output bit device.
b) Word data area (RWr)

Offset(Note)		Signal name	Description	
+0	CN1	Pulse command value	Sets the accumulated pulses since the power supply ON of the control circuit, output by CN1 of sensing pulse I/O module.	
+1				
+2		ON timing (For pulse coincidence output function)	Sets the ON timing when counter coincidence DO output is enabled.	
+3				
+4		OFF timing (For pulse coincidence output function)	Sets the OFF timing when counter coincidence DO output is enabled.	
+5				
+6		Unusable	-	
+7				
+8	CN2	Pulse command value	Sets the accumulated pulses since the power supply ON of the control circuit, output by CN2 of sensing pulse I/O module.	
+9				
+10		ON timing (For pulse coincidence output function)	Sets the ON timing when counter coincidence DO output is enabled.	
+11				
+12		OFF timing (For pulse coincidence output function)	Sets the OFF timing when counter coincidence DO output is enabled.	
+13				
+14		Unusable	-	
+15				
+16	Unusable		-	
+17				
+18				
+19				
+20				
+21				

Note. The offset is the word units from the start of the output device table that assigned the output bit device.
(e) Sensing analog I/O module

1) Input device
a) Bit data area ($R X$)

Offset(Note)	Signal name	Description
+0	Analog output signal CH1	Stores the output state of analog output CH 1 to CH 4 of sensing analog I/O module. 0: Stopped 1: Outputting
+1	Analog output signal CH2	
+2	Analog output signal CH3	
+3	Analog output signal CH4	
+4	Unusable	-
+5		
+6		
+7		
+8		
+9		
+10		
+11		
+12		
+13		
+14		
+15		
+16		
+17		
+18		
+19		
+20		
+21		
+22		
+23		
+24		
+25		
+26		
+27		
+28		
+29		
+30		
+31		

Note. The offset is the bit units from the start of the input device table that assigned the input bit device.
b) Word data area (RWr)

Offset(Note)	Signal name	Description
+0	Maximum/Minimum value reset complete	Stores the reset state of maximum/minimum value. b0 0: CH 1 resetting 1: CH 1 reset complete b1 0 : CH 2 resetting 1: CH 2 reset complete b2 0: CH3 resetting 1: CH 3 reset complete b3 0: CH4 resetting 1: CH 4 reset complete
+1	Unusable	-
+2	Digital value of analog input $\mathrm{CH} 1$	Converts the scaled value of voltage input to analog input CH 1 to CH4 of sensing analog I/O module, and transfers to the position board.
+3	Digital value of analog input $\mathrm{CH} 2$	
+4	Digital value of analog input CH3	
+5	Digital value of analog input $\mathrm{CH} 4$	
+6	Analog input channel average value Setting 1	Stores the average value of data for the CH set to analog input average 1 and 2.
+7	Analog input channel average value Setting 2	
+8	Analog input maximum CH 1	Stores the maximum value of voltage input to analog input CH 1 to CH 4 of sensing analog I/O module.
+9	Analog input maximum CH 2	
+10	Analog input maximum CH3	
+11	Analog input maximum CH 4	
+12	Analog input minimum CH 1	Stores the minimum value of voltage input to analog input CH 1 to CH 4 of sensing analog I/O module.
+13	Analog input minimum CH 2	
+14	Analog input minimum CH 3	
+15	Analog input minimum CH 4	
+16	Unusable	-
+17		
+18		
+19		
+20		
+21		

Note. The offset is the word units from the start of the input device table that assigned the input bit device.
2) Output device
a) Bit data area (RY)

Offset(Note)	Signal name	Description
+0	Analog output enable CH1	Enable output of CH 1 to CH 4 of the sensing analog I/O module. 0: Disable 1: Enable
+1	Analog output enable CH2	
+2	Analog output enable CH3	
+3	Analog output enable CH4	
+4	Unusable	-
+5		
+6		
+7		
+8		
+9		
+10		
+11		
+12		
+13		
+14		
+15		
+16		
+17		
+18		
+19		
+20		
+21		
+22		
+23		
+24		
+25		
+26		
+27		
+28		
+29		
+30		
+31		

Note. The offset is the bit units from the start of the output device table that assigned the output bit device.
b) Word data area (RWw)

Offset(Note)	Signal name	Description
+0	Maximum/Minimum value reset request	Stores the reset state of maximum/minimum value. b0 0: CH1 reset command OFF 1: CH 1 reset command ON b1 0: CH2 reset command OFF 1: CH 2 reset command ON b2 0: CH3 reset command OFF 1: CH3 reset command ON b3 0: CH4 reset command OFF 1: CH 4 reset command ON
+1	Unusable	-
+2	Digital value of analog output $\mathrm{CH} 1$	Sets the voltage output by CH 1 to CH 4 of sensing analog I / O module with the scaled internal value.
+3	Digital value of analog output $\mathrm{CH} 2$	
+4	Digital value of analog output CH3	
+5	Digital value of analog output CH4	
+6	Unusable	-
+7		
+8		
+9		
+10		
+11		
+12		
+13		
+14		
+15		
+16		
+17		
+18		
+19		
+20		
+21		

Note. The offset is the word units from the start of the output device table that assigned the output bit device.

(f) Sensing encoder I/F module

1) Input device
a) Bit data area ($R X$)

Note. The offset is the bit units from the start of the input device table that assigned the input bit device.
b) Word data area (RWr)

Offset(Note)		Signal name	Description	
+0	CH.A	Encoder information 1	Transfers all data acquired from the encoder connected to CH.A of sensing encoder input I/F module. The information that can be acquired differs by encoder.	
+1				
+2		Encoder information 2		
+3				
+4		Encoder information 3		
+5				
+6		Encoder current value (signed 32-bit data)	Transfers the current position data of the encoder connected to CH.A of sensing encoder input I/F module.	
+7				
+8		Encoder error information	Transfers the alarm information of the encoder connected to CH.A of sensing encoder input I/F module. b0 to b1: Not used b2: 0: No alarm 1: Alarm b3 to bF: Not used	
+9		Unusable	-	
+10	CH.B	Encoder information 1	Transfers all data acquired from the encoder connected to CH.B	
+11		Encoder information 2	of sensing encoder input I/F module.	
+12		Encoder information 3	The information that can be acquired differs by encoder.	
+13		External input signal DI2 latch counter		
+14		External input signal DI3 latch counter		
+15		External input signal DI4 latch counter		
+16		Encoder current value	Transfers the current position data of the encoder connected to	
+17		(signed 32-bit data)	CH.B of sensing encoder input I/F module.	
+18		Encoder error information	Transfers the alarm information of the encoder connected to CH.B of sensing encoder input I/F module. b0 to b1: Not used b2: 0: No alarm 1: Alarm b3 to bF: Not used	
+19		Unusable	-	
+20	Unusable		-	
+21				

Note. The offset is the word units from the start of the input device table that assigned the input bit device.
2) Output device
a) Bit data area (RY)

Offset(Note)	Signal name		Description
+0	Unusable		-
+1			
+2			
+3			
+4			
+5			
+6			
+7			
+8			
+9			
+10			
+11			
+12			
+13			
+14			
+15			
+16			
+17			
+18			
+19			
+20			
+21			
+22			
+23			
+24			
+25			
+26			
+27			
+28			
+29			
+30			
+31			

Note. The offset is the bit units from the start of the output device table that assigned the output bit device.
b) Word data area (RWw)

Offset(Note)	Signal name	Description
+0	Unusable	-
+1		
+2		
+3		
+4		
+5		
+6		
+7		
+8		
+9		
+10		
+11		
+12		
+13		
+14		
+15		
+16		
+17		
+18		
+19		
+20		
+21		

Note. The offset is the word units from the start of the output device table that assigned the output bit device.

POINT

- When a communication error (system error E401 to E407) occurs or SSCNET is disconnected, the status of the input device table is the same as RI control at communication error of control option 2 (parameter No.0201). Also, for a sensing module that supports the output CLEAR/HOLD function, the status of the external DO signals of the sensing module is the same as the operation selection when communication is disconnected for DO \square setting 1. Refer to the Sensing Module Instruction Manual for output CLEAR/HOLD function settings.
- When RI control at communication error of control option 2 (parameter No.0201) is set to "1: Maintain status", and the sensing module power supply is cut while the sensing module and position board are communicating, an incorrect value may be held in the input device table.
- When using remote I/O modules, set the I/O table selection of I/O table (parameter No.004A) to "1: Use I/O device table (MR-MC2 $\square \square$ method)" or "2: Use I/O device table (expanded points method)" $\sqrt{\text { MC300 }}$. When " 0 : Use digital I/O table" is set and I/O devices are assigned, I/O table select error (system error E511), and system setting error (RIO control alarm 38, detail 05 to 06) occur.
- Assign the I/O device not to overlap other settings. If the assignment is overlapped or exceeds the range of the I/O device table, the I/O No. assignment error (system error E510) and I/O No. assignment setting error (RIO control alarm 39, detail 01 and 02) occur.
- Set the total points of the I/O devices assigned to remote I/O when setting I/O device points (parameter No.0210, 0212, 0214, and 0216).
- The delay time for the input device table to be updated after the signals of a sensing module are input is sensing module input response time + (control cycle $\times 2$). Refer to Sensing Module Instruction Module for input response time of sensing module.
- The delay time for the host controller to update the output device table, and signals of a sensing module to be output is sensing module output response time + (control cycle $\times 3$). Also, for output of output bit devices using the other axes start function, the delay time from when other axes start conditions are established is sensing module output response time + (control cycle $\times 2$). Refer to Sensing Module Instruction Manual for output response time of sensing module.

API LIBRARY

- Use the sscGetInputDeviceBit function to get input bit device.
- Use the sscGetInputDeviceWord function to get input word device.
- Use the sscSetOutputDeviceBit function to set output bit device.
- Use the sscSetOutputDeviceWord function to set output word device.
- Use the sscGetOutputDeviceBit function to get output bit device.
- Use the sscGetOutputDeviceWord function to get output word device.

6.34.5 Example of setting procedure

The following shows the settings for two sensing modules (stations 1 to 3 and station 4).
(1) Entire system configuration diagram

(2) Position board setting
(a) Type code setting

Set the type code and vendor ID according to the system configuration.

Station No.	Module	Parameter No.	Symbol	Name	Setting value
1	Sensing SSCNETII/H head module + sensing I/O module	021D	*VEND	Vendor ID	0000h
		021E	*CODE	Type code	3011h
2	Sensing I/O module	021D	*VEND	Vendor ID	0000h
		021E	*CODE	Type code	3021h
3	Sensing pulse I/O module	021D	*VEND	Vendor ID	0000h
		021E	*CODE	Type code	3023h
4	Sensing SSCNETII/H head module	021D	*VEND	Vendor ID	0000h
		021E	*CODE	Type code	3010h

(b) Link device setting

To allocate sensing module link devices to the position board I/O table, set the total number of points (in units of 16) of each link device, and the start I/O device number to be assigned

1) Station parameter

Module No.	Parameter No.	Symbol	Name	Setting value
1	0210	*BDIO	Input bit device points	0040h
	0211	*BDINA	Input bit device start number	0000h
	0212	*WDIO	Input word device points	001Ch
	0213	*WDINA	Input word device start number	0004h
	0214	*BDOO	Output bit device points	0040h
	0215	*BDONA	Output bit device start number	0000h
	0216	*WDOO	Output word device points	001Ch
	0217	*WDONA	Output word device start number	0004h
2	0210	*BDIO	Input bit device points	0040h
	0211	*BDINA	Input bit device start number	0400h
	0212	*WDIO	Input word device points	0016h
	0213	*WDINA	Input word device start number	0044h
	0214	*BDOO	Output bit device points	0040h
	0215	*BDONA	Output bit device start number	0400h
	0216	*WDOO	Output word device points	0016h
	0217	*WDONA	Output word device start number	0044h
3	0210	*BDIO	Input bit device points	0020h
	0211	*BDINA	Input bit device start number	0800h
	0212	*WDIO	Input word device points	0016h
	0213	*WDINA	Input word device start number	0084h
	0214	*BDOO	Output bit device points	0020h
	0215	*BDONA	Output bit device start number	0800h
	0216	*WDOO	Output word device points	0016h
	0217	*WDONA	Output word device start number	0084h
4	0210	*BDIO	Input bit device points	0020h
	0211	*BDINA	Input bit device start number	0C00h
	0212	*WDIO	Input word device points	0016h
	0213	*WDINA	Input word device start number	00C4h
	0214	*BDOO	Output bit device points	0020h
	0215	*BDONA	Output bit device start number	0C00h
	0216	*WDOO	Output word device points	0016h
	0217	*WDONA	Output word device start number	00C4h

(3) Setting/getting I/O devices with API functions

Examples of getting input devices and setting/getting output devices are shown in the table below.
Note that the board ID is 0 , and channel number is 1 .

Station No.	Device name	Set/get	Setting value
1	RX	Get input bit device 000	int data; sscGetInputDeviceBit (0, 1, 0×0000, \&data);
2	RWr	Get one word of input word device 3C	unsigned short data; sscGetInputDeviceWord (0, 1, 0×003C, 1, \&data);
3	RY	Set output bit device 608 to ON	sscSetOutputDeviceBit (0, 1, 0×0608, SSC_ON);
3	RWw	Set output word device 52 to 000Ah (one word)	sscSetOutputDeviceWord (0, 1, 0×0052, 1, 0×000A);

6.34.6 Sensing module disconnect

The system can be startup with the sensing module disconnected, and simulate can be performed by making remote I/O disconnect valid in control option 1 (parameter No.0200) of the RIO module parameter.
However, the input bit devices allocated to sensing module are OFF, and input word devices are 0 and are not updated. Also, any changes made to the status of output bit devices and output word devices allocated to sensing module are not output to the sensing module. (The status of output bit devices and output word devices can only be checked.)
6.35 Sensing module (axis mode) connection

6.35.1 Summary

The sensing pulse I/O module of the sensing module can be connected as axis mode. By connecting as axis mode, the position board automatic operation etc. can be used to control pulses as if controlling a servo amplifier. This section is for sensing module axis mode. Refer to Section 6.34 when using the sensing module in station mode.

Note 1. Feedback pulse input enabled
2. Feedback pulse input disabled
(1) Number of connecting axes on the sensing pulse I/O module

For sensing pulse I/O modules being used in axis mode, up to 4 axes can be connected per sensing SSCNETIII/H head module.
The number of axes that can be connected to a sensing pulse I/O module varies according to whether feedback pulses are enabled/disabled. The number of axes that can be connected to a sensing pulse I/O module according to whether feedback pulses are enabled/disabled are shown in the table below.

Feedback pulse input	Number of axes connected per sensing pulse I/O module
Enabled	1 axis
Disabled	2 axes

(2) Specifications comparison with servo amplifier MR-J4(W \square)- $\square B$

The following is a table comparing the specifications when using a sensing pulse l/O module (axis mode) and servo amplifier (MR-J4(W \square)- $\square \mathrm{B}$)

Classification	Item	Sensing pulse I/O module (axis mode)	Servo amplifier (MR-J4(W \square)- \square B)
Operation function	JOG operation	Available	Available
	Incremental feed	Available	Available
	Automatic operation	Available	Available
	Linear interpolation	Some restrictions	Available
	Circular interpolation MC300	Some restrictions	Available
	Home position return	Dog method, data set method, dog cradle method, limit switch combined method, limit switch front end method, dog front end method, Z-phase detection method (with restrictions)	Dog method, data set method, stopper method, dog cradle method, limit switch combined method, limit switch front end method, dog front end method, Z-phase detection method, scale home position signal detection method, scale home position signal detection method 2
	Home position reset function	Available	Available
Application function	Electronic gear	Available	Available
	Speed unit	Command units/min, command units/s, r/min	Command units/min, command units/s, $\mathrm{r} / \mathrm{min}$
	Acceleration/deceleration	Linear acceleration/deceleration, start up speed enable, S-curve acceleration/deceleration (sine acceleration/deceleration), jerk ratio acceleration/deceleration MC300 , vibration suppression command filter 1 MC300	Linear acceleration/deceleration, start up speed enable, S-curve acceleration/deceleration (sine acceleration/deceleration), jerk ratio acceleration/deceleration MC300, vibration suppression command filter 1 MC300
	Servo off	Some restrictions	Available
	Stop function	Forced stop (Note 1), stop operation, rapid stop operation	Forced stop, stop operation, rapid stop operation
	Limit switch	Available	Available
	Software limit	Available	Available
	Interlock	Available	Available
	Rough match output	Available	Available
	Torque limit	Not available	Available
	Command change	Position, speed, time constant	Position, speed, time constant
	Backlash	Available	Available
	Position switch	Some restrictions (Note 2)	Available
	Completion of operation signal	Available	Available
	Interference check	Some restrictions (Note 2)	Available
	Home position search limit	Available	Available
	Gain switching	Not available	Available
	PI-PID switching	Not available	Available
	Absolute position detection system	Not available	Available
	Home position return request	Available	Available
	Other axes start	Some restrictions (Note 2)	Available
	Pass position interrupt	Some restrictions (Note 2)	Available
	High response I/F	Available	Available
	In-position signal	Some restrictions	Available
	Digital I/O	Available	Available
	I/O device	Available	Available
	Servo amplifier general I/O	Some restrictions (Start axis only)	Available
	Mark detection	Not available	Available

Classification	Item	Sensing pulse I/O module (axis mode)	Servo amplifier (MR-J4(W \square)- $\square \mathrm{B}$)
Application function	Continuous operation to torque control	Not available	Available
Auxiliary function	Reading/writing parameters	Available	Available
	Changing parameters at the servo	Not available	Available
	Alarm and system error	Available	Available
	Monitor	Some restrictions	Available
	High speed monitor	Some restrictions (Note 3)	Available
	Interrupt	Some restrictions	Available
	User watchdog function	Some restrictions (Note 1)	Available
	Parameter backup	Available	Available
	Test mode (with MR-Configurator2)	Not available	Connection to MR Configurator2 via position board is available
	Reconnect/disconnect function	Available	Available
	Sampling	Available	Available
	Log	Available	Available
	Amplifier-less axis function	Some restrictions	Available
	Alarm history function	Available	Available
	Transient transmit	Available	Available
Tandem drive	Tandem drive	Not available	Available
Interface mode	Control mode switch	Not available (position control only)	Available
	Event detection	Some restrictions	Available
	Home position set	Not available	Available

Note 1. The operation at a forced stop input depends on the specifications of the sensing pulse I/O module (axis mode).
2. When there is no feedback pulse input, the feedback position is determined as the position output to the driver by the sensing pulse I/O module.
3. Electrical current feedback and position droop are not supported.

6.35.2 System startup

(1) Power supply ON/power supply OFF
(a) At system startup, turn ON the control circuit power supply of all modules connected to the position board (servo amplifiers, sensing pulse I/O modules). Modules connected after modules whose control circuit power supply is not turned ON are unable to communicate with the position board. An axis that has not been mounted exists (system error E400) occurs in the position board, and the servo amplifiers and sensing pulse I/O modules are in a forced stop status.
Note: Turn ON the control circuit power supply for modules even when they are not being controlled partially through operation (control axis setting of parameter No. 0200 is " 0 : Not controlled").
(b) If the control circuit power supply of modules (servo amplifiers, sensing pulse I/O modules) is turned OFF while the system is running, communication with all the modules connected after the module whose control circuit power supply was turned OFF is disconnected, and an axis that has not been mounted exists (system error E400) occurs in the position board. Also, the axes connected to the sensing pulse I/O module stop according to the settings and specifications of the sensing pulse I/O module and drivers being used.
(2) Axis mode settings/feedback pulse input settings

The axis mode setting of the sensing pulse I/O module and the feedback pulse input enable/disable setting are made with the mode select switch (SW1).

Mode select switch		Mode	Occupied axes	Description
SW1-1	SW1-2			
OFF	OFF	Axis mode	2 axes	A axis and B axis can be used in axis mode. Feedback pulse input cannot be used. (factory default) CN1: A axis pulse output CN2: B axis pulse output
ON	OFF	Axis mode	1 axis	A axis can be used in axis mode. CN1: A axis pulse output CN2: A axis feedback pulse input
OFF	ON	Axis mode	1 axis	B axis can be used in axis mode. CN1: B axis feedback pulse input CN2: B axis pulse output
ON	ON	Station mode	0 axes	A axis and B axis can be used in station mode. (Note 1)

Note 1. Refer to Section 6.34 for the station mode connection method.
(3) Axis No. setting parameter

Axis No. settings are made with the sensing SSCNETIII/H head module station number selection rotary switch.

The axis No. and station number selection rotary switch combinations are correlated as shown on the table below. Set the axis No. so that it will not duplicate in the same line. If it is duplicated, the "An axis that has not been mounted exists" (system error E400) will occur at the time of system startup (system command code: 000Ah).

Station number selection rotary switch		Sensing pulse I/O module (axis mode) axis No. (Note 1)			
SW1	SW2	Start axis	Second axis	Third axis	Fourth axis
0	0	d1	d2	d3	d4
	1	d2	d3	d4	d5
	2	d3	d4	d5	d6
	3	d4	d5	d6	d7
	4	d5	d6	d7	d8
	5	d6	d7	d8	d9
	6	d7	d8	d9	d10
	7	d8	d9	d10	d11
	8	d9	d10	d11	d12
	9	d10	d11	d12	d13
1	0	d11	d12	d13	d14
	1	d12	d13	d14	d15
	2	d13	d14	d15	d16
	3	d14	d15	d16	d17
	4	d15	d16	d17	d18
	5	d16	d17	d18	d19
	6	d17	d18	d19	d20
	7	d18	d19	d20	d21
	8	d19	d20	d21	d22
	9	d20	d21	d22	d23
2	0	d21	d22	d23	d24
	1	d22	d23	d24	d25
	2	d23	d24	d25	d26
	3	d24	d25	d26	d27
	4	d25	d26	d27	d28
	5	d26	d27	d28	d29
	6	d27	d28	d29	d30
	7	d28	d29	d30	d31
	8	d29	d30	d31	d32
	9	d30	d31	d32	(Note 2)

Station number selection rotary switch		Sensing pulse I/O module (axis mode) axis No. (Note 1)			
SW1	SW2	Start axis	Second axis	Third axis	Fourth axis
3	0	d 31	d 32	(Note 2)	
	1	d 32		(Note 2)	

Note 1. When connecting sensing SSCNETIII/H head module + sensing extension module, the axis No. for the second sensing extension module and after is assigned in ascending order from the sensing SSCNETII/H head module.
2. Set so that the axis No. of last connected sensing extension module does not exceed the axis below. If the axis below is exceeded, the "An axis that has not been mounted exists" (system error E400) will occur at the time of system startup (system command code: 000Ah).

- Using MR-MC2 $\square \square$: d20
- Using MR-MC3 $\square \square$: d32

POINT

- The sensing I/O module (axis mode) axis No. and the axis No. to be managed on the position board are different. For details, refer to Section 4.5.6.
(4) Parameter setting

After parameter initialization, set the parameters according to the system such as for control cycle and external signal (sensor) input option.
(a) System option 1 setting

SSCNET communication method and control cycle is set by System option 1 (parameter No.0001). Set the SSCNET communication method to SSCNETII/H method.
The number of axes that can be connected depends on the control cycle setting. The number of axes that can be connected (maximum number of axes connected) is the same as when a servo amplifier is used. Refer to Section 4.5.2.
Make sure the total number of axes used by the servo amplifier and sensing pulse I/O module (axis mode) do not exceed maximum number of axes connected.
(b) System option 2 setting

Set control mode (standard mode or interface mode) by System option 2 (parameter No.0002).
(c) Servo parameter setting

When the power supply is turned ON or after parameter initialization (system command code: 0003h), all of the servo parameters in the position board are the servo amplifier MR-J4(W \square)- $\square \mathrm{B}$ parameter initial values. Change all of the servo parameter settings for axis mode.
(d) Control option 1 setting

When controlling sensing pulse I/O module (axis mode), set "1: Control" for control axis of control option 1 (parameter No.0200) for all axes to be controlled. When the axis No. is set out of the controllable range, a system setting error (alarm No. 38, detail 01) will occur at the corresponding station, and the station cannot be controlled. If a module set to "1: Control" is in a state where communication cannot be made, such as not connected or control circuit power is OFF, the "An axis that has not been mounted exists" (system error E400) will occur during system startup (system command code: 000Ah), and the module is in a forced stop state.

POINT

- If "An axis that has not been mounted exists" (system error E400) occurs, it is possible to check which axis was set using an incorrect axis No. by checking "Information concerning axis that is not mounted 1" (monitor No.0480) or "Information concerning axis that is not mounted 2" (monitor No.0481).

1) Control parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
0200	*OPC1	Control option 1	0000h		$\begin{aligned} & \text { 0000h to } \\ & 2101 \mathrm{~h} \end{aligned}$	

(e) Sensor input option setting External signal (sensor) is connected by setting sensor input options (parameter No.0219).
Setting is the same as when using a servo amplifier. Refer to Section 4.5.7.

1) When selecting driver input

When 1 (driver input) is selected as the sensor destination, the sensor (LSP, LSN, DOG) status connected to the driver is imported via SSCNET.
When using sensing pulse input module, the sensor signal is connected to the following connectors.

Signal name	Destination connector pin No.		Symbol ($\square:$ A,$~ B) ~$
	CN1-9	B-axis	
LSN	CN1-21	CN2-21	RLS \square
DOG	CN1-10	CN2-10	DOG \square

POINT

- For sensor connection to the driver, refer to the instruction manual of the driver.
- If communication error (system error E401 to E407) occurs, sensor (LSP, LSN, DOG) input status turns off.
- If communication error (system error E400) occurs, the input status of the corresponding axis turns off.

\triangle CAUTION

- When "1: driver input" is selected as sensor destination, a delay occurs due to the communication to detect the signal status. Take the delay time due to communication into consideration when installing each sensor.
- Communication delay when control cycle is 0.88 ms : approx. 2 ms
- Communication delay when control cycle is 0.44 ms : approx. 1.5 ms
- Communication delay when control cycle is 0.22 ms : approx. 1.3 ms .

2) When selecting digital or input device input

Same as when servo amplifier is used.
3) When selecting not connected

Same as when servo amplifier is used.
4) When selecting dual port memory input

Same as when servo amplifier is used.
(f) Vendor ID and type code setting

Available functions, parameter settings and ranges will vary by servo amplifier, sensing pulse I/O module (axis mode), and the connected driver type.
At the time the communication with the sensing pulse I/O module has started, the position board will perform consistency check between vendor ID and type code of the sensing pulse I/O module connected and the parameter set. If a consistency check error occurs, driver type code error (system error E405) will be output. Therefore set the correct vendor ID (parameter No.021D) or "type code (parameter No.021E)".

1) Control parameter

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function
021D	*VEND	Vendor ID	0000h		0000h to FFFFh	Set the vendor ID. (SSCNETII/H communication) 0000h: Mitsubishi Electric
021E	*CODE	Type code	1000h		0000h to FFFFh	Set the type code. 3015h: Sensing SSCNETII/H head module + sensing pulse I/O module (axis mode) 3025h: Sensing pulse I/O module (axis mode)

POINT

- If driver type code error (system error E405) occurred, the axis that has set an incorrect type code can be confirmed with "type code erroneous axis information" (monitor No.0484, 0485).
- Set the control axis of control option 1 (parameter No.0200) to "1: Controlled" to match the sensing pulse I/O module connected. When the connection status does not match, the "An axis that has not been mounted exists" (system error E400) occurs.

6.35.3 Operation functions

When using a sensing pulse I/O module (axis mode), unlike when using a servo amplifier, there are restrictions in some operation functions. The following describes details regarding restrictions.

Function	
JOG operation	
Incremental feed	Restriction details
Linear interpolation	
Circular interpolation $\mathbf{M C 3 0 0}$	
Home position return	Refer to "(2) Home position return" in this section. in this section.
Home position reset	Refer to "(3) Home position reset function" in this section.

(1) Interval time

When switching rotation direction for drivers such as stepping motors, there are normally restrictions on command pulse timing (interval time). Take the restrictions of the driver you are using into consideration when switching rotation direction and set a dwell time (the time when pulses are not output).
(Example) When the movement direction changes in linear interpolation continuous operation When the movement direction changes in continuous operation, the interval time may not be kept. Continuous operation cannot be used in this case. Instead, use the smoothing stop or inposition stop and adjust the interval time through dwell time.

(2) Home position return

When using sensing pulse I/O module (axis mode), the methods that can be used and the operation of home position return are different to when a servo amplifier is used.

Method	Characteristics	Remarks
Dog method home position return	A method that starts deceleration at the front end dog, and uses the first zero point signal after the rear end dog for home position.	Because this method uses the zero point signal for home position, make sure to input the zero point signal to the sensing pulse I/O module.
Data set method home position return	A method that uses the current position as the home position when moving to a given position in JOG operation etc.	Dog and zero point signal are not required.
Stopper method home position return	A method that uses the position after a collision stop caused by JOG operation etc., as the home position.	Not supported.
Dog cradle method home position return	A method that starts deceleration at dog front end, returns to the dog front end once, and moves at creep speed again, using the first zero point signal after passing the proximity dog front end as the home position.	Because this method uses the zero point signal for home position, make sure to input the zero point signal to the sensing pulse I/O module.
Limit switch combined method home position return	A method that uses the zero point signal prior to the limit switch of the opposite direction to the home position return direction as the home position.	Because this method uses the zero point signal for home position, make sure to input the zero point signal to the sensing pulse I/O module.
Limit switch front end method home position return	A method that uses the limit switch front end of the opposite direction to the home position return direction as the home position.	Dog and zero point signal are not required.
Dog front end method home position return	A method that starts deceleration at the front end dog, moves at creep speed in the opposite direction, and uses the position where dog front end is detected for home position.	Zero point signal is not required.
Z-phase detection method home position return	A method that uses the first zero point signal in the direction of the home position return as the home position. The shortcut direction for home position return cannot be used. Z-phase mask amount cannot be used.	Because this method uses the zero point signal for home position, make sure to input the zero point signal to the sensing pulse I/O module.
Scale home position signal detection method home position return	A method that uses the linear scale home position signal as the home position.	Not supported.
Scale home position signal detection method 2 home position return	A method that uses the linear scale home position signal as the home position.	Not supported.

Note. Home position return that uses an incremental linear scale is not supported. Unlike when using a servo amplifier, home position signal re-search of home position return option 1 (parameter No.0240) cannot be set to "1: Search again."
(a) Standby time after clear signal output

The standby time until the position for home position return is settled can be adjusted by setting standby time after clear signal output (parameter No.0252). When feedback pulse input is enabled, and the position reference for home position is established before the position is settled, the home position return is completed with a discrepancy between the current position and the feedback position. In such cases, set the standby time after clear signal output (parameter No.0252) for both the system configuration and operation pattern.

$\begin{array}{c}\text { Parameter } \\ \text { No. }\end{array}$	Symbol	Name	$\begin{array}{c}\text { Initial } \\ \text { Value }\end{array}$	Units	$\begin{array}{c}\text { Setting } \\ \text { range }\end{array}$	Function
0252	COW	$\begin{array}{l}\text { Standby time after clear } \\ \text { signal output }\end{array}$	0	ms	0 to 1000	$\begin{array}{l}\text { Set the standby time from the clear signal output } \\ \text { until position settling is completed during home } \\ \text { position return. } \\ 0\end{array}$
1 to $1000: 1$ to 1000 ms						

Note. Set the standby time after clear signal output to a longer time than the clear signal output pulse width time (parameter No.114B) of the sensing pulse I/O module.
(b) Operation for standby time after clear signal output

Standby time after clear signal output is the time it takes for position settling to be completed after the clear signal is output. The operation for standby time after clear signal output of dog method home position return is shown below.

The standby time after clear signal output for each home position return is shown below

1) Dog method home position return

2) Data set method

3) Dog cradle method home position return

4) Limit switch combined method

5) Limit switch front end method

6) Dog front end method

7) Z-phase detection method

(3) Home position reset function

When feedback pulse input is enabled, if home position reset is executed before position is settled such as immediately after operation, the home position reset is completed with a discrepancy between the current position and the feedback position. In such cases, the standby time after clear signal output (parameter No.0252) can be set in the same way as the data set method home position return to adjust the standby time until position settling of home position reset is completed.

6.35.4 Application functions

(1) Servo OFF

If a motor was rotated due to an external force while the servo was OFF (such as during servo alarms and while the servo ON signal is OFF), a position discrepancy occurs, and corect positioning cannot be executed until home position return is made again. (Note 1)
By setting incompletion of home position return after servo OFF of control option 3 (parameter No.0202) to
"1: Make home position return incomplete", incorrect operation when there are position discrepancies can be prevented. (Note 2)
Also, when position discrepancies during servo OFF do not need to be considered, setting incompletion of home position return after servo OFF of control option 3 (parameter No.0202) to "0: Do not make home position return incomplete", enables operation without home position return after servo OFF.

Note 1. Position discrepancy occurs regardless of the feedback pulse input enable/disable setting.
2. After servo OFF, home position return not complete (operation alarm 90, detail 01) occurs at startup for operations that require home position return (automatic operation, linear interpolation operation MC200/interpolation operation MC300 , data set function) until home position return is executed again.

(2) In-position signal

For the in-position signal (INP), the position board checks the in-position range and controls turning on or off the signal.
The in-position signal controlled by the driver is displayed as the servo amplifier in-position signal (SINP). Match the position board and driver in-position range settings.

Note. When there is no feedback pulse input, the speed is the speed output by the sensing pulse I/O module.
(a) Control parameter

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function
0232	INPC	In-position range (controller)	0	pulse	0 to 65535	Set the in-position range to be determined by the position board. Note. When there is no feedback pulse input, the position is determined with the position output to the driver by the sensing pulse I/O module.

(b) Axis data status bit

Address (Note)		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MR- MC3				
1060	0050A0	0	RDY	Servo ready	Each axis
		1	INP	In-position	Each axis
		2	-	Reserved	
		3	ZPAS	Passed Z-phase	Each axis
		4	$\xrightarrow{\sim}$	Reserved	\bigcirc
		5	SALM	Servo alarm	Each axis
		6	SWRN	Servo warning	Each axis
		7		Reserved	

Address (Note)		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	MR- MC3 $\square \square$				
1069	0050A9	0	IWT	Interference check standby	Each axis
		1	SINP	Servo amplifier in-position	Each axis
		2 3 4 5 6 7		Reserved	

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+C 0 h$
- Using MR-MC3 $\square \square:+140 h$
(3) Servo amplifier general I/O

The servo amplifier general I/O function controls the I/O signal connected to the sensing SSCNETII/H head module via SSCNET. The user program can control the I/O signal with the digital I/O table or I/O device table, by assigning the I/O signal connected to the sensing SSCNETII/H head module to the digital I/O table or I/O device table.

POINT

- When a communication error (system error E401 to E407) occurs or SSCNET is disconnected, all the general I/O signals of the servo amplifier turn off.
- The delay time from an input of the general I/O signal of the sensing SSCNETII/H head module to the update of the digital input table is "approx. $0.88 \mathrm{~ms}+($ control cycle $\times 2$)" (approx. 2.7 ms when the control cycle is 0.88 ms). The delay time is also the same for when using an input device table.
- The delay time from the update of the output device table by the host controller to the output of the sensing module signal is "sensing module output response time + (control cycle $\times 3$)".
In the case of the output bit device output using in the other axes start function, the delay time from other axes start condition satisfaction to the output is "sensing module output response time + (control cycle $\times 2$)".
Refer to the sensing module instruction manual for the sensing module output response time.
［Compatible models］

Model	Remarks
Sensing SSCNETII／H head module	Input ：12 points Output ：2 points

The following shows the connectors of the sensing SSCNETII／H head module to be connected to the general I／O signals．Each general I／O signal is assigned to the digital input signal（DI＿ロロロ）and digital output signal（DO＿ロロロ）．
（a）General input

Signal name	Destination connector pin No．	Symbol
DI＿$\square \square 1$	CN2－13	DI1
DI＿$\square \square 2$	CN2－1	DI2
DI＿$\square \square 3$	CN2－14	DI3
DI＿$\square \square 4$	CN2－2	DI4
DI＿$\square \square 5$	CN2－15	DI5
DI＿$\square \square 6$	CN2－3	DI6
DI＿$\square \square 7$	CN2－16	DI7
DI＿$\square \square 8$	CN2－4	DI8
DI＿$\square \square 9$	CN2－17	DI9
DI＿$\square \square 10$	CN2－5	DI10
DI＿$\square \square 11$	CN2－18	DI11
DI＿$\square \square 12$	CN2－6	DI12

（b）General output

Signal name	Destination connector pin No．	Symbol
DO＿$\square \square 1$	CN2－20	D01
DO＿$\square \square 2$	CN2－8	D02

(2) Settings

When using the general I/O function of the sensing SSCNETIII/H head module, set the following parameters.
Set the parameters to the axes whose type code (parameter No.021E) is set to 3015 h
(a) Servo parameter

Parameter No.	MR-J4-B parameter No.	Symbol	Name
11 A 0	PC33	*HDI1	Head module DI1 (CN2-13) setting
11 A 1	PC34	*HDI2	Head module DI2 (CN2-1) setting
11 A 2	PC35	*HDI3	Head module DI3 (CN2-14) setting
11 A 3	PC36	*HDI4	Head module DI4 (CN2-2) setting
11 A 4	PC37	*HDI5	Head module DI5 (CN2-15) setting
11 A 5	PC38	*HDI6	Head module DI6 (CN2-3) setting
11 A 6	PC39	*HDI7	Head module DI7 (CN2-16) setting
11 A 7	PC40	*HDI8	Head module DI8 (CN2-4) setting
11 A 8	PC41	*HDI9	Head module DI9 (CN2-17) setting
11 A 9	PC42	*HDI10	Head module DI10 (CN2-5) setting
11 AA	PC43	*HDI11	Head module DI11 (CN2-18) setting
11 AB	PC44	*HDI12	Head module DI12 (CN2-6) setting
11 AE	PC47	*HDIO1	Head module DO1 (CN2-20) setting
11 AF	PC48	*HDIO2	Head module DO2 (CN2-8) setting

(b) Control parameter

Parameter No.	Symbol	Name	Initial value	Unit	Setting range	Function	
0213	*GIOO	General I/O option	0000h		$\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 0011 \mathrm{~h} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0 & 0 \\ \hline \end{array}$	Servo amplifier general input setting Set whether to use the general input of the servo amplifier. 0 : Not used 1: Used -Servo amplifier general output setting Set whether to use the general output of the servo amplifier. 0 : Not used 1: Used

Parameter No.	Symbol	Name	Initial value	Unit	Setting range	Function
0214	*GDNA	General I/O number assignment	0000h		$\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & \text { FFFFh } \end{aligned}$	Set assignment of the general I/O number. The setting target differs depending on the I/O table (parameter No.004A) setting. [When using a digital I/O table]
						General input assignment Specify the first digital input area number to assign the general input. 00h to 3Fh: Digital input area 0 to 63 Example: When the digital input area number 01 is specified, assign 16 points of DI_010 to DI_01F. However, DI_013 to DI_01F are unavailable. General output assignment Specify the first digital output area number to assign the general output. 00h to 3Fh: Digital output area 0 to 63 Example: When the digital output area number 02 is specified, 16 points are assigned from DO_020 to DO_02F. However, DO_023 to DO_02F are unavailable. [When using a I/O device table (MR-MC2 \square method)]
						General input assignment Specify the first input word device number that corresponds with the input bit device number to assign the general input. 00h to FFh: Input word device number 0 to FF Example: When the input word device number 01 is specified, 16 points are assigned from DVI_010 to DVI_01F. However, DVI_013 to DVI_01F are unavailable. General output assignment Specify the first output word device number that corresponds with the output bit device number to assign the general input. 00h to FFh: Output word device number 00 to FF Example: When the output word device number 02 is specified, 16 points are assigned from DVO_020 to DVO_02F. However, DVO_023 to DVI_02F are unavailable. [When using a I/O device table (expanded points method)] MC300 Set in general input No. assignment (parameter No.0215) and general output No. assignment (parameter No.0216).

Parameter No.	Symbol	Name	Initial value	Unit	Setting range	Function
0215	*GDINA	General input No. assignment MCsoO	0000h		$\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 023 \mathrm{Fh} \end{aligned}$	Only valid when the I/O table (parameter No.004A) setting is "Use I/O device table (expanded points method)". General input assignment Specify the first input word device number that corresponds with the input bit device number to assign the general input. 000h to 23Fh: Input word device number 000 to 23F Example: When the input word device number 001 is specified, 16 points are assigned from DVI_0010 to DVI_001F. However, DVI_0013 to DVI_001F are unavailable.
0216	*GDONA	General output No. assignment MC300	0000h		$\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 023 F h \end{aligned}$	Only valid when the I/O table (parameter No.004A) setting is "Use I/O device table (expanded points method)". General output assignment Specify the first output word device number that corresponds with the output bit device number to assign the general input. 000 h to 23 Fh : Output word device number 000 to 23 F Example: When the output word device number 002 is specified, 16 points are assigned from DVO_0020 to DVO_002F. However, DVO_0023 to DVI_002F are unavailable.
0219	*SOP	Sensor input option	0000h		$\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 0304 \mathrm{~h} \end{aligned}$	

6.35.5 Auxiliary functions

(1) Interrupt
(a) Interrupt conditions

The interrupt conditions that can be used with a servo amplifier and in axis mode vary.
The interrupt conditions that can be used with sensing pulse I/O module (axis mode) are shown below.

Parameter No. 0204 Interrupt conditions 1

Bit	Symbol	Name
0	RDY	Servo ready
1	INP	In-position
2		Reserved
3	ZPAS	Passed Z-phase
4		Reserved
5	SALM	Servo alarm
6	SWRN	Servo warning
7		Reserved
8	OP	During operation
9	CPO	Rough match
10	PF	Positioning complete
11	ZP	Home position return complete
12	SMZ	During smoothing of stopping
13	OALM	Operation alarm
14	OPF	Completion of operation
15	PSW	Position switch

Parameter No. 0205 Interrupt conditions 2

Bit	Symbol	Name
0		Reserved
1		
2		
3		
4		
5		
6		
7		
8	IWT	Interference check standby
9	SINP	Servo amplifier in-position
10		Reserved
11		
12		
13		
14		
15		

6.35.6 Interface mode

(1) Servo OFF

If a motor was rotated due to an external force while the servo was OFF in interface mode, a position discrepancy can occur. When a position discrepancy occurs, the current position is matched with the feedback position automatically at servo ON.
However, is servo ON is executed with the motor operating, the current position and feedback position discrepancy could remain. Do not execute servo ON when the motor is operating.
（2）Event detection function
The event factors that can be used with a servo amplifier and in axis mode vary．The event factors that can be used in axis mode are shown below．
The addresses in the table are the addresses for the first axis．For the second axis and after，add the following value for each axis．
－Using MR－MC2 $\square \square:+04 h$
－Using MR－MC3口ロ：＋08h

Address		Bit	Symbol （Note）	Signal name
MR－MC2 $\square \square$	MR－MC3口 \square			
$\begin{aligned} & \text { OEE0 } \\ & \text { to } \\ & \text { 0EE3 } \end{aligned}$	$\begin{aligned} & \text { 0043E0 } \\ & \text { to } \\ & 0043 E 7 \end{aligned}$	0	iRDYON	Servo ready（ON edge）
		1	ilNPON	In－position（ON edge）
		2		Reserved
		3		
		4	iSALMON	Servo alarm（ON edge）
		5	iSWRNON	Servo warning（ON edge）
		6	－	Reserved
		7	iOALMON	Operation alarm（ON edge）
		8		Reserved
		9		
		10		
		11		
		12		
		13	iLSPON	＋side limit switch（ON edge）
		14	iLSNON	－side limit switch（ON edge）
		15	iDOGON	Proximity dog（ON edge）
		16	iRDYOF	Servo ready（OFF edge）
		17	ilNPOF	In－position（OFF edge）
		18		Reserved
		19		
		20	iSALMOF	Servo alarm（OFF edge）
		21	iSWRNOF	Servo warning（OFF edge）
		22	${ }^{\text {a }}$	Reserved
		23	iOALMOF	Operation alarm（OFF edge）
		24		Reserved
		25		
		26		
		27		
		28		
		29	iLSPOF	＋side limit switch（OFF edge）
		30	iLSNOF	－side limit switch（OFF edge）
		31	iDOGOF	Proximity dog（OFF edge）
		32		Reserved
		：		
		63		

Note．OFF：No factor of event exists．
ON：A factor of event exists．

7. AUXILIARY FUNCTION

7.1 Reading/writing parameters

The parameter data in the position board is accessed using the parameter read/write function. Types of parameters include: system parameters, control parameters, and servo parameters. The parameter read/write function can be used after system preparation completion (system status code: 0001h).

7.1.1 Writing parameters

Fig. 7.1 Flow when data is written to parameters

POINT

- In some parameters, changing the settings after the system has started is invalid. Refer to "Chapter 11", concerning which parameters this applies to.
- 32 bit length parameters are separated into upper and lower items, therefore change them simultaneously.
Changing of 32 bit length parameters separately can lead to erroneous operation.
- Two parameters can be written at a time. When writing one parameter, set 0 to the other parameter.
- If an erroneous parameter No. is set, a parameter number error (PWENn ($\mathrm{n}=1$ to 2)) is turned on. However, the parameter No. 0 is not considered an erroneous parameter No.
- If a parameter setting is outside the setting range, a parameter data out of bounds (PWEDn ($\mathrm{n}=1$ to 2)) is set.
- Parameter limit checks are not performed before system running (System status code: 000Ah). If the parameter set is incorrect, parameter error (system alarm 37 , servo alarm 37, operation alarm 37, detail 01) occurs when the system is started. Check the error parameter number in servo parameter error number (monitor No. 0510 to 0537), control parameter error number (monitor No. 0330 to 033F) and system parameter error number (monitor No. 0410 to 0417), and after rebooting software, set correct parameter and start the system again.
Parameter error (system alarm 37, operation alarm 37, detail 01) cannot be reset by the alarm reset.
- In system parameter write, parameter write command (SPWRT), parameter write access complete (SPWFIN), parameter number error (SPWENn ($\mathrm{n}=1$ to 2)) and parameter data out of bounds (SPWEDn ($\mathrm{n}=1$ to 2)) are used.

7.1.2 Reading parameters

Fig. 7.2 Flow when data is read from parameters

POINT

- Two parameters can be read at a time. When reading one parameter, set 0 to the other parameter.
- If an erroneous parameter number is set, a parameter number error (PR ENn ($\mathrm{n}=1$ to 2)) turned on. However, the parameter number. 0 is not considered an erroneous parameter number.
- In system parameter read, parameter read command (SPRD), parameter read access complete (SPRFIN) and parameter number error (SPRENn ($\mathrm{n}=1$ to 2)) are used.

7.2 Changing parameters at the servo

The position board has a function of reflecting the results of changes made to parameters on the servo amplifier to the host controller. When parameters are changed on the servo amplifier, the position board changes the parameter data area (internal memory), and notifies the host controller using the "changes to servo parameters exist" (PSCHG) signal. The changed servo parameter numbers are notified in units of 16 to the servo parameter change number table. To identify the changed parameter, check the servo parameter change number (monitor No. 0590 to 05B7) corresponding to the notification. Monitor this signal periodically and record parameters for which changes have been made.

POINT

- The reasons that parameters are re-written on the servo amplifier are as follows.
- When parameters are changed using MR Configurator2 (This includes execution of the machine analyzer and the gain search function).
- The parameter was automatically changed such as by the real time auto tuning function.
- Refer to the Servo Amplifier Instruction Manual on your servo amplifier concerning servo parameters that are automatically changed.

API LIBRARY

- Use the sscCheckSvPrmChangeNumEx function to get the servo parameter change number.

The sequence for when servo parameters are changed is as follows.

Note. Check the servo parameter change number (monitor No. 0590 to 05B7) corresponding to the servo parameter change number $11 \square \square$ to $13 \square \square$ (PSN11 to PSN13).

Fig. 7.3 Data flow when servo parameter(s) are changed

7.3 Alarm and system error

When an incorrect setting or incorrect operation is done, the position board raises an alarm, so make user program monitor the alarm periodically.
The position board can raise the following six alarms: system alarm, servo alarm, operation alarm, RIO module alarm, RIO control alarm, and system error. For the cause of occurrence and treatment for each alarm, refer to Chapter 13.

API LIBRARY

- Use the sscGetAlarm/sscResetAlarm functions to get/reset the alarm number. Specify the following in the argument for the alarm type.
- System alarm : SSC_ALARM_SYSTEM
- Servo alarm : SSC_ALARM_SERVO
- Operation alarm : SSC_ALARM_OPERATION
- RIO module alarm : SSC_ALARM_UNIT
- RIO control alarm : SSC_ALARM_UNIT_CTRL
- Use the sscGetSystemStatusCode function to get the system error.
(1) System alarm

System alarm is an alarm a position board raises by incorrect setting of a system parameter or each function. When a system alarm occurs, during system alarm signal (CALM) turns on and the alarm number and the detail number are stored in System alarm number and Specific system alarm number. To reset the system alarm, turn on the system alarm reset signal (CRST).

POINT

- Parameter error (system alarm 37) cannot be reset with the system alarm reset signal. Reexamine the parameter and start the system again.
- If another system alarm occurs while the system alarm is occurring, the first system alarm is notified to the system alarm number. By using log function, the history of the system alarm number can be checked.
(2) Servo alarm

Servo alarm is an alarm a servo amplifier raises by incorrect setting of a system parameter. When a servo alarm occurs, during servo alarm signal (SALM) or during servo warning (SWRN) turns on and the alarm number and the detail number are stored in Servo alarm number and Specific servo alarm number. To reset the servo alarm, turn on the servo alarm reset signal (SRST).

POINT

- For the reset of servo alarms, it depends on the specifications of the servo amplifier. For details, refer to the Servo Amplifier specification for your servo amplifier.
- When servo alarms have occurred by multiple causes, the servo alarm number notified to depends on the specifications of the servo amplifier.
(3) Operation alarm

Operation alarm is an alarm a position board raises in each axis by incorrect setting of a system parameter or each function. When an operation alarm occurs, during operation alarm signal (OALM) turns on and the alarm number and the detail number are stored in Operation alarm number and Specific operation alarm number. To reset the operation alarm, turn on the operation alarm reset signal (ORST).

POINT

- Parameter error (operation alarm 37) and system setting error (operation alarm 38) cannot be reset with the operation alarm reset signal. Check the cause of the alarm and treatment, and start the system again.
- If another operation alarm occurs while the operation alarm is occurring, the first operation alarm is notified to the operation alarm number. By using log function, the history of the operation alarm number can be checked.
(4) RIO module alarm

RIO module alarms occur from remote I/O modules as a result of incorrect RIO module parameter settings, and remote I/O module hardware errors.
When a RIO module alarm occurs, the RIO module alarm (RUALM), or RIO module warning (RUWRN) signal turns ON, and the alarm number/detail number is stored to the RIO module alarm No./detail RIO module alarm No. To reset the RIO module alarm, turn ON the RIO module alarm reset (RURST) signal.

POINT

- The resetting of the RIO module alarm depends on the specifications of the remote I/O module. Refer to the User's Manual of the remote I/O module being used for details.
- When a RIO module alarm occurs due to several factors, the RIO module alarm No. that is notified depends on the specification of the remote I/O module.
(5) RIO control alarm

RIO control alarms occur at each station from the position board as a result of incorrect control parameter settings, and incorrect settings for each function. When a RIO control alarm occurs, the RIO control alarm (RCALM) signal turns ON, and the alarm number/detail number is stored to the RIO control alarm No./detail RIO control alarm No. To reset the RIO control alarm, turn ON the RIO control alarm reset (RCRST) signal.

POINT

- The following RIO control alarms cannot be reset. Check the error causes and corrective actions, and start the system again.
- Parameter error (RIO control alarm 37)
- System setting error (RIO control alarm 38)
- I/O No. assignment setting error (RIO control alarm 39)
- When another RIO control alarm occurs at the same time a RIO control alarm has already occurred, the RIO control alarm No. of the RIO control alarm that occurred first is notified. The RIO control alarm No. history can be checked by using the log function.
(6) System error

System error occurs in the case when positioning control cannot be continued, such as when a hardware error of a position board occurs, when SSCNET communication error occurs. Error code of the system error is stored in the system status code.

POINT

- System error cannot be reset. Reboot the software as necessary and start the system again.
- If another system error occurs while the system error is occurring, the error code of the system status code is overwritten. By using log function, the history of the system error occurred while system is running can be checked.

7.4 Monitor function

7.4.1 Summary

The monitor function is for referencing servo information such as current command position, speed feedback etc. and operation information and system information.
When monitoring system information, the monitor area in the system command/status table is used. Also, when monitoring servo information and operational information, the monitor area of the command/status table for each axis is used.
2 items of system information and 4 items per axis of servo information can be monitored.
While the monitor command signal (MON) is on, the monitor data is continuously updated.
POINT

- The update period is the control cycle to several ms and the updated period differs depending on the control status.

When changing the monitor number, turn off the monitor command signal (MON). Changing of the monitor number is performed on the raising edge of the monitor command signal (MON) (if monitor number is changed while the monitor command is on, it is ignored).
Monitor data is 16 bits per item. For referencing 32 bit data, designate 2 items, upper and lower or designate an operation information (double word) number. For designating operation information (double word) set the monitor number to monitor number 1 or monitor number 3 . If the operation information (double word) number is set to monitor number 2 or monitor number 4 a monitor number error occurs.
Also, when designating operation information (double word) using monitor number 1 or monitor number 3 , set monitor number 2 and monitor number 4 to 0 . If a different monitor number is set for monitor number 2 or monitor number 4 , a monitor number error occurs.

POINT

- If an erroneous monitor number is commanded, a monitor number error (MERn ($\mathrm{n}=1$ to 4)) is turned on. Data for a correct monitor number can be monitored at this time (monitor output is turned on). However, if the monitor number is set to 0 , a monitor number error is not set and monitor data is continually set to 0 .
- Servo information can not be referenced if the servo amplifier is not connected. If the servo amplifier is not connected, "servo amplifier is not connected" signal (MESV) is turned on.
-When using the monitor function (when monitoring the system information), the monitor command (SMON), monitor output (SMOUT), monitor number error signal (SMERn ($\mathrm{n}=1$ to 2)) are used.

7.4.2 Monitor latch function

Monitor data is not updated while the monitor latch command signal (MONR) is on.

POINT

- When using the monitor function (when monitoring the system information), monitor latch command (SMONR) and monitor latch (SMRCH) are used.

```
API LIBRARY
    - To turn ON/OFF the monitor latch command (MONR), set
    SSC_CMDBIT_AX_MON to the command bit number of the
    sscSetCommandBitSignalEx function.
    When using the monitor function (when monitoring the system information), use
    SSC_CMDBIT_SYS_SMON.
    - To check if monitor latch (MRCH or SMRCH) is ON/OFF, set
    SSC_STSBIT_AX_MRCH to the status bit number with the
    sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx functions.
    When using the monitor function (when monitoring the system information), use
    SSC_STSBIT_SYS_SMRCH.
```


7.4.3 High-speed update of monitor data MC300

By setting the monitor data high-speed update function, the data set to monitor No. 1 to 4 can be checked at each control cycle. When using this function, set high-speed update of monitor data (parameter No.0206) to enabled.

POINT

- The monitor Nos. need to be set in the monitor function in advance. When the monitor number error $(\operatorname{MERn}(\mathrm{n}=1$ to 4$))$ is ON , the monitor data with the incorrect monitor No. is 0 .
- Monitor data 1 to 4 (high-speed monitor) are only updated when monitor command (MON) and monitor output (MOUT) are ON. When monitor output (MOUT) is OFF, monitor data 1 to 4 (high-speed monitor) are 0 . Similarly, when monitor Nos. are being changed, monitor data 1 to 4 (high-speed monitor) are 0.
- When a double word (4-byte) monitor No. is set, in order to prevent the separation of the upper and lower data, access 4 bytes of the monitor data (high-speed monitor) when getting monitor data. When using the API library, internally, 4 bytes of data is got.
- When using the monitor latch function, it takes from 4 control cycles to several ms after monitor latch command is turned ON for monitor data to actually be latched.
- This function does not support remote I/O stations.

7.5 High speed monitor function

7.5.1 Summary

High speed monitor function is a function for monitoring current command position and current feedback position etc. It becomes valid after system is started up, and monitor data is updated every control cycle. The data that can be referenced with the high speed monitor function are the following 6 items.

Data item	Units	Data size	Address (Note 1)		Remarks
			MR-MC2 $\square \square$	MR-MC3 $\square \square$	
Current command position	Command units	4 byte	A000h+20h×(n-1)	0E0000h+20h×(n-1)	Same as monitor No.300, 301
Current feedback position	Command units	4 byte	A004h+20h×(n-1)	$0 E 0004 \mathrm{~h}+20 \mathrm{~h} \times(\mathrm{n}-1)$	Same as monitor No.302, 303
Moving speed	Speed units	4 byte	A008h+20h×(n-1)	$0 E 0008 h+20 h \times(\mathrm{n}-1)$	Same as monitor No.304, 305
Feedback moving speed	Speed units	4 byte	A00Ch+20h×(n-1)	0E000Ch+20h×(n-1)	Same as monitor No.316, 317
Electrical current feedback	0.1\%	2 byte	A010h+20h×(n-1)	0E0010h+20h×(n-1)	Same as monitor No.20B
External signal status (Note 2)		2 byte	A012h+20h×(n-1)	$0 E 0012 \mathrm{~h}+20 \mathrm{~h} \times(\mathrm{n}-1)$	Same as monitor No. 320
Position droop (Note 3)	pulse	4 byte	A014h+20h×(n-1)	$0 \mathrm{E} 0014 \mathrm{~h}+20 \mathrm{~h} \times(\mathrm{n}-1)$	Same as monitor No.204, 205

Note 1. n is the axis No.
2. The sensor status specified at the sensor input option (parameter No.0219) is displayed for the external signal status.
3. The position droop monitor is supported by the following software version or later and only in interface mode.

- Using MR-MC2 $\square \square$: Software version A4 or later
- Using MR-MC3 $\square \square$: No software restriction

API LIBRARY

- Use the following functions to get high speed monitor data.
- Current command position : sscGetCurrentCmdPositionFast
- Current feedback position : sscGetCurrentFbPositionFast
- Moving speed : sscGetCmdSpeedFast
- Feedback moving speed : sscGetFbSpeedFast
- Electrical current feedback : sscGetCurrentFbFast
- External signal status : sscGetloStatusFast

7.5.2 Monitor latch function

Monitor data is not updated while the high speed monitor latch command signal (RMONR) is on.

API LIBRARY

- To turn ON/OFF the high speed monitor latch command (RMONR), set SSC_CMDBIT_AX_RMONR to the command bit number of the sscSetCommandBitSignalEx function.
When using the monitor function (when monitoring the system information), use SSC_CMDBIT_SYS_SMON.
- To check if high speed monitor is latched (RMRCH) is ON/OFF, set

SSC_STSBIT_AX_RMRCH to the status bit number with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx function.

7.6 Interrupt

7.6.1 Interrupt sequence

If the interrupt output valid signal (ITS) is on and interrupt conditions are satisfied (Note1), the position board sets the interrupt trigger on the dual port memory and generates an interrupt.
For MR-MC2 $\square \square$, write 1 to an interrupt signal clear register (Note 2) using a host controller for cancellation of the interrupt. For MR-MC3 $\square \square$ cancellation of the interrupt is not required because the PCI Express message signal interrupt (MSI) is used. After cancellation of the interrupt, turn on the interrupt processing complete signal (ITE). The position board turns off the outputting with factor of interrupt signal (ITO) and clears the factor of interrupt to 0 after confirming the interrupt processing complete signal (ITE) is on. The next interrupt output will be put on hold until this operation is performed.

Note 1. The interrupt conditions can be set in system interrupt conditions (parameter No.0004), interrupt conditions 1 and 2 (parameter No.0204, 0205).
2. The interrupt signal clear register is changed to 0 automatically after the interrupt signal (IRQ \square) is turned off.

Note. Only the axis signal with an interrupt generated turns on.

POINT

- If multiple interrupt conditions are satisfied during one control cycle, all corresponding factors for interrupts are turned on.

API LIBRARY

- The factor of interrupt check and interrupt clear register are processed by the interrupt thread and device driver that is created when calling the sscIntStart function. Thus processing by user program is unnecessary.

If another interrupt condition is satisfied while the outputting with factor of interrupt (ITO is on), the factor of interrupt will be put on hold until the interrupt processing complete signal (ITE) turns off from on.

Note. The signal for the axis where the interrupt occurs is turned on.

POINT

- After occurrence of an interrupt, if cancel of interrupt processing can not be performed by the host controller due to being backed up or some other reason, the interrupt output from the position board can not be cancelled. In this case, turn off the power for the position board. MC200

7.6.2 Interrupt conditions

(1) Interrupt conditions (system parameters)

When interrupts the system are to be validated, set the values that designate ON for the bits that correspond to the conditions shown below to the parameter interrupt conditions (parameter No.0004).

$$
\begin{array}{|c|}
\hline \text { API LIBRARY } \\
\hline \text { • Use sscChangeParameter to set interrupt conditions. }
\end{array}
$$

Parameter No. 0004 Interrupt conditions

Bit	Symbol	Name
0	SYSE	Current system error
1	CALM	Current system alarm
2	EMIO	During forced stop
3		
4		Reserved
5		
6		Operation cycle alarm
7		

Bit	Symbol	Name
8	OASF	Outputting with factor of other axes start interrupt
9	PPI	Outputting with factor of pass position interrupt
10		Reserved
11		
12		
13		
14		
15		

(2) Interrupt conditions (control parameters)

When interrupts each axis are to be validated, set the values that designate ON for the bits that correspond to the conditions shown below to the interrupt conditions 1 (parameter No.0204) and the interrupt conditions 2 (parameter No.0205) of the parameter.

Parameter No. 0204 Interrupt conditions 1

Bit	Symbol	Signal name
0	RDY	Servo ready
1	INP	In-position
2	ZSP	Zero speed
3	ZPAS	Passed Z-phase
4	TLC	Torque limit effective
5	SALM	Servo alarm
6	SWRN	Servo warning
7	ABSE	Absolute position erased
8	OP	During operation
9	CPO	Rough match
10	PF	Positioning complete
11	ZP	Home position return complete
12	SMZ	During smoothing of stopping
13	OALM	Operation alarm
14	OPF	Completion of operation
15	PSW	Position switch

Parameter No. 0205 Interrupt conditions 2

Bit	Symbol	Signal name
0	GAINO	During gain switching
1	-	Reserved
2	TLSO	Selecting torque limit
3	SPC	During PID control
4	-	Reserved
5	MAK1	Mark detection 1
6	MAK2	Mark detection 2
7	PRSMO	During continuous operation to torque control
8	IWT	Interference check standby
9	SINP	Servo amplifier in-position
10		Reserved
11		
12		
13		
14		
15		

Interrupts occur on the leading edge of the signal corresponding to the interrupt condition.
Multiple interrupt conditions can be selected.
(3) Interrupt conditions (RIO control parameters)

When interrupts each station are to be validated, set the values that designate ON for the bits that correspond to the conditions shown below to the interrupt conditions (parameter No.0203) of the parameter.

Parameter No. 0203 Interrupt conditions

Bit	Symbol	Signal name
0		
1		
2		Reserved
3		
4		
5	RUALM	RIO module alarm
6	RUWRN	RIO module warning
7		Reserved

Bit	Symbol	Signal name
8		Reserved
9		
10		
11		
12		
13	RCALM	RIO control alarm
14		Reserved
15		

Interrupts occur on the leading edge of the signal corresponding to the interrupt condition.
Multiple interrupt conditions can be selected.

7.6.3 Factor of interrupt

API LIBRARY

- The factor of interrupt check is processed by the interrupt thread that is created when calling the sscIntStart function. Thus processing by user program is unnecessary.
- Use the following functions for wait of factor of interrupt.
- System and factor of axis interrupt: sscWaitIntEvent/sscWaitIntEventMulti
- Factor of other axes start interrupt : sscWaitIntOasEvent
- Factor of pass position interrupt : sscWaitIntPassPosition
(1) Information of outputting with factor of interrupt

When an interrupt occurs, the bit corresponding to the axis No., station No., or system which is the cause of the interrupt turns on.

Address		Content	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
04C0	002000	Outputting with factor of axis interrupt 1	Axis 1 (bit 0) to axis 32 (bit 31)
04C1	002001		
04C2	002002		
04C3	002003		
04C4	002004	Outputting with factor of axis interrupt 2 (Note)	Axis 33 (bit 0) to axis 64 (bit 31)
04C5	002005		
04C6	002006		
04C7	002007		
	002008	Reserved	
	002009		
	00200A		
	00200B		
	00200C		
	00200D		
	00200E		
	00200F		
04C8	002010	Outputting with factor of station interrupt (Note)	Station 1 (bit0) to station 4 (bit3) MC200 Station 1 (bit0) to station 16 (bit15) $\sqrt{M C 300}$
04C9	002011		
	002012		
	002013		
04CA	002014	Outputting with factor of system interrupt	System (bit 0)
04CB	002015	Reserved	
04CC	002016		
04CD	002017		
04CE	002018		
04CF	002019		
	00201A		
	00201B		
	00201C		
	00201D		
	00201E		
	00201F		

[^8](2) Factor of axis interrupt

Address		Content	Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$		MR-MC2 $\square \square$	MR-MC3 $\square \square$	
04D0	002020	Factor of interrupt Axis 1	04FC	00204C	Factor of interrupt Axis 12
04D1	002021		04FD	00204D	
04D2	002022		04FE	00204E	
04D3	002023		04FF	00204F	
04D4	002024	Factor of interrupt Axis 2	0500	002050	Factor of interrupt Axis 13
04D5	002025		0501	002051	
04D6	002026		0502	002052	
04D7	002027		0503	002053	
04D8	002028	Factor of interrupt Axis 3	0504	002054	:
04D9	002029		.	.	
04DA	00202A		.	.	
04DB	00202B		054B	00209B	
04DC	00202C	Factor of interrupt Axis 4	054C	00209C	Factor of interrupt Axis 32
04DD	00202D		054D	00209D	
04DE	00202E		054E	00209E	
04DF	00202F		054F	00209F	
04E0	002030	Factor of interrupt Axis 5	0550	0020A0	Factor of interrupt Axis 33 (Note)
04E1	002031		0551	0020A1	
04E2	002032		0552	0020A2	
04E3	002033		0553	0020A3	
04E4	002034	Factor of interrupt Axis 6	0554	0020A4	:
04E5	002035		.	.	
04E6	002036		.	.	
04E7	002037		058B	0020DB	
04E8	002038	Factor of interrupt Axis 7	058C	0020DC	Factor of interrupt Axis 48 (Note)
04E9	002039		058D	0020DD	
04EA	00203A		058E	0020DE	
04EB	00203B		058F	0020DF	
04EC	00203C	Factor of interrupt Axis 8	\rangle	0020E0	Factor of interrupt Axis 49
04ED	00203D			0020E1	
04EE	00203E			0020E2	
04EF	00203F			0020E3	
04F0	002040	Factor of interrupt Axis 9		0020E4	:
04F1	002041			.	
04F2	002042			.	
04F3	002043			00211B	
04F4	002044	Factor of interrupt Axis 10		00211C	Factor of interrupt Axis 64
04F5	002045			00211D	
04F6	002046			00211E	
04F7	002047			00211F	
04F8	002048	Factor of interrupt Axis 11		002120	Reserved
04F9	002049				
04FA	00204A				
04FB	00204B			00221F	

Note. When using MR-MC2 $\square \square, 0550$ to 058F is "Reserved".
(a) Details on factor of interrupt on axis n

The addresses in the table are the addresses for the first axis. For the second axis and after, increase in units of 04 h for each axis.

Address		Bit	Symbol (Note)	Signal name
MR-MC2■■	MR-MC3 $\square \square$			
$\begin{aligned} & \text { 04D0 } \\ & \text { to } \\ & \text { 04D3 } \end{aligned}$	$\begin{gathered} 002020 \\ \text { to } \\ 002023 \end{gathered}$	0	iRDY	Servo ready (interrupt)
		1	ilNP	In-position (interrupt)
		2	iZSP	Zero speed (interrupt)
		3	iZPAS	Passed Z-phase (interrupt)
		4	iTLC	Torque limit effective (interrupt)
		5	iSALM	Servo alarm (interrupt)
		6	iSWRN	Servo warning (interrupt)
		7	iABSE	Absolute position erased (interrupt)
		8	iOP	During operation (interrupt)
		9	iCPO	Rough match (interrupt)
		10	iPF	Positioning complete (interrupt)
		11	iZP	Home position return complete (interrupt)
		12	iSMZ	During smoothing of stopping (interrupt)
		13	iOALM	Operation alarm (interrupt)
		14	iOPF	Completion of operation (interrupt)
		15	iPSW	Position switch (interrupt)
		16	iGAINO	During gain switching (interrupt)
		17	iFCLSO	Fully closed loop control changing (interrupt)
		18	iTLSO	Selecting torque limit (interrupt)
		19	iSPC	During PID control (interrupt)
		20	-	Reserved
		21	iMAK1	Mark detection 1 (interrupt)
		22	iMAK2	Mark detection 2 (interrupt)
		23	iPRSMO	During continuous operation to torque control (interrupt)
		24	ilWT	Interference check standby (interrupt)
		25	iSINP	Servo amplifier in-position (interrupt)
		26		Reserved
		27		
		28		
		29		
		30		
		31		

Note. OFF: No factor of interrupt exists.
ON: A factor of interrupt exists.
(3) System interrupt factors

Address		Content
MR- MC2	MR- MC3	
0590	002220	Factor of system interrupt
0591	002221	
0592	002222	Reserved
0593	002223	
	002224	
	002225	
	002226	
	002227	
0594	002228	Factor of other axes start interrupt MC200 Factor of other axes start interrupt MC300
0595	002229	
0596	00222A	
0597	00222B	
	00222C	Factor of other axes start interrupt 2
	00222D	
	00222E	
	00222F	
	002230	Reserved
	002231	
	002232	
	002233	
	002234	
	002235	
	002236	
	002237	

Address		Content
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	MR- MC3	
0598	002238	Factor of pass position interrupt 1
0599	002239	
059A	00223A	
059B	00223B	
059C	00223C	Factor of pass position interrupt 2
059D	00223D	
059E	00223E	
059F	00223F	
	002240	Factor of pass position interrupt 3
	002241	
	002242	
	002243	
	002244	Factor of pass position interrupt 4
	002245	
	002246	
	002247	
05A0	002248	Reserved
:	:	
05AF	00229F	

(a) Details on system interrupt factors

Address		Bit	Symbol (Note)	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{gathered} 0590 \\ \text { to } \\ 0591 \end{gathered}$	$\begin{gathered} 002220 \\ \text { to } \\ 002221 \end{gathered}$	0	iSYSE	System error (interrupt)
		1	iCALM	System alarm (interrupt)
		2	iEMIO	During forced stop (interrupt)
		3		Reserved
		4		
		5		
		6		
		7	iOCME	Operation cycle alarm (interrupt)
		8	iOASF	Outputting with factor of other axes start interrupt (interrupt)
		9	iPPI	Outputting with factor of pass position interrupt (interrupt)
		10		Reserved
		11		
		12		
		13		
		14		
		15		

Note. OFF: No factor of interrupt exists.
ON: A factor of interrupt exists.
(b) Factor of other axes start interrupt

When the outputting with factor of other axes start interrupt (iOASF) is on, the bit corresponding to other axes start data No. turns on.

1) Factor of other axes start interrupt MC200/Factor of other axes start interrupt 1 MC300

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{gathered} 0594 \\ \text { to } \\ 0597 \end{gathered}$	$\begin{aligned} & 002228 \\ & \text { to } \\ & 00222 B \end{aligned}$	0	iOAS1	Other axes start data 1 (interrupt)
		1	iOAS2	Other axes start data 2 (interrupt)
		2	iOAS3	Other axes start data 3 (interrupt)
		3	iOAS4	Other axes start data 4 (interrupt)
		4	iOAS5	Other axes start data 5 (interrupt)
		5	iOAS6	Other axes start data 6 (interrupt)
		6	iOAS7	Other axes start data 7 (interrupt)
		7	iOAS8	Other axes start data 8 (interrupt)
		8	iOAS9	Other axes start data 9 (interrupt)
		9	iOAS10	Other axes start data 10 (interrupt)
		10	iOAS11	Other axes start data 11 (interrupt)
		11	iOAS12	Other axes start data 12 (interrupt)
		12	iOAS13	Other axes start data 13 (interrupt)
		13	iOAS14	Other axes start data 14 (interrupt)
		14	iOAS15	Other axes start data 15 (interrupt)
		15	iOAS16	Other axes start data 16 (interrupt)
		16	iOAS17	Other axes start data 17 (interrupt)
		17	iOAS18	Other axes start data 18 (interrupt)
		18	iOAS19	Other axes start data 19 (interrupt)
		19	iOAS20	Other axes start data 20 (interrupt)
		20	iOAS21	Other axes start data 21 (interrupt)
		21	iOAS22	Other axes start data 22 (interrupt)
		22	iOAS23	Other axes start data 23 (interrupt)
		23	iOAS24	Other axes start data 24 (interrupt)
		24	iOAS25	Other axes start data 25 (interrupt)
		25	iOAS26	Other axes start data 26 (interrupt)
		26	iOAS27	Other axes start data 27 (interrupt)
		27	iOAS28	Other axes start data 28 (interrupt)
		28	iOAS29	Other axes start data 29 (interrupt)
		29	iOAS30	Other axes start data 30 (interrupt)
		30	iOAS31	Other axes start data 31 (interrupt)
		31	iOAS32	Other axes start data 32 (interrupt)

2) Factor of other axes start interrupt 2

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
	$\begin{aligned} & 00222 \mathrm{C} \\ & \text { to } \\ & 00222 \mathrm{~F} \end{aligned}$	0	iOAS33	Other axes start data 33 (interrupt)
		1	iOAS34	Other axes start data 34 (interrupt)
		2	iOAS35	Other axes start data 35 (interrupt)
		3	iOAS36	Other axes start data 36 (interrupt)
		4	iOAS37	Other axes start data 37 (interrupt)
		5	iOAS38	Other axes start data 38 (interrupt)
		6	iOAS39	Other axes start data 39 (interrupt)
		7	iOAS40	Other axes start data 40 (interrupt)
		8	iOAS41	Other axes start data 41 (interrupt)
		9	iOAS42	Other axes start data 42 (interrupt)
		10	iOAS43	Other axes start data 43 (interrupt)
		11	iOAS44	Other axes start data 44 (interrupt)
		12	iOAS45	Other axes start data 45 (interrupt)
		13	iOAS46	Other axes start data 46 (interrupt)
		14	iOAS47	Other axes start data 47 (interrupt)
		15	iOAS48	Other axes start data 48 (interrupt)
		16	iOAS49	Other axes start data 49 (interrupt)
		17	iOAS50	Other axes start data 50 (interrupt)
		18	iOAS51	Other axes start data 51 (interrupt)
		19	iOAS52	Other axes start data 52 (interrupt)
		20	iOAS53	Other axes start data 53 (interrupt)
		21	iOAS54	Other axes start data 54 (interrupt)
		22	iOAS55	Other axes start data 55 (interrupt)
		23	iOAS56	Other axes start data 56 (interrupt)
		24	iOAS57	Other axes start data 57 (interrupt)
		25	iOAS58	Other axes start data 58 (interrupt)
		26	iOAS59	Other axes start data 59 (interrupt)
		27	iOAS60	Other axes start data 60 (interrupt)
		28	iOAS61	Other axes start data 61 (interrupt)
		29	iOAS62	Other axes start data 62 (interrupt)
		30	iOAS63	Other axes start data 63 (interrupt)
		31	iOAS64	Other axes start data 64 (interrupt)

(c) Details on factor of other axes start interrupt

When the factor of other axes start interrupt (iOASロ) is on, the interrupt factor of other axes start status bit corresponding to other axes start data No. turns on.

Address		Content
$\begin{gathered} \text { MR- } \\ \text { MC2口 } \end{gathered}$	MR- MC3	
OFE0	0048E0	Details on factor of other axes start interrupt 1
0FE1	0048E1	Details on factor of other axes start interrupt 2
OFE2	0048E2	Details on factor of other axes start interrupt 3
0FE3	0048E3	Details on factor of other axes start interrupt 4
OFE4	0048E4	Details on factor of other axes start interrupt 5
OFE5	0048E5	Details on factor of other axes start interrupt 6
0FE6	0048E6	Details on factor of other axes start interrupt 7
0FE7	0048E7	Details on factor of other axes start interrupt 8
OFE8	0048E8	Details on factor of other axes start interrupt 9
0FE9	0048E9	Details on factor of other axes start interrupt 10
OFEA	0048EA	Details on factor of other axes start interrupt 11
OFEB	0048EB	Details on factor of other axes start interrupt 12
OFEC	0048EC	Details on factor of other axes start interrupt 13
OFED	0048ED	Details on factor of other axes start interrupt 14
OFEE	0048EE	Details on factor of other axes start interrupt 15
OFEF	0048EF	Details on factor of other axes start interrupt 16
OFFO	0048F0	Details on factor of other axes start interrupt 17
0FF1	0048F1	Details on factor of other axes start interrupt 18
OFF2	0048F2	Details on factor of other axes start interrupt 19
0FF3	0048F3	Details on factor of other axes start interrupt 20
0FF4	0048F4	Details on factor of other axes start interrupt 21
0FF5	0048F5	Details on factor of other axes start interrupt 22
0FF6	0048F6	Details on factor of other axes start interrupt 23
0FF7	0048F7	Details on factor of other axes start interrupt 24
0FF8	0048F8	Details on factor of other axes start interrupt 25
0FF9	0048F9	Details on factor of other axes start interrupt 26
OFFA	0048FA	Details on factor of other axes start interrupt 27
OFFB	0048FB	Details on factor of other axes start interrupt 28
0FFC	0048FC	Details on factor of other axes start interrupt 29
OFFD	0048FD	Details on factor of other axes start interrupt 30
OFFE	0048FE	Details on factor of other axes start interrupt 31
OFFF	0048FF	Details on factor of other axes start interrupt 32

Address		Content
MR- MC2	MR- MC3	
	004900	Details on factor of other axes start interrupt 33
	004901	Details on factor of other axes start interrupt 34
	004902	Details on factor of other axes start interrupt 35
	004903	Details on factor of other axes start interrupt 36
	004904	Details on factor of other axes start interrupt 37
	004905	Details on factor of other axes start interrupt 38
	004906	Details on factor of other axes start interrupt 39
	004907	Details on factor of other axes start interrupt 40
	004908	Details on factor of other axes start interrupt 41
	004909	Details on factor of other axes start interrupt 42
	00490A	Details on factor of other axes start interrupt 43
	00490B	Details on factor of other axes start interrupt 44
	00490C	Details on factor of other axes start interrupt 45
	00490D	Details on factor of other axes start interrupt 46
	00490E	Details on factor of other axes start interrupt 47
	00490F	Details on factor of other axes start interrupt 48
	004910	Details on factor of other axes start interrupt 49
	004911	Details on factor of other axes start interrupt 50
	004912	Details on factor of other axes start interrupt 51
	004913	Details on factor of other axes start interrupt 52
	004914	Details on factor of other axes start interrupt 53
	004915	Details on factor of other axes start interrupt 54
	004916	Details on factor of other axes start interrupt 55
	004917	Details on factor of other axes start interrupt 56
	004918	Details on factor of other axes start interrupt 57
	004919	Details on factor of other axes start interrupt 58
	00491A	Details on factor of other axes start interrupt 59
	00491B	Details on factor of other axes start interrupt 60
	00491C	Details on factor of other axes start interrupt 61
	00491D	Details on factor of other axes start interrupt 62
	00491E	Details on factor of other axes start interrupt 63
	00491F	Details on factor of other axes start interrupt 64

1) Details on factor of other axes start interrupt \square

Address (Note 1)		Bit	Symbol (Note 2)	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
OFE0	0048E0	0	iOSOP \square	Other axes start notice \square (interrupt)
		1	iOSFIN \square	Other axes start complete \square (interrupt)
		2	iOSERR \square	Other axes start incomplete \square (interrupt)
		3		
		4		
		5		Reserved
		6		
		7		

Note 1. The addresses in the table are the addresses for the other axes start status table 1. For the other axes status table 2 and after, increase in units of 1 h for each other axes start status table.
2. \square : Other axes start No.
(d) Factor of pass position interrupt

When the outputting with factor of pass position interrupt (iPPI) is on, the bit corresponding to the pass position condition number of the factor of the pass position interrupt turns on.

1) Factor of pass position interrupt 1

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{gathered} 0598 \\ \text { to } \\ 059 \mathrm{~B} \end{gathered}$	$\begin{aligned} & 002238 \\ & \text { to } \\ & 00223 B \end{aligned}$	0	iPPI1	Pass position condition 1 (interrupt)
		1	iPPI2	Pass position condition 2 (interrupt)
		2	iPPI3	Pass position condition 3 (interrupt)
		3	iPPI4	Pass position condition 4 (interrupt)
		4	iPPI5	Pass position condition 5 (interrupt)
		5	iPPI6	Pass position condition 6 (interrupt)
		6	iPPI7	Pass position condition 7 (interrupt)
		7	iPPI8	Pass position condition 8 (interrupt)
		8	iPPI9	Pass position condition 9 (interrupt)
		9	iPPI10	Pass position condition 10 (interrupt)
		10	iPPI11	Pass position condition 11 (interrupt)
		11	iPPI12	Pass position condition 12 (interrupt)
		12	iPPI13	Pass position condition 13 (interrupt)
		13	iPPI14	Pass position condition 14 (interrupt)
		14	iPPI15	Pass position condition 15 (interrupt)
		15	iPPI16	Pass position condition 16 (interrupt)
		16	iPPI17	Pass position condition 17 (interrupt)
		17	iPPI18	Pass position condition 18 (interrupt)
		18	iPPI19	Pass position condition 19 (interrupt)
		19	iPPI20	Pass position condition 20 (interrupt)
		20	iPPI21	Pass position condition 21 (interrupt)
		21	iPPI22	Pass position condition 22 (interrupt)
		22	iPPI23	Pass position condition 23 (interrupt)
		23	iPPI24	Pass position condition 24 (interrupt)
		24	iPPI25	Pass position condition 25 (interrupt)
		25	iPPI26	Pass position condition 26 (interrupt)
		26	iPPI27	Pass position condition 27 (interrupt)
		27	iPPI28	Pass position condition 28 (interrupt)
		28	iPPI29	Pass position condition 29 (interrupt)
		29	iPPI30	Pass position condition 30 (interrupt)
		30	iPPI31	Pass position condition 31 (interrupt)
		31	iPPI32	Pass position condition 32 (interrupt)

2) Factor of pass position interrupt 2

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{gathered} 059 \mathrm{C} \\ \text { to } \\ 059 \mathrm{~F} \end{gathered}$	$\begin{gathered} 00223 \mathrm{C} \\ \text { to } \\ 00223 \mathrm{~F} \end{gathered}$	0	iPPI33	Pass position condition 33 (interrupt)
		1	iPPI34	Pass position condition 34 (interrupt)
		2	iPPI35	Pass position condition 35 (interrupt)
		3	iPPI36	Pass position condition 36 (interrupt)
		4	iPPI37	Pass position condition 37 (interrupt)
		5	iPPI38	Pass position condition 38 (interrupt)
		6	iPPI39	Pass position condition 39 (interrupt)
		7	iPPI40	Pass position condition 40 (interrupt)
		8	iPPI41	Pass position condition 41 (interrupt)
		9	iPPI42	Pass position condition 42 (interrupt)
		10	iPPI43	Pass position condition 43 (interrupt)
		11	iPPI44	Pass position condition 44 (interrupt)
		12	iPPI45	Pass position condition 45 (interrupt)
		13	iPPI46	Pass position condition 46 (interrupt)
		14	iPPI47	Pass position condition 47 (interrupt)
		15	iPPI48	Pass position condition 48 (interrupt)
		16	iPPI49	Pass position condition 49 (interrupt)
		17	iPPI50	Pass position condition 50 (interrupt)
		18	iPPI51	Pass position condition 51 (interrupt)
		19	iPPI52	Pass position condition 52 (interrupt)
		20	iPPI53	Pass position condition 53 (interrupt)
		21	iPPI54	Pass position condition 54 (interrupt)
		22	iPPI55	Pass position condition 55 (interrupt)
		23	iPPI56	Pass position condition 56 (interrupt)
		24	iPPI57	Pass position condition 57 (interrupt)
		25	iPPI58	Pass position condition 58 (interrupt)
		26	iPPI59	Pass position condition 59 (interrupt)
		27	iPPI60	Pass position condition 60 (interrupt)
		28	iPPI61	Pass position condition 61 (interrupt)
		29	iPPI62	Pass position condition 62 (interrupt)
		30	iPPI63	Pass position condition 63 (interrupt)
		31	iPPI64	Pass position condition 64 (interrupt)

3) Factor of pass position interrupt 3

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
	$\begin{gathered} 002240 \\ \text { to } \\ 002243 \end{gathered}$	0	iPPI65	Pass position condition 65 (interrupt)
		1	iPPI66	Pass position condition 66 (interrupt)
		2	iPPI67	Pass position condition 67 (interrupt)
		3	iPPI68	Pass position condition 68 (interrupt)
		4	iPPI69	Pass position condition 69 (interrupt)
		5	iPPI70	Pass position condition 70 (interrupt)
		6	iPPI71	Pass position condition 71 (interrupt)
		7	iPPI72	Pass position condition 72 (interrupt)
		8	iPPI73	Pass position condition 73 (interrupt)
		9	iPPI74	Pass position condition 74 (interrupt)
		10	iPPI75	Pass position condition 75 (interrupt)
		11	iPPI76	Pass position condition 76 (interrupt)
		12	iPPI77	Pass position condition 77 (interrupt)
		13	iPPI78	Pass position condition 78 (interrupt)
		14	iPPI79	Pass position condition 79 (interrupt)
		15	iPPI80	Pass position condition 80 (interrupt)
		16	iPPI81	Pass position condition 81 (interrupt)
		17	iPPI82	Pass position condition 82 (interrupt)
		18	iPPI83	Pass position condition 83 (interrupt)
		19	iPPI84	Pass position condition 84 (interrupt)
		20	iPPI85	Pass position condition 85 (interrupt)
		21	iPPI86	Pass position condition 86 (interrupt)
		22	iPPI87	Pass position condition 87 (interrupt)
		23	iPPI88	Pass position condition 88 (interrupt)
		24	iPPI89	Pass position condition 89 (interrupt)
		25	iPPI90	Pass position condition 90 (interrupt)
		26	iPPI91	Pass position condition 91 (interrupt)
		27	iPPI92	Pass position condition 92 (interrupt)
		28	iPPI93	Pass position condition 93 (interrupt)
		29	iPPI94	Pass position condition 94 (interrupt)
		30	iPPI95	Pass position condition 95 (interrupt)
		31	iPPI96	Pass position condition 96 (interrupt)

4) Factor of pass position interrupt 4

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
	$\begin{gathered} 002244 \\ \text { to } \\ 002247 \end{gathered}$	0	iPPI97	Pass position condition 97 (interrupt)
		1	iPPI98	Pass position condition 98 (interrupt)
		2	iPPI99	Pass position condition 99 (interrupt)
		3	iPPI100	Pass position condition 100 (interrupt)
		4	iPPI101	Pass position condition 101 (interrupt)
		5	iPPI102	Pass position condition 102 (interrupt)
		6	iPPI103	Pass position condition 103 (interrupt)
		7	iPPI104	Pass position condition 104 (interrupt)
		8	iPPI105	Pass position condition 105 (interrupt)
		9	iPPI106	Pass position condition 106 (interrupt)
		10	iPPI107	Pass position condition 107 (interrupt)
		11	iPPI108	Pass position condition 108 (interrupt)
		12	iPPI109	Pass position condition 109 (interrupt)
		13	iPPI110	Pass position condition 110 (interrupt)
		14	iPPI111	Pass position condition 111 (interrupt)
		15	iPPI112	Pass position condition 112 (interrupt)
		16	iPPI113	Pass position condition 113 (interrupt)
		17	iPPI114	Pass position condition 114 (interrupt)
		18	iPPI115	Pass position condition 115 (interrupt)
		19	iPPI116	Pass position condition 116 (interrupt)
		20	iPPI117	Pass position condition 117 (interrupt)
		21	iPPI118	Pass position condition 118 (interrupt)
		22	iPPI119	Pass position condition 119 (interrupt)
		23	iPPI120	Pass position condition 120 (interrupt)
		24	iPPI121	Pass position condition 121 (interrupt)
		25	iPPI122	Pass position condition 122 (interrupt)
		26	iPPI123	Pass position condition 123 (interrupt)
		27	iPPI124	Pass position condition 124 (interrupt)
		28	iPPI125	Pass position condition 125 (interrupt)
		29	iPPI126	Pass position condition 126 (interrupt)
		30	iPPI127	Pass position condition 127 (interrupt)
		31	iPPI128	Pass position condition 128 (interrupt)

（e）Details on factor of pass position interrupt
When the outputting with factor of pass position interrupt（iPPI口）is on，the pass position status bit corresponding to the pass position condition number turns on．

Address		Content	
MR－MC2 $\square \square$	MR－MC3 $\square \square$		
OFA0	0047E0	Details on factor of pass position interrupt	Details on factor of pass position interrupt 1
0FA1	0047E1		Details on factor of pass position interrupt 2
0FA2	0047E2		Details on factor of pass position interrupt 3
0FA3	0047E3		Details on factor of pass position interrupt 4
：	：		
0FDF	00481F		Details on factor of pass position interrupt 64
	004820		Details on factor of pass position interrupt 65
	：		：
	00485F		Details on factor of pass position interrupt 128

1）Details on factor of pass position interrupt \square

Address（Note 1）		Bit	Symbol （Note 2）	Signal name
MR－MC2■■	MR－MC3口ロ			
OFAO	0047E0	0	iPPIFD	Pass position interrupt complete \square（interrupt）
		1	iPPIED	Pass position interrupt incompletion \square（interrupt）
		2		Reserved
		3		
		4		
		5		
		6		
		7		

Note 1．The addresses in the table are the addresses for the pass position condition number 1．For the pass position condition number 2 and after，increase in units of 01 h for each pass position condition number．
2．\square ：Pass position condition number．
(4) Station interrupt factors

Note. When using MR-MC2 $\square \square$, 05B8 to 05BF is "Reserved".
(a) Details on station n interrupt factors

The addresses in the table are the addresses for the first axis. For the second axis and after, increase in units of 02 h for each axis.

Address		Bit	Symbol (Note)	Signal name
MR-MC2a]	MR-MC3ロロ			
$\begin{gathered} \text { 05B0 } \\ \text { to } \\ \text { 05B1 } \end{gathered}$	$\begin{aligned} & 0022 \mathrm{AO} \\ & \text { to } \\ & 0022 \mathrm{~A} 1 \end{aligned}$	0	iSYSE	System error (interrupt)
		1	iCALM	System alarm (interrupt)
		2	iEMIO	During forced stop (interrupt)
		3		Reserved
		4		
		5	iRUALM	RIO module alarm (interrupt)
		6	iRUWRN	RIO module warning (interrupt)
		7	iOCME	Operation cycle alarm (interrupt)
		8	iOASF	Outputting with factor of other axes start interrupt (interrupt)
		9	iPPI	Outputting with factor of pass position interrupt (interrupt)
		10		Reserved
		11		
		12		
		13	iRCALM	RIO control alarm (interrupt)
		14		Reserved
		15		

Note. OFF: No factor of interrupt exists.
ON: A factor of interrupt exists.

7.6.4 Interrupt processing example

Note 1. Confirm the bit(s) for the during interrupt output signal.
(If the bit(s) are on: a current interrupt is being output, while if the bit(s) are OFF: there is not a current interrupt)
2. When 1 is written in the interrupt signal clear register, the output of the interrupt is cancelled.
3. Implement processing necessary for the different causes of interrupts, such as for completion of operation and generation of an operation alarm.
(example) When an operation alarm occurs, send a stop request to other axes that are in operation.

API LIBRARY

- This interrupt processing example is processed by the device driver thus processing by user program is unnecessary.

7.7 User watchdog function

User watchdog function is a function that checks for errors of the user program. Reset the value of watchdog check counter on the dual port memory using a host controller on a periodic basis. If the watchdog check counter value is not reset at the designated time (watchdog timer counts down to zero), it is determined that the host controller error and a forced stop status is entered.
The position board decrements the watchdog timer on each control cycle until the watchdog check counter value is reset. When the watchdog check counter value is reset, it is reset to the value set for the watchdog timer start counter.

POINT

- When the watchdog timer start counter is set to 0 , user watchdog is not executed.

API LIBRARY

- Use the sscWdEnable/sscWdDisable functions to enable/disable user watchdog function.
- Use the sscChangeWdCounter function to update the watchdog check counter.
- For a detailed procedure for watchdog, refer to the sample program (WatchDog) contained on the utility software.
(1) Normal conditions

(2) When host controller overruns

7.8 Software reboot function

Through using the software reboot function, the host controller can restart the position board using software. Perform the software reboot according to the following procedure. (Refer to the system data table for the command/status signal.)

POINT

- When reboot preparation is turned on, it becomes a forced stop status.
- If an erroneous reboot ID is set and reboot preparation turned on or execution of reboot turned on without performing reboot preparation, a reboot preparation error occurs. If a reboot preparation error occurs, turn off reboot preparation and execution of reboot and restart the process from the beginning.
- Accessing the position board via the bus during a software reboot may cause the host controller connected to the bus to freeze. MC300

API LIBRARY

- Use the sscReboot function to perform software reboot.

7.9 Parameter backup

POINT

- When there are a lot of changing parameters of the position board and servo amplifier and the parameter changing time effects the system startup, saving parameters in the flash ROM of the position board by this function can shorten the time of system startup.
(1) Flash ROM parameter backup

The contents of the parameter data area in the position board can be backed up to the flash ROM. When executing flash ROM parameter read (system command code: 0004h) at system preparation completion (system status code: 0001h), backup the parameter in the flash ROM with this function. Execute parameter backup in the flash ROM in the following procedure.

Note. At factory shipment, the initial value is set to each parameter.

7. AUXILIARY FUNCTION

Note 1. The flash ROM parameter backup function becomes available after the system preparation completion (system status code: 0001h).
2. When the flash ROM transfer preparation error (FRNG) or the flash ROM transfer error (FSNG) occurs, check the procedure and restart the process from the beginning.
3. Do not turn off the power supply of the position board, or execute the software reboot function during the parameter backup in the flash ROM. If flash ROM parameter read is executed before normal backup completion, flash ROM parameter read error (system status code: 0005h) occurs. In this case, execute parameter initialization (system command code: 0003h), set parameters as required and backup data to flash ROM again.
4. When flash ROM parameter read is executed, the value of gain of the servo amplifier is the backed up value in the flash ROM, so vibration or abnormal sound may occur even when auto tuning is valid. Execute flash ROM backup after adjusting the gain of the servo amplifier.
5. Execute flash ROM backup after home position return is performed when the absolute position detection system is used.
6. Execute Note 5 above when changing a servo motor.
7. Execute flash ROM backup after changing a position board.
8. The flash ROM can be rewritten up to 100,000 times. If it exceeds 100,000 times, number of write accesses to flash ROM error (system alarm 36, detail 01) occurs and parameter backup will not be performed.
9. The flash ROM can be rewritten up to 25 times after every system preparation completion. If it exceeds 25 times, number of write accesses to flash ROM error (system alarm 36, detail 03) occurs and parameter backup will not be performed. Rewriting times to the flash ROM is cleared to 0 by resetting the system alarm or the software reboot. The parameter backup times executed after system preparation completion can be checked in the parameter backup times (system monitor No.040A).
10. Perform the parameter backup while the operation of all axes is stopped.
11. Writing and reading parameters are impossible during the flash ROM transfer.
12. It takes approximately 5 minutes from flash ROM transfer execution until flash ROM transfer is completed. MC300
(2) Flash ROM parameter initialization

The contents of the parameters which is backed up in the flash ROM is changed to the initial value.

Note 1. The flash ROM initialization function becomes available after the parameter initialization completion (system status code: 0003h) or the flash ROM parameter read (system status code: 0004h) is executed.
2. When the flash ROM initialization preparation error (FIRNG) or the flash ROM initialization error (FING) occurs, check the procedure and restart the process from the beginning.
3. Do not turn off the power supply of the position board while transferring parameter initial values to the flash ROM. If flash ROM parameter read is executed before normal initialization completion, flash ROM parameter read error (system status code: 0005h) occurs.
4. The flash ROM can be rewritten up to 100,000 times. If it exceeds 100,000 times, number of write accesses to flash ROM error (system alarm 36, detail 01) occurs and parameter initialization will not be performed. The parameter backup times executed (including flash ROM parameter initialization times) can be checked in the parameter backup times (system monitor No.040C, 040D).
5. The flash ROM can be rewritten up to 25 times after every system preparation completion. If it exceeds 25 times, number of write accesses to flash ROM error (system alarm 36, detail 03) occurs and parameter backup will not be performed. Rewriting times to the flash ROM is cleared to 0 by resetting the system alarm or the software reboot. The parameter backup times executed after system preparation completion can be checked in the parameter backup times (system monitor No.040A).
6. Perform the flash ROM parameter initialization while the operation of all axes is stopped.
7. Writing and reading parameters are impossible during the flash ROM initialization.
8. It takes approximately 5 minutes from flash ROM transfer execution until flash ROM transfer is completed. MC300

API LIBRARY

- For flash ROM parameter initialization, save the flash ROM parameters with the sscSaveAllParameterToFlashROM function after initializing the parameters with the sscResetAllParameter function.
(3) Flash ROM parameter reading

The parameters backed up in the flash ROM is read when the system preparation is completed (system status code: 0001h).

7.10 Test mode

Servo amplifier can be adjusted using test operation function (JOG, test positioning, machine analyzer etc.) of the MR Configurator2 attached to the position board using a USB connection. This sets the position board to test mode signal (TSTO) and operation (such as automatic operation) from the position board can not be performed. In order to perform operations using the position board, the system must be restarted. Refer to the servo amplifier instruction manual on your servo amplifier and/or MR Configurator2 help concerning MR Configurator2 test operation.

API LIBRARY

- To check if test mode (TSTO) is ON/OFF, check if SSC_STSBIT_AX_TSTO is ON/OFF with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx function.

7.10.1 Structural diagram

(1) Under normal operation

(2) While in test mode

7.10.2 Test operation mode

(1) Limitations
(a) If operation is started using the position board, an in test mode error (operation alarm 1A, detail 01) occurs and operation can not be performed.
(b) The commands to servo amplifier (servo-on/off, servo alarm reset, torque limit command etc.) are invalid. Monitoring and reading and writing of parameters can be performed as normal.
(2) Transition to test mode

In the following cases, it is not possible to transit to test mode. Confirm error messages on the MR Configurator2.
(a) While not in system running (system status code 000Ah)
(b) While an axis is in operation
(c) While an axis has servo alarm
(3) When a servo parameter has been changed using the MR Configurator2

If a servo parameter is changed at the MR Configurator2 using the machine analyzer etc., it is necessary to reflect the parameters that are managed by the host controller for all the parameters that were changed. As the parameters that were changed can be confirmed using the "servo parameter change number", read the parameter and reflect it to the parameters being managed by the host controller.

7.11 Reconnect/disconnect function

7.11.1 Disconnection function summary

By turning on the disconnection command, SSCNET communication with selected axis and later can be disconnected.
To use this function, set the consistency check selection at system startup of the control cycle (parameter No.0002) to invalid. This function becomes available after the system is started.
The axes whose communication is disconnected become non-communicating axes, so their power supplies can be turned off and SSCNET cables can be detached. At this time, communicating axes are not affected.

Note. If the power supplies of communicating axes are turned off or their SSCNETIII cables are detached, a system error of the position board occurs and the axes enter forced stop status.

POINT

- Refer to the controlling axis information after the disconnection is completed to check the bit corresponding to the non-communicating axis is off.

API LIBRARY

- Use the sscDisconnectSSCNET function to disconnect SSCNET communication.

7.11.2 Reconnect function summary

This function is a function that searches for controlled and non-communicating axes from all connected axes and starts SSCNET communication with them by turning on the reconnection command (RCC).
To use this function, set the consistency check selection at system startup of the control cycle (parameter No.0002) to invalid. This function becomes available after the system is started.

POINT

- Set all parameters related to reconnecting axes before system startup, including the setting of control axis (parameter No.0200).
- Update time synchronization information before turning ON reconnection command (RCC).
- Refer to the controlling axis information after the reconnection is completed to check the bit corresponding to the communicating axis is on.
- When an axis which has completed home position return is reconnected after being disconnected, it is in a home position return incomplete status (home position return request (ZREQ) is ON) at the time of reconnection. (Except for when absolute position detection system is valid and absolute position was correctly restored, and when no home position is valid (parameter No.0200))

API LIBRARY

- Use the sscReconnectSSCNET function to reconnect SSCNET communication.
- Update the time synchronization information with the sscReconnectSSCNET function.

7．11．3 Interface

（1）System command／status table
（a）System command

Address		Content
MR－MC2 $\square \square$	MR－MC3 $\square \square$	
0434	$000 B 64$	Disconnection axis No．
0435	000B65	

Note．Set the axis No．，and station No．to the following values．
－Using MR－MC2■口：Set axis No．to 0000h（axis 1）to 001Fh（axis 32），and station No．to 8000h（station 1）to 8003h（station 4）．
－Using MR－MC3 $\square \square$ ：Set axis No．to 0000h（axis 1）to 003Fh（axis 64），and station No．to 8000h（station 1）to 800Fh（station 16）．
（b）System status

Address		Content
MR－MC2 $\square \square$	MR－MC3 $\square \square$	
04A4	000 C 44	Error code of
04A5	000C45	reconnection／disconnection

Note．Set the axis No．，and station No．to the following values．
－Using MR－MC2■口：Set axis No．to 0000h（axis 1）to 001Fh（axis 32），and station No．to 8000h（station 1）to 8003h（station 4）．
－Using MR－MC3 $\square \square$ ：Set axis No．to 0000h（axis 1）to 003Fh（axis 64），and station No．to 8000h（station 1）to 800Fh（station 16）．
1）［Error code of reconnection／disconnection］

No．	Content	Detail		
0001 h	Disconnected axis specification error	$\begin{array}{l}\text { The axis（station）specified as the disconnecting axis（station）} \\ \text { is not in communication．}\end{array}$		
0002 h	Reconnected axis No．duplication error	$\begin{array}{l}\text { The axis No．（station No．）of the reconnected axis（station）is } \\ \text { already used．}\end{array}$		
0003 h	Reconnected axis type code error	$\begin{array}{l}\text { The vendor ID and type code of the reconnected axis（station）} \\ \text { differ from the setting of the parameter（parameter No．021D，} \\ \text { 021E）．}\end{array}$		
0004 h	Reconnection error during communication error	Execute reconnection during communication error．	$\}$	An axis（station）that is not compatible with the set control
:---				
cycle（communication cycle）is connected．				

（2）System command／status bit （a）System command bit

Address		Bit	Symbol	Signal name
MR－MC2－ロ	MR－MC3口ロ			
03EB	000B0B	0	RCC	Reconnection command
		1		Reserved
		2		
		3	CCC	Disconnection command
		4		Reserved
		5		
		6		
		7		

(b) System status bit

Address		Bit	Symbol	Signal name
MR-MC2]口	MR-MC3口■			
045B	000BEB	0	RCO	During reconnection processing
		1	RCF	Reconnection complete
		2	RCE	Reconnection error
		3	CCO	During disconnection processing
		4	CCF	Disconnection complete
		5	CCE	Disconnection error
		6		
		7		Reserved

(3) System parameter

Parameter No.	Symbol	Name	Initial value	Unit	Setting range	Function		
0002	*SYSOP2	System option 2	0000 h		0000 h to 0101 h			

(4) System configuration information table

Address		Content	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
06E0	000CD0	Controlling axis information (lower) Controlling axis information 1 MC300 (4-byte)	The bit corresponding to the axis which can currently be controlled (SSCNET communicating axis or the amplifier-less axis) turns on. The bit is the axis 1 (bit 0) to the axis 32 (bit 31).
06E1	000CD1		
06E2	000CD2		
06E3	000CD3		
06E4	000CD4	Controlling axis information (upper) WC200 Controlling axis information 2 IC300 (4-byte)	- Using MR-MC2■ Fixed at 0. - Using MR-MC3 $\square \square$ The bit corresponding to the axis which can currently be controlled (SSCNET communicating axis or the amplifier-less axis) turns on. The bit is the axis 33 (bit 0) to the axis 64 (bit 31).
06E5	000CD5		
06E6	000CD6		
06E7	000CD7		
06E8	000CE0	Controlling station information (2-byte) MC200 (4-byte) MC300	The bit corresponding to the station which can currently be controlled (SSCNET communicating station or the remote I/O disconnect station) turns on. The bit is the station 1 (bit 0) to the station 4 (bit3). The bit is the station 1 (bit 0) to the station 16 (bit15).
06E9	000CE1		
	000CE2		
	000CE3		

7.11.4 Disconnection method

SSCNET communication disconnection is executed by turning on the disconnection command after the axis No. of the axis to be disconnected is specified.
The flowchart of the disconnection is shown below.

Note. When the consistency check selection at system startup of the control cycle (parameter No.0002) is valid, disconnection error (CCE) turns on.

7.11.5 Reconnection method

SSCNET communication reconnection is executed by turning on the reconnection command. The axis No. to be connected axis is not needed to be specified.
The flowchart of the reconnection is shown below.

7.11.6 Restrictions

The restrictions for SSCNET reconnect/disconnect function are shown below.
(1) Linear interpolation startup MC200/interpolation operation startup MC300

When the axis allocated to the same linear interpolation group MC200/interpolation group MC300 is not connected, a primary axis linear interpolation startup error MC200 /interpolation startup error MC300 (operation alarm 40, detail 01) occurs.
(2) Tandem drive

When the axis allocated to the same tandem drive group is not connected, servo cannot be turned on during in the synchronous mode.
During operation in non-synchronous micro-adjustment mode, the servo operates normally.
(3) Disconnect during operation

When SSCNET disconnection is executed to the axis which is during operation, servo is not controllable (operation alarm B0, detail 02) occurs and the servo stops by the dynamic brake or decelerates to stop depending on the setting of the servo amplifier.
(4) Multi-axis amplifier

When using SSCNET disconnect function in multi-axis amplifier such as MR-J4WD- $\square \mathrm{B}$, make sure that all axes in the unit are simultaneously disconnected.
When the disconnection command is sent to the second axis or later in the same unit, the disconnection error (CCE) turns on.
(5) Turning off the power supply after disconnection

Turn off the power supply of the servo amplifier after confirming the LED indicates "AA" and SSCNET disconnection completed.
For the SSCNETIII/H head module, check that the REM.LED is OFF before turning OFF power supply of the SSCNETII/H head module.
For the sensing module, check that the sensing SSCNETIII/H head module RUN.LED is flickering before turning OFF power supply of sensing module.
(6) Operation at the system startup

When the consistency check selection at system startup of the control cycle (parameter No.0002) is set to invalid and all control axes are not connected when system is started, an axis that has not been mounted exists (system error E400) does not occur and the system is started with the only connected axis.
(7) Input device signal

When a limit switch is allocated to a remote I/O input device and that input device allocated to the module is disconnected, the limit is continuously detected. However, when maintain status is set for RI control at communication error for control option 2 (parameter No.0201), the status before disconnection is maintained.

7.12 Sampling

7.12.1 Summary

The sampling function is a function that monitors the servo amplifier status and samples this data. After sending the sampling start signal (SMPS), the following data is sampled every sampling period. The data is sampled in the sampling data buffer area in the position board up to 8192 points MC200/65536 points MC300. For MR-MC2 $\square \square$, in sampling with the sampling points exceeding 8192, the user program always needs to read sampling data during sampling. Data can be sampled up to 65536 points. (For details, refer to Section 7.12.10.)

POINT

- The sampling function can be used in the test tool.
- When using the graph function of the test tool using a USB connection, the data can be sampled up to 8192 points since enough data transfer speed cannot be ensured.

API LIBRARY

- For a detailed procedure for sampling, refer to the sample program (Sampling) contained on the utility software.

The sampled data can be read to the sampling data read area by specifying the sampling read page number. The sampled data is stored in the position board internal memory and initialized by power off of the position board or the software reboot.
(1) Sampling specification list

Item		Specification	
		MR-MC2 $\square \square$	MR-MC3 $\square \square$
Number of sampling points		Up to 65536 points (with a bus connection) (Ring buffer of 8192 points) Up to 8192 points (when there is a test tool USB connection) When 0.88 ms , approx. 7.3 s . When 0.44 ms , approx. 3.6 s . When 0.22 ms , approx. 1.8 s . Note. When using 8192 points and a $1 \times$ sampling cycle.	Up to 65536 points (with a bus or USB connection) (Ring buffer of 65536 points) When 0.88 ms , approx. 58.2 s . When 0.44 ms , approx. 29.1 s . When 0.22 ms , approx. 14.6 s . Note. When using 65536 points and a $1 \times$ sampling cycle.
Sampling cycle		Control cycle \times (1 to 256) Note. When 0.88 ms , up to approx. 1863s.	
Number of sampling items	Bits	Up to 16 items	Up to 32 items
	Data	Up to 32 items (32 items set to either 2 or 4 bytes each) Note. There can be a combination of up to 3 bit or data points of servo information per axis. The electrical current feedback monitor and the effective load ratio monitor have no restriction on the number of points allowed.	
Sampling item content	Bits	- Command bits (address 1000 to 100F) - Status bits (address 1060 to 106F) Note. Set through the operation information monitor.	
	Data	- Servo information (monitor) - Operation information (monitor) - System information (monitor)	
Sampling trigger	Number of trigger conditions	8 conditions	
	Trigger conditions	- Leading edge of bit - Trailing edge of bit - Bit ON - Bit OFF - When data is "passing through trigger value in increase direction" - When data is "passing through trigger value in decrease direction" - When data is "same as trigger value or higher" - When data is "same as trigger value or lower" - No trigger Note. Refer to "Sampling item content" for details about bits/data.	
	Trigger mode	- Trigger condition "or" - Trigger condition "and" - No trigger	
	Pre-trigger	0 to 90\% (in units of 10\%)	
Sampling data	Number of points per page	32 points	128 points
	Maximum page No.	256 (=8192/32)	512 (=65536/128)

7.12.2 Command/status bit

System command/status bits related to sampling function are shown below.
(1) System command bit

Address		Bit	Symbol	Signal name
MRMC2	MRMC3 \square			
03E1	000B01	0	SMPS	Sampling start
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR- MC2	MR- MC3 \square			
03F2	000B12	0	SMPSW	Sampling setting write command
		1	SMPSR	Reserved
		2		
		3		
		4		Sampling setting read command
		5		Reserved
		6		
		7		

(a) Details concerning system command bits

Symbol	Signal name	Function details	
		Function	Operation
SMPS	Sampling start	Starts sampling. SMPSW the sampling start signal (SMPS) is turned on, storage of sampling data is started.	
Sampling setting write command	Writes sampling setting.	Writes sampling setting set to sampling setting write number. When the sampling setting write number is incorrect and the sampling setting to be written is outside the setting range, the sampling setting write will not be performed. (Remarks) The sampling setting write command is valid only while system is running.	
SMPSR	Sampling setting read command	Reads sampling setting.	Reads sampling setting set to sampling setting read number. When the sampling setting read number is incorrect, sampling setting read will not be performed. (Remarks) The sampling setting read command is valid only while system is running.

(2) System status bit

Address		Bit	Symbol	Signal name
MR- MC2	$\begin{gathered} \text { MR- } \\ \text { MC3口口 } \end{gathered}$			
0451	000BE1	0	SMPW	Waiting for sampling trigger
		1	SMPO	Sampling is being performed
		2	SMPF	Sampling is complete
		3	SMPE	Sampling error
		4	-	Reserved
		5	AHINF	Alarm history information
		6		Reserved
		7		

Address		Bit	Symbol	Signal name
MRMC2	$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC3 } \square \square \end{array}$			
0462	000BF2	0	SWFIN	Sampling setting write complete
		1	SWEN	Sampling setting number error
		2	SWED	Sampling setting data out of bounds
		3		Reserved
		4	SRFIN	Sampling setting read complete
		5	SREN	Sampling setting number error
		6		
		7		Reserved

(a) Details concerning system status bits

Symbol	Signal name	Function details	
		Function	Operation
SMPW	Waiting for sampling trigger	Notifies concerning the status of waiting for sampling trigger.	<Conditions for turning ON> Turning on of sampling start signal (SMPS), and waiting for the sample trigger. <Conditions for turning OFF> - The sampling start signal (SMPS) is turned off. - The trigger for the start sampling trigger axis is met.
SMPO	Sampling is being performed	Notifies that sampling is now being performed.	<Conditions for turning ON> Turning on of sampling start signal (SMPS), and sampling is now being performed. <Conditions for turning OFF> - The sampling start signal (SMPS) is turned off. - Sampling is completed.
SMPF	Sampling is complete	Notifies that sampling was completed normally.	<Conditions for turning ON> Sampling is completed normally. <Conditions for turning OFF> The sampling start signal (SMPS) is turned off.
SMPE	Sampling error	Notifies that sampling was not completed normally.	<Conditions for turning ON> - The sampling setting error occurs. - The sampling item error occurs. - The next page number of the sampling completion page number is the same as the sampling read page number. (The data was not sampled in time.) - The sampling start signal (SMPS) is turned on when the read sampled data completion page number is -1 . - The page number 0 is designated from the page number other than 0 when the sampling is being performed. <Conditions for turning OFF> The start sampling signal (SMPS) is turned off.

Symbol	Signal name	Function details	
		Function	Operation
SWFIN	Sampling setting write complete	Notifies that writing of the sampling setting was completed.	<Conditions for turning ON> The sampling setting write number and the setting value in the range are set correctly and the sampling setting write command (SMPSW) is turned on. <Conditions for turning OFF> The sampling setting write command signal (SMPSW) is turned off.
SWEN	Sampling setting number error	Notifies that the sampling setting number is incorrect.	<Conditions for turning ON> The sampling setting number is set incorrectly and the sampling setting write command (SMPSW) is turned on. <Conditions for turning OFF> The sampling setting write command signal (SMPSW) is turned off.
SWED	Sampling setting data out of bounds	Notifies that the sampling setting value is outside the setting range.	<Conditions for turning ON> The sampling setting value which is outside the setting range is set and the sampling setting write command (SMPSW) is turned on. <Conditions for turning OFF> The sampling setting write command signal (SMPSW) is turned off.
SRFIN	Sampling setting read complete	Notifies that reading of the sampling setting was completed.	<Conditions for turning ON> The sampling setting read number is set correctly and the sampling setting read command (SMPSR) is turned on. <Conditions for turning OFF> The sampling setting read command signal (SMPSR) is turned off.
SREN	Sampling setting number error	Notifies that the sampling setting number is incorrect.	<Conditions for turning ON> The sampling setting read number is set incorrectly and the sampling setting read command (SMPSR) is turned on. <Conditions for turning OFF> The sampling setting read command signal (SMPSR) is turned off.

7.12.3 Command/status data

The system command/status data related to the sampling function are shown below.
(1) Sampling setting write (command)

Address		Name	Setting range	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
BDA0	0E4060	Sampling setting write number	0000h to 00AFh	Set the sampling setting number to be written. Note. For 0000h, sampling setting number error does not occur.
BDA1	0E4061			
BDA2	0E4062	Reserved		
BDA3	0E4063			
BDA4	0E4064	Sampling setting write data	00000000h to FFFFFFFFh	Set the data of the sampling setting number to be written.
BDA5	0E4065			
BDA6	0E4066			
BDA7	0E4067			

(2) Sampling setting write (status)

Address		Name	Setting range	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
BDA8	0E4068	Sampling setting write number	0000h to FFFFh	Displays the sampling setting number which was written.
BDA9	0E4069			
BDAA	0E406A	Reserved		
BDAB	0E406B			
BDAC	0E406C	Sampling setting write data	00000000h to FFFFFFFFh	Displays the data of the sampling setting number which was written.
BDAD	0E406D			
BDAE	0E406E			
BDAF	0E406F			

(3) Sampling setting read (command)

Address		Name	Setting range	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
BDB0	0E4070	Sampling setting read number	0000h to 00AFh	Set the sampling setting number to be read. Note. For 0000h, sampling setting number error does not occur.
BDB1	0E4071			
BDB2	0E4072	Reserved		
BDB3	0E4073			
BDB4	0E4074			
BDB5	0E4075			
BDB6	0E4076			
BDB7	0E4077			

(4) Sampling setting read (status)

Address		Name	Setting range	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
BDB8	0E4078	Sampling setting read number	0000h to FFFFh	Displays the sampling setting number which was read.
BDB9	0E4079			
BDBA	0E407A	Reserved		
BDBB	0E407B			
BDBC	0E407C	Sampling setting read data	00000000h to FFFFFFFFh	Displays the data of the sampling setting number which was read.
BDBD	0E407D			
BDBE	0E407E			
BDBF	0E407F			

(5) Sampling error information

Address		Name	Setting range	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
BDC0	0E4080	Sampling axis error information 1	00000000h to FFFFFFFFh	Turns on the bit of the axis which cannot be controlled. Axis No. 1 (bit 0) to 32 (bit 31)
BDC1	0E4081			
BDC2	0E4082			
BDC3	0E4083			
BDC4	0E4084	Sampling axis error information 2 (Note)	00000000h to FFFFFFFFh	Turns on the bit of the axis which cannot be controlled. Axis No. 33 (bit 0) to 64 (bit 31)
BDC5	0E4085			
BDC6	0E4086			
BDC7	0E4087			
	0E4088	Reserved		
	0E4089			
	0E408A			
	0E408B			
	0E408C			
	0E408D			
	0E408E			
	0E408F			
BDC8	0E4090			
BDC9	0 E 4091			
BDCA	0E4092			
BDCB	0E4093			
BDCC	0E4094			
BDCD	0 E 4095			
BDCE	0E4096			
BDCF	0 E4097			
BDD0	0E4098	Sampling data error information	00000000h to FFFFFFFFh	Turns on the bit of the sampling data which became sampling error. Sampling data 1 (bit 0) to 32 (bit 31)
BDD1	0E4099			
BDD2	0E409A			
BDD3	0E409B			
BDD4	0E409C	Reserved		
BDD5	0E409D			
BDD6	0E409E			
BDD7	0E409F			
BDD8	0E40A0	Sampling bit error information	00000000h to 0000FFFFh	Turns on the bit of the sampling bit information which became sampling error. Sampling data information 1 (bit 0) to 16 (bit 15) Sampling data information 1 (bit 0) to 32 (bit 31) MC300
BDD9	0E40A1			
BDDA	0E40A2			
BDDB	0E40A3			
BDDC	0E40A4	Reserved		
BDDD	0E40A5			
BDDE	0E40A6			
BDDF	0E40A7			
	0E40A8			
	0E40A9			
	0E40AA			
	0E40AB			
	0E40AC			
	0E40AD			
	0E40AE			
	0E40AF			

Note. When using MR-MC2 $\square \square$, BDC4 to BDC7 is "Reserved".
(6) Sampled data read command

Address		Name	Setting range	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
BDE0	0E40B0	Sampling read page number	0 to 256 MC200 0 to 512 MC300	Set the page number which is read in the sampling data read area. 12 points of sampled data are read per page. Note. When start sampling, set 0.
BDE1	0E40B1			
BDE2	0E40B2	Reserved		
BDE3	0E40B3			
BDE4	0E40B4			
BDE5	0E40B5			
BDE6	0E40B6			
BDE7	0E40B7			

(7) Sampled data read status

Address		Name	Setting range	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
BDE8	0E40B8	Read sampled data completion page number	$-2 \text { to } 256$	The page number which is transferred to the sampling data read area is stored.
BDE9	0E40B9			read area is stored. -2: Sampling read error
				-1 : Sampling reading
			MC300	0 : When sampling read number is 0 1 to 256: Page number whose sampled data is read 1 to 512: Page number whose sampled data is read
BDEA	0E40BA	Valid read sampled points	0 to 32 MC200	The number of sampled data in the page where sampling read is completed is stored.
BDEB	0E40BB			
			0 to 128 MC300	The user program needs to read the sampling data read area and to refer to the data of this valid read sampled points. All sampled data after the valid sampled points is 0 . 0 to 32 points: Data points sampled in a page $\mathbf{M C 2 0 0}$ 0 to 128 points: Data points sampled in a page MC300
BDEC	0E40BC	Sampling completion page number	0 to 256 MC200 0 to 512 MC300	The page number where sampling is completed by the position board is stored. 0 : Sampling trigger waiting or the page number 1 (only the first time) is being sampled 1 to 256: Sampling completion page number 1 to 512: Sampling completion page number MC300
BDED	0E40BD			
BDEE	0E40BE	Reserved		
BDEF	0E40BF			

7.12.4 Sampling setting write/read

The conditions for sampling and contents of sampling can be set. Also, the current sampling setting can be read. The sampling setting write/read is valid after executing parameter initialization (system command code: 0003h).
(1) When writing the sampling setting

| POINT |
| :--- | :--- |
| • The sampling setting write data is written in 4 bytes. |

(2) When reading the sampling setting

POINT

- The sampling setting read data is read in 4 bytes.

7.12.5 Details for sampling function settings

Settings related to sampling function are shown below. Each setting is imported when the sampling is started (SMPS: ON). The sampling setting cannot be changed while Waiting for sampling trigger (SMPW) is on and Sampling is being performed (SMPO) is on.
(1) Sampling setting

Setting No.	Name	Initial value	Setting range	Remarks			
0001	Sampling option	00000000h	00000000h to 000029FFh	Sampling cycle Set the sampling cycle. OOh to FFh: Control cycle \times (setting+1) Example. If the sampling cycle is set to 3 with the control cycle set to 0.44 ms , sampling is executed every 1.777 ms . Pre-trigger Set the timing that the trigger condition is satisfied. 0 to 9 : Setting $\times 10 \%$ Trigger mode Set the trigger mode. 0 : Trigger turns on when the sampling is started. 1: Trigger turns on when one of each trigger condition is satisfied. 2: Trigger turns on when all of the trigger conditions are satisfied.			
0002	Sampling points	8192 MC200 65536 MC300	0 to 65536	Set the points to be sampled.			
0003	For manufacturer setting	00000000h					
0004		00000000h					
0005		00000000h					
0006		00000000h					
0007		00000000h					
0008		00000000h					
0009		00000000h					
000A		00000000h					
000B		00000000h					
000C		00000000h					
000D		00000000h					
000E		00000000h					
000F		00000000h					

Setting No.	Name	Initial value	Setting range	Remarks
0018		00000000h		
0019		00000000h		
001A		00000000h		
001B		00000000h		
001C		00000000h		
001D		00000000h		
001E		00000000h		
001F		00000000h		
0020	Sampling trigger value 1	00000000h	00000000h to FFFFFFFFh	Set the threshold for trigger 1. Note 1. Set the threshold in double word regardless of the size of the data set in the sampling trigger 1 setting. 2. When the contents of trigger 1 are sampling bit information, this setting is not used.
0021	Sampling trigger value 2	00000000h	00000000h to FFFFFFFFh	Set the threshold for trigger 2. The setting contents are the same as the sampling trigger value 1.
0022	Sampling trigger value 3	00000000h	00000000h to FFFFFFFFh	Set the threshold for trigger 3. The setting contents are the same as the sampling trigger value 1.
0023	Sampling trigger value 4	00000000h	00000000h to FFFFFFFFh	Set the threshold for trigger 4. The setting contents are the same as the sampling trigger value 1.
0024	Sampling trigger value 5	00000000h	00000000h to FFFFFFFFh	Set the threshold for trigger 5 . The setting contents are the same as the sampling trigger value 1.
0025	Sampling trigger value 6	00000000h	00000000h to FFFFFFFFh	Set the threshold for trigger 6 . The setting contents are the same as the sampling trigger value 1.
0026	Sampling trigger value 7	00000000h	00000000h to FFFFFFFFh	Set the threshold for trigger 7 . The setting contents are the same as the sampling trigger value 1.
0027	Sampling trigger value 8	00000000h	00000000h to FFFFFFFFh	Set the threshold for trigger 8 The setting contents are the same as the sampling trigger value 1.
0028	For manufacturer	00000000h		
0029	setting	00000000h		
002A		00000000h		
002B		00000000h		
002C		00000000h	\backslash	
002D		00000000h	\backslash	
002E		00000000h	\rangle	
002F		00000000h		

Setting No.	Name	Initial value	Setting range	Remarks
0040	Sampling data 17 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
0041	Sampling data 18 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
0042	Sampling data 19 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
0043	Sampling data 20 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
0044	Sampling data 21 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
0045	Sampling data 22 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
0046	Sampling data 23 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
0047	Sampling data 24 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
0048	Sampling data 25 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
0049	Sampling data 26 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
004A	Sampling data 27 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
004B	Sampling data 28 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
004C	Sampling data 29 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
004D	Sampling data 30 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
004E	Sampling data 31 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
004F	Sampling data 32 setting	00000000h	00000000h to 00FF14FFh	Same as the sampling data 1 setting.
0050 006 F	For manufacturer setting	00000000 h $:$ 00000000 h		

Note 1. For the bits which are able to be sampled and their settings (monitor number and bit number), refer to the Section 7.12.7.

Setting No.	Name	Initial value	Setting range	Remarks
0080	Sampling bit information 17 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
0081	Sampling bit information 18 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
0082	Sampling bit information 19 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
0083	Sampling bit information 20 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
0084	Sampling bit information 21 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
0085	Sampling bit information 22 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
0086	Sampling bit information 23 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
0087	Sampling bit information 24 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
0088	Sampling bit information 25 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
0089	Sampling bit information 26 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
008A	Sampling bit information 27 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
008B	Sampling bit information 28 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
008C	Sampling bit information 29 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
008D	Sampling bit information 30 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
008E	Sampling bit information 31 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
008F	Sampling bit information 32 setting (Note 2)	00000000h	00000000h to 0FFF03FFh	Same as the sampling bit information 1 setting.
0090	For manufacturer setting	00000000h		
:		: $0000000{ }^{\text {n }}$		
00AF		00000000h		

Note 2. "For manufacturer setting" when using MR-MC2 $\square \square$.

7.12.6 Number of sampled points

By setting the number of sampled points (sampling setting No.0002), points to be sampled can be changed. Number of data which is sampled before the trigger conditions are met (set with pre-trigger) is specified by percentage to the number of sampled points. However, for MR-MC2 $\square \square$, when the number of sampled points exceeds 8192, the percentage is to 8192.
For when the number of sampled points is 8192 or less, and 8193 or more, the characteristics are shown below.
(1) For MR-MC2 $\square \square$ when the number of sampled points is 8192 or less/for MR-MC3 $\square \square$

When sampling of the points set in the sampling points (sampling setting No.0002) is completed, sampling itself is completed automatically. Since the host controller is required to read the sampling data buffer area after the sampling is completed, the load on the host controller is light, however, on the other hand, sampling for a long time cannot be executed.
(2) For MR-MC2 $\square \square$ when the number of sampled points is 8193 or more

Points which are set to the sampling points (sampling setting No.0002) are sampled by the position board. However, the host controller is required to read sampled data during the sampling, the load on the host controller is high.
The sampling data buffer area of the position board internal memory is regarded as the ring buffer of 256 pages (8192 points), and the host controller and the position board read the sampling data read area with executing exclusive control based on the page number.

POINT

- The larger the pre-trigger setting is, the higher the load on the host controller is since it is required to read the sampling data in a short time after the trigger conditions are met. As an example, when pre-trigger is set to 90%, after the trigger conditions are met, the host controller is required to complete reading the data sampled by pre-trigger (at least 1 page) before the position board completes the sampling of 10% left.

7.12.7 Sampling items

Sampling items are sampling data and sampling bit information. By setting axis No./station No. and monitor number to be sampled in sampling data, arbitrary monitor data can be sampled. Up to 32 items of monitor data can be specified. Axis data command/status bit (address 1000h to 100Fh, 1060h to 106Fh) can be sampled as sampling bit information. Up to 16 items MC200/32 items MC300 of bit information can be specified.
Examples of the sampling items are shown below.
(1) For operation information

Current command position (monitor No.0300, 0301), current feedback position (monitor No.0302, 0303), moving speed (monitor No.0304, 0305) etc.
For details, refer to Section 12.4.
(2) For servo information

Position feedback (monitor No.0200, 0201), position droop (monitor No.0204, 0205) etc.
For details, refer to Section 12.2.
(3) For axis bit information

During operation signal (OP), completion of operation signal (OPF), servo alarm signal (SALM) etc. For details, refer to the following tables.
(a) Axis data command bit

(b) Axis data status bit

POINT

- Up to 3 items (total of sampling data and sampling bit information) can be specified for the servo information. If more than 4 items are set, sampling error (SMPE: ON) occurs when sampling is started and the bit of the sampling error information corresponding to the fourth item turns on. However, there is no restriction for the number of the items in the following servo information.
- Position feedback (lower) (monitor No.0200)
- Position feedback (upper) (monitor No.0201)
- Position droop (lower) (monitor No.0204)
- Position droop (upper) (monitor No.0205)
- Current feedback (monitor No.020B)
- Servo parameter error No. (monitor No. 0510 to 0537)
- Servo parameter change No. (monitor No. 0590 to 05B7)

7.12.8 Sampling trigger

As a trigger for start of sampling, up to 8 conditions can be set. The case when one of the trigger conditions is met or when all of the trigger conditions are met can be set as a trigger. The data or the bit information trigger refers to are selected from set sampling items. There are 4 types of trigger conditions for each of the contents the trigger refers to. (Refer to the following.)
(1) When the trigger content is data
(a) Fulfilled when passing through trigger value in increase direction

When the data increases from lower than the trigger value to the trigger value or higher, the trigger condition is met.

Example 1

Example 2

(b) Fulfilled when passing through trigger value in decrease direction When the data decreases from higher than the trigger value to the trigger value or lower, the trigger condition is met.

Example 1

Example 2

(c) Fulfilled when the data is the same as trigger value or higher

When the data is the same as the trigger value or higher, the trigger condition is met.

Example 1

Example 2

(d) Fulfilled when the data is the same as trigger value or lower

When the data is the same as the trigger value or lower, the trigger condition is met.

Example 2

(2) When the trigger content is bit information
(a) Fulfilled by leading edge of bit

When the bit turns on from off, the trigger conditions are met.

Example 1
Sit Trigger condition is met

Example 2

(b) Fulfilled by trailing edge of bit

When the bit turns off from on, the trigger conditions are met.

Example 1

Example 2

(c) Fulfilled while bit is on

While the bit is on, the trigger condition is met.

Example 1
Sampling starts

Example 2

(d) Fulfilled while bit is off

While the bit is off, the trigger condition is met.

Example 1

Example 2

7.12.9 Sampling data read

Sampled data of 8192 points is stored in the sampling data buffer area of the position board internal memory. Sampled data is transferred to the sampling data read area divided in units of a page (32 points/page). For the sampling data read during the sampling, refer to the Section 7.12.10.
(1) Sampling data read area
(a) Using MR-MC2 $\square \square$

Sampling data buffer area
Page
number \quad Page details

+0000h	Sampling data 1
+0004h	Sampling data 2
+0008h	Sampling data 3
+000Ch	Sampling data 4
+0010H	Sampling data 5
+0014h	Sampling data 6
+0018	Sampling data 7
+001Ch	Sampling data 8
+0020	Sampling data 9
+0024h	Sampling data 10
+0028	Sampling data 11
+002Ch	Sampling data 12
+0030h	Sampling data 13
+0034h	Sampling data 14
+0038	Sampling data 15
+003Ch	Sampling data 16
+0040h	Sampling data 17
+0044h	Sampling data 18
+0048	Sampling data 19
+004Ch	Sampling data 20
+0050H	Sampling data 21
+0054h	Sampling data 22
+0058h	Sampling data 23
+005Ch	Sampling data 24
+0060h	Sampling data 25
+0064h	Sampling data 26
+0068h	Sampling data 27
+006Ch	Sampling data 28
+0070h	Sampling data 29
+0074h	Sampling data 30
+0078	Sampling data 31
+007Ch	Sampling data 32
+0080h	Sampling bit information 1 to 16
+0082h	Reserved (2 bytes)

(b) Using MR-MC3 $\square \square$

Sampling data buffer area
Page
number Page details

+0000h	Sampling data 1
+0004h	Sampling data 2
+0008	Sampling data 3
$+000 \mathrm{Ch}$	Sampling data 4
+0010H	Sampling data 5
+0014h	Sampling data 6
+0018	Sampling data 7
+001Ch	Sampling data 8
+0020h	Sampling data 9
+0024h	Sampling data 10
+0028	Sampling data 11
+002Ch	Sampling data 12
+0030h	Sampling data 13
+0034h	Sampling data 14
+0038	Sampling data 15
$+003 \mathrm{Ch}$	Sampling data 16
+0040h	Sampling data 17
+0044h	Sampling data 18
+0048	Sampling data 19
$+004 \mathrm{Ch}$	Sampling data 20
$+0050 \mathrm{H}$	Sampling data 21
+0054h	Sampling data 22
+0058h	Sampling data 23
+005Ch	Sampling data 24
+0060h	Sampling data 25
+0064h	Sampling data 26
+0068	Sampling data 27
+006Ch	Sampling data 28
+0070h	Sampling data 29
+0074h	Sampling data 30
+0078	Sampling data 31
+007Ch	Sampling data 32
+0080h	Sampling bit information 1 to 16
+0082h	Sampling bit information 17 to 32

(2) A timing chart of reading of sampled data

To read the sampled data, set the page number to be transferred to the sample read page number. When detecting the change of the sampling read page number, the position board transfers the sampled data corresponding to the page number to the sampling data read area and stores the points of data which are sampled in the page in the valid read sampled points.
(a) Using MR-MC2 $\square \square$
Read sampled data page number

Read sampled data completion
page number
Valid read sampled data points
(b) Using MR-MC3 $\square \square$

POINT

- The read sampled data completion page number is -1 (during sampling data transferring) while the data is being transferred to the sampling data read area.
- When the sample read is executed in the following cases, read sampled data completion page number is -2 (sampling read error) and sampled data will not be read.
- When the sample read page number is incorrect
- When the next page number of the sampling completion page number is specified during sampling
- When the page number is changed from other than 0 to 0 during sampling, sampling is finished (sampling error (SMPE) turns on). The read sampled data completion page number becomes 0 and sampling data read area is cleared to 0.
- The change of sample read number is invalid while the data is being transferred to the sampling data read area (transferring the page number before changed is continued). After completion of the sample read, the sampled data of changed page number is started to be transferred.
- When 0 is set to the sampling read page number, sampling data read area is cleared to 0 .
- The position board does not start transferring sampled data until the sampling read page number is changed. When the same page number is needed to be set, such as to update the contents of the sampling data read area, set the sampling read page number to 0 . After confirming the page number is 0 , specify the page number to be transferred.

7.12.10 Timing chart for sampling function

A timing chart for the sampling function is shown below.
(1) For MR-MC2 $\square \square$ when the number of sampled points is 8192 or less/for MR-MC3 $\square \square$
(a) Starting sampling

To start the sampling, write the sampling setting previously and turn on the start sampling command (SMPS). When the start sampling command (SMPS) is accepted, the waiting for sampling trigger (SMPW) turns on. Then, after trigger conditions are met, the sampling is being performed (SMPO) turns on.

POINT

- Turn on the start sampling (SMPS) after setting 0 to the sampling read page number.
- In the following cases, sampling error occurs (SMPE: ON).
- When the setting for the sampling option is outside of the setting range
- When the setting for the sampling data is outside of the setting range
- When the setting value for the sampling bit information is outside of the setting range
- When four or more monitor numbers for servo information are designated for the same axis
-When 0 is not set to the sampling read page number
- When a monitor number is designated for an axis for which communication with the servo amplifier has not been implemented, such as it is not the control axis or an amplifier-less axis, the data to be sampled is always 0
(for bit, off).
(Sampling error (SMPE) and sampling error information do not turn on.)
(b) Sampling completion

When the sampling of specified sampling points is completed, the sampling is completed (SMPF) turns on.

1) Using MR-MC2 $\square \square$

POINT

- In the timing chart above, since 8192 is the multiplication of 32 , the valid sampled data (valid sampled read points) in the last page (page 256) are 1 to 32 points.

POINT

- In the timing chart above, since 65536 is the multiplication of 128 , the valid sampled data (valid sampled read points) in the last page (page 512) are 1 to 128 points.
(c) Sampling stopped prior to full completion

When the start sampling command (SMPS) is turned off during the sampling (SMPO: ON), the sampling is being performed (SMPO) turns off and the sampling finishes.

POINT

- The sampling is completed (SMPF) is not turned on.
- In the timing chart above, the sampling stopped in the 5 page. For the valid sampled data in the page, confirm the valid sampled read points at the sampling read.
- When sample data that is read is 0 for points outside of sample valid points.
(d) When reading sampled data

After confirming the sampling is being performed (SMPO) is turned off, read the sampled data and valid read sampled points from the page 1 to the page of the sampling completion page number. Sampled data points in the page where the sampling read is completed is stored in the valid read sampled points.

POINT

- In the timing chart below, the data is stored in the page 1 to 64 , and the sampled data in the page 64 is valid from 1 to 5 points.
- When sample data that is read is 0 for points outside of sample valid points.
- In the following cases, the sampling read error (Read sampled data completion page number is -2) occurs.
- When the setting for the sampling read page number is outside of the setting range
-When the next page number of the sampling completion page number is specified during the sampling

1) Using MR-MC2 $\square \square$

2) Using MR-MC3 $\square \square$

(2) For MR-MC2 $\square \square$ when the number of sampled points is 8193 or more
(a) When starting the sampling

To start the sampling, write the sampling setting previously and turn on the start sampling command (SMPS). When the start sampling command (SMPS) is accepted, the waiting for sampling trigger (SMPW) turns on. Then, after trigger conditions are met, the sampling is being performed (SMPO) turns on.

POINT

- Turn on the start sampling (SMPS) after setting 0 to the sampling read page number.
- In the following cases, sampling error occurs (SMPE: ON).
- When the setting for the sampling option is outside of the setting range
- When the setting for the sampling data is outside of the setting range
- When the setting value for the sampling bit information is outside of the setting range
- When four or more monitor numbers for servo information are designated for the same axis
- When the sampling start signal (SMPS) is turned on when the read sampled data completion page number is -1
- When a monitor number is designated for an amplifier-less axis, the data to be sampled is always 0 (for bit, off).
(Sampling error (SMPE) and sampling error information do not turn on.)
- When a monitor number related to the servo information is designated for an axis for which communication with the servo amplifier has not been implemented, such as it is not the control axis, the corresponding sampling error information turns on (excluding the amplifier-less axis).
(The sampling error (SMPE) is not turned on.)
(b) Sampling is being performed

The user program reads the sampled data sequentially according to the sampling completion page number.
The user program can read the page from the page of the sampling read page number to the page of the sampling completion page number in numerical order. The sampling data buffer area is a ring buffer of 256 pages. For example, when the sampling read page number is the page 254 and the sampling completion page number is the page 2 , the pages $254,255,256,1$ and 2 can be read. When the sampling read page number differs from the sampling completion page number, the user program writes the next page number of the sampling read page number and executes the process of reading page.

POINT

- In the timing chart above, the sampling read page number differs from the sampling completion page number by 1 page, unless the next page number of the sampling completion page number becomes the sampling read page number, reading sampled data can be delayed.
- In the following cases, the sampling read error (Read sampled data completion page number is -2) occurs.
- When the setting for the sampling read page number is outside of the setting range.
- When the next page number of the sampling completion page number is specified during sampling.
- In the following cases during the sampling, sampling error (SMPE: ON) occurs.
-When the next page number of the sampling completion page number is the same as the sampling read page number.
- When the sampling completion page number switches to the page 256 , with the sampling read page number remaining 0.
-When the sampling read error (Read sampled data completion page number is -2) occurs.
- When the page number is changed from other than 0 to 0 during the sampling.

The read sampled data completion page number becomes 0 and sampling data read area is cleared to 0 .
(c) When the sampling is completed

When the sampling of specified points is completed, the sampling is complete (SMPF) turns on.
After confirming the sampling is complete (SMPF) turns on, read until the sampling completion page number.

POINT

- In the timing chart above, since the valid read sampled points of the last page of the sampling (63 rd page) are 12 , the valid sampled data of the last page is 1 to 12 points.
- When sample data that is read is 0 for points outside of sample valid points.
(d) Sampling stopped prior to full completion

When the start sampling command (SMPS) is turned on during the sampling (SMPO: ON), the sampling is being performed (SMPO) turns off and the sampling finishes. After confirming the sampling is being performed (SMPO) turns off, read until the sampling completion page number.

POINT

- In the timing chart above, since the valid read sampled points of the last page of the sampling (63rd page) are 8 , the valid sampled data of the last page is 1 to 8 points.
- When sample data that is read is 0 for points outside of sample valid points.
- The sampling is completed (SMPF) is not turned on.
(e) When the reading of sampled data is not finished in time

When the next page number of the sampling completion page number matches the sampling read page number during the sampling (SMPO: ON), the position board judges that the reading of sampled data is not finished in time and the sampling is finished (the sampling error (SMPE) turns on). After confirming the sampling is being performed (SMPO) turns off, read the unread pages to the page of the read sampled data completion page number and valid read sampled points. The valid data points sampled in the page of the sampling completion page number are stored in the valid sampled read points.

POINT

- In the timing chart above, since the sampling is stopped when the sampling of the 63rd page is completed, the valid sampled data of the 63rd page (valid read sampled points) is 32 points.
- When sample data that is read is 0 for points outside of sample valid points.

7.13 Log

7.13.1 Summary

The log function is a function that stores the status when an event occurs (start operation, completion, alarm occurs etc.) on the position board. The log data is stored in the log data buffer area (internal memory of the position board). When a reading of log data command is generated at a host controller, the log data stored in the log data buffer area is transferred to the dual port memory.
The log data is a ring buffer where the oldest data is deleted sequentially.
The log data is stored in the internal memory of the position board, and the log data is initialized when the power for the position board is turned off, or by a software reboot.

Note. Log data read to dual port memory from internal memory of position board on per page (for 16 events) basis.

POINT

- Reading of log data can be performed in the test tool.
- When using MR-MC2 $\square \square$, log needs to be started by user program etc. in order to use the log function.
- When using MR-MC3 $\square \square$, log is started automatically at system startup.

API LIBRARY

- Use the sscStartLog function to start log.
- Use the sscStopLog function to stop log.
- Use the sscCheckLogStatus function to get log operation status.
- Use the sscCheckLogEventNum function to get the number of valid log data events.
- Use the sscReadLogData function to get the log data.

7.13.2 Log data details

The log data for 1 event is 16 bytes. The details of the data are shown in the following.

Offset	Content
0000 h	Axis No.
0002 h	Event code
0004 h	Time stamp
0006 h	
0008 A	Information for each event
000 Ah	
000 Ch	
000 Eh	

(1) Axis No.

Axis (station) No. [0 : For events that are common to axes]
[1 to 32 : For events for separate axes] ${ }^{M C 200}$
[1 to 64 : For events for separate axes] ${ }^{\text {MC300 }}$
[1 to 4 : For events for separate stations] ${ }^{M C 200}$
[1 to 16 : For events for separate stations] MC300
(2) Event code

Refer to Section 7.13.3.
(3) Time stamp

Sets the value of the 32 bit free run counter added to each control cycle. This free run counter value is reset at system start up. It is 0 cleared when a software reboot is performed or when the position board power is turned off and on.
(4) Information for each event

Refer to Section 7.13.4.
7.13.3 Event code list

Event code	Factor	Each axis(station)/common
0001h	Start of automatic operation	Each axis
0002h	Start of return to home position	Each axis
0003h	Start of JOG operation	Each axis
0004h	Start of incremental movement	Each axis
0005h	Start of linear interpolation operation \square Start of interpolation operation MC300	Each axis
0006h	Home position reset startup	Each axis
0011h	Completion of automatic operation	Each axis
0012h	Home position return complete	Each axis
0013h	Completion of JOG operation	Each axis
0014h	Completion of incremental movement	Each axis
0015h	Completion of linear interpolation operation MC200 Completion of interpolation operation MC300	Each axis
0016h	Home position reset completion	Each axis
0020h	Change speed	Each axis
0021h	Change acceleration time constant	Each axis
0022h	Change deceleration time constant	Each axis
0023h	Position change	Each axis
0100h	Operation alarm occurs	Each axis
0101h	A servo alarm occurs	Each axis
0102h	Start of operation while alarm is set	Each axis
0103h	System alarm occurs	Common
0201h	Parameter initialization	Common
0202h	Writing to parameters	Each axis, Common
0203h	Reading parameters	Each axis, Common
0210h	Backup parameters reading	Common
0211h	Flash ROM parameter backup	Common
0212h	Flash ROM parameter initialization	Common
0300h	Start of system startup	Common
0310h	Completion of system startup	Common
0311h	System error occurs	Common
0402h	Interlock occurs	Each axis
0403h	Interlock cancelled	Each axis
0404h	Stop command (STP)	Each axis
0408h	Rapid stop command (RSTP)	Each axis
0500h	Operation alarm reset	Each axis
0501h	Servo alarm reset	Each axis
0503h	System alarm reset	Common
0601h	Waiting required for interference	Each axis
0602h	Cancellation of waiting for interference	Each axis
0603h	Rough match output	Each axis
0604h	Pass position interrupt start	Each axis
0605h	Pass position interrupt complete	Each axis
0606h	Pass position interrupt incomplete	Each axis
0607h	Pass position interrupt cancel	Each axis
0608h	Pass position interrupt condition satisfied	Each axis
0609h	Point table loop start	Each axis
0800h	Other axes start complete	Common
0801h	Other axes start incomplete	Common

Event code	Factor	Each axis(station)/common
0900h	SSCNET disconnection command	Common
0901h	SSCNET disconnection complete MC200	Common
0902h	SSCNET disconnection error	Common
0903h	SSCNET reconnection command	Common
0904h	SSCNET reconnection complete MC200	Common
0905h	SSCNET reconnection error	Common
0906h	SSCNET disconnection complete (axis) MC300	Common
0908h	SSCNET disconnection complete (station) MC300	Common
0909h	SSCNET reconnection complete (axis) MC300	Common
090Bh	SSCNET reconnection error (station) MC300	Common
0A00h	Control mode switch complete	Each axis
0A01h	Control mode switch error	Each axis
0B00h	Mark detection signal detection	Each axis
0B01h	Mark detection clear	Each axis
0B02h	Mark detection disable start	Each axis
0B03h	Mark detection disable cancel	Each axis
0B04h	Mark detection setting enable	Each axis
0C00h	Transient transmit start	Each axis
0C01h	Transient transmit error occurrence	Each axis
2100h	RIO control alarm occurrence	Each station
2101h	RIO module alarm occurrence	Each station
2202h	Writing to parameters (remote I/O)	Each station
2500h	RIO control alarm reset	Each station
2501h	RIO module alarm reset	Each station
2C00h	Transient transmit start (remote I/O)	Each station
2C01h	Transient transmit error occurrence (remote I/O)	Each station

7.13.4 Information for each event

Log data set per event is as follows.
Also, details concerning the operation mode noted in the information per event is as follows.
0 : Automatic operation
1: Home position return
2: JOG operation
3: Incremental feed
4: Mode not selected
5: Mode error
6: Home position reset
8: Linear interpolation operation MC200/interpolation operation MC300
(1) Start of automatic operation

Offset	Content
0000 h	Axis No.
0002 h	Event code (0001h)
0004 h	Time stamp
0006 h	
0008 h	Start point No.
000 Ah	End point No.
000 Ch	Operation startup coordinate
000 Eh	

(3) Start of JOG operation

Offset	Content
0000h	Axis No.
0002h	Event code (0003h)
0004h	Time stamp
0006h	
0008h	Manual feed speed (Note)
000Ah	
000Ch	0 (fixed value)
000Eh	0 (fixed value)

Note. Taken as a negative number when the movement direction is -.
(5) Start of linear interpolation operation MC200 / Start of interpolation operation MC300

Offset	Content
0000 h	Axis No.
00002 h	Event code (0005h)
00004 h	Time stamp
0006 h	
0008 h	Start point No.
000 Ah	End point No.
000 Ch	Operation startup coordinate
000 Eh	

(2) Start of home position return

Offset	Content
0000 h	Axis No.
0002 h	Event code (0002h)
0004 h	Time stamp
0006 h	
0008 h	Home position return speed
000 Ah	
000 Ch	Creep speed
000 Eh	Return to home position mode (Note)

Note. Follow the home position return method designated in parameter No. 0240 .
(4) Start of incremental feed

Offset	Content
0000h	Axis No.
0002h	Event code (0004h)
0004h	Time stamp
0006h	
0008h	Manual feed speed (Note)
000Ah	
000Ch	Incremental feed movement amount
000Eh	

Note. Taken as a negative number when the movement direction is -.
(6) Home position reset startup

Offset	Content
0000 h	Axis No.
0002 h	Event code (0006h)
0004 h	Time stamp
0006 h	
0008 h	0 (fixed value)
000 hh	0 (fixed value)
000 Ch	0 (fixed value)
000 h	0 (fixed value)

(7) Completion of automatic operation

Offset	Content
0000 h	Axis No.
0002 h	Event code (0011h)
0004 h	Time stamp
0006 h	
0008 h	Coordinate operation completed
000 hh	
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(9) Completion of JOG operation

Offset	Content
0000 h	Axis No.
0002 h	Event code $(0013 \mathrm{~h})$
00004 h	Time stamp
0006 h	
0008 h	Coordinate operation completed
000 Ah	
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(11) Completion of linear interpolation operation $\sqrt{M C 200 / C o m p l e t i o n ~ o f ~}$ interpolation operation MC300

Offset	Content
0000 h	Axis No.
0002 h	Event code (0015h)
00004 h	Time stamp
0006 h	
0008 h	Coordinate operation completed
000 Ah	
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(13) Change speed

Offset	Content
0000 h	Axis No.
0002 h	Event code (0020h)
0004 h	Time stamp
0006 h	
0008 h	Speed after change
000 Ah	Status 0: Completion of preparation for change $1:$ Change error
000 Ch	0 (fixed value)
000 Eh	

(8) Home position return complete

Offset	Content
0000 h	Axis No.
0002 h	Event code (0012h)
0004 h	Time stamp
0006 h	
0008 h	Completion status (0: normal -1: error)
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(10) Completion of incremental feed

Offset	Content
0000 h	Axis No.
0002 h	Event code (0014h)
0004 h	Time stamp
0006 h	
0008 h	Coordinate operation completed
000 Ah	
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(12) Home position reset complete

Offset	Content
0000 h	Axis No.
0002 h	Event code (0016h)
0004 h	Time stamp
0006 h	
0008 h	Completion status (0: normal
000 A - error)	
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(14) Change acceleration time constant

Offset	Content
0000 h	Axis No.
0002 h	Event code (0021h)
0004 h	Time stamp
0006 h	
0008 h	Acceleration time constant after change
000 Ah	Status $0:$ Completion of preparation for change $1:$ Change error
000 Ch	0 (fixed value)
0	

(15) Change deceleration time constant

Offset	Content
0000 h	Axis No.
0002 h	Event code (0022h)
0004 h	Time stamp
0006 h	
0008 h	Deceleration time constant after change
000 Ah	Status 0: Completion of preparation for change 1: Change error
000 Ch	0 (fixed value)
000 Eh	

(17) Operation alarm occurs

Offset	Content
0000 h	Axis No.
0002 h	Event code (0100h)
0004 h	Time stamp
0006 h	
0008 h	Alarm number
000 Ah	Details number
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(19) Start of operation while alarm is set

Offset	Content
0000 h	Axis No.
0002 h	Event code (0102h)
0004 h	Time stamp
0006 h	
0008 h	Alarm number
000 Ah	Details number
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(21) Parameter initialization

Offset	Content
0000 h	Axis No.
0002 h	Event code (0201h)
0004 h	Time stamp
0006 h	
0008 h	System command code
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(16) Position change

Offset	Content
0000h	Axis No.
0002h	Event code (0023h)
0004h	Time stamp
0006h	
0008h	Position after change
000Ah	
000Ch	Status 0 : Completion of preparation for change 1: Change error
000Eh	0 (fixed value)

(18) A servo alarm occurs

Offset	Content
0000 h	Axis No.
0002 h	Event code (0101h)
0004 h	Time stamp
0006 h	
0008 h	Alarm number
000 Ah	Details number
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(20) System alarm occurs

Offset	Content
0000 h	Axis No.
0002 h	Event code (0103h)
0004 h	Time stamp
0006 h	
0008 h	Alarm number
000 Ah	Details number
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(22) Writing to parameters

Offset	Content
0000 h	Axis No.
0002 h	Event code $(0202 \mathrm{~h})$
0004 h	Time stamp
0006 h	
0008 h	Parameter number
000 Ah	Parameter setting prior to change
000 Ch	Parameter setting after change
000 Eh	0 (fixed value)

(23) Reading parameters

Offset	Content
0000 h	Axis No.
0002 h	Event code (0203h)
0004 h	Time stamp
0006 h	
0008 h	Parameter number
000 Ah	Parameter data
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(25) Flash ROM parameter backup

Offset	Content
0000 h	Axis No.
0002 h	Event code (0211h)
0004 h	Time stamp
0006 h	
0008 h	0 (fixed value)
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(27) Start of system startup

Offset	Content
0000 h	Axis No.
0002 h	Event code (0300h)
0004 h	Time stamp
0006 h	
0008 h	System command code
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(29) System error occurs

Offset	Content
0000 h	Axis No.
0002 h	Event code (0311h)
0004 h	Time stamp
0006 h	
0008 h	System status code
000 hh	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(24) Backup parameters reading

Offset	Content
0000 h	Axis No.
0002 h	Event code (0210h)
0004 h	Time stamp
0006 h	
0008 h	0 (fixed value)
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(26) Flash ROM parameter initialization

Offset	Content
0000 h	Axis No.
0002 h	Event code (0212h)
0004 h	Time stamp
0006 h	
0008 h	0 (fixed value)
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(28) Completion of system startup

Offset	Content
0000 h	Axis No.
0002 h	Event code (0310h)
0004 h	Time stamp
0006 h	
0008 h	0 (fixed value)
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(30) Interlock occurs

Offset	Content
0000 h	Axis No.
0002 h	Event code (0402h)
0004 h	Time stamp
0006 h	
0008 h	Operation mode
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(31) Interlock cancelled

Offset	Content
0000 h	Axis No.
0002 h	Event code (0403h)
0004 h	Time stamp
0006 h	
0008 h	Operation mode
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(33) Rapid stop command (RSTP)

Offset	Content
0000 h	Axis No.
0002 h	Event code (0408h)
0004 h	Time stamp
0006 h	
0008 h	Operation mode
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(35) Servo alarm reset

Offset	Content
0000 h	Axis No.
0002 h	Event code (0501h)
0004 h	Time stamp
0006 h	
0008 h	Alarm number when reset is performed
000 h	Details number when reset is performed
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(37) Waiting required for interference

Offset	Content
0000 h	Axis No.
0002 h	Event code (0601h)
0004 h	Time stamp
0006 h	
0008 h	Operation mode
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(32) Stop command (STP)

Offset	Content
0000 h	Axis No.
0002 h	Event code (0404h)
0000 h	Time stamp
0006 h	
0008 h	Operation mode
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(34) Operation alarm reset

Offset	Content
0000 h	Axis No.
0002 h	Event code (0500h)
0004 h	Time stamp
0006 h	
0008 h	Alarm number when reset is performed
000 Ah	Details number when reset is performed
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(36) System alarm reset

Offset	Content
0000 h	Axis No.
0002 h	Event code (0503h)
0004 h	Time stamp
0006 h	
0008 h	Alarm number when reset is performed
000 Ah	Details number when reset is performed
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(38) Cancellation of waiting for interference

Offset	Content
0000 h	Axis No.
0002 h	Event code (0602h)
0004 h	Time stamp
0006 h	
0008 h	Operation mode
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(39) Rough match output

Offset	Content
0000 h	Axis No.
0002 h	Event code (0603h)
0004 h	Time stamp
0006 h	
0008 h	Operation mode
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(41) Pass position interrupt complete

Offset	Content
0000 h	Axis No.
0002 h	Event code (0605h)
00004 h	Time stamp
0006 h	
0008 h	Pass position condition number
000 Ah	Pass position option
000 Ch	Completion coordinate
000 Eh	

(43) Pass position interrupt cancel

Offset	Content
0000 h	Axis No.
0002 h	Event code (0607h)
0004 h	Time stamp
0006 h	
0008 h	Pass position condition number
000 h	Pass position option
000 Ch	Cancel coordinate
000 Eh	

(40) Pass position interrupt start

Offset	Content
0000 h	Axis No.
0002 h	Event code (0604h)
0004 h	Time stamp
0006 h	
0008 h	Pass position condition number
000 Ah	Pass position option
000 Ch	Start coordinate
000 E	

(42) Pass position interrupt incomplete

Offset	Content
0000 h	Axis No.
0002 h	Event code (0606h)
0004 h	Time stamp
0006 h	
0008 h	Pass position condition number
000 Ah	Pass position option
000 Ch	Completion coordinate
000 En	

(44) Pass position interrupt condition satisfied

Offset	Content
0000 h	Axis No.
0002 h	Event code (0608h)
0004 h	Time stamp
0006 h	
0008 h	Pass position condition number
000 Ah	Pass position option
000 Ch	Condition satisfied coordinate
000 Eh	

(45) Point table loop start

Offset	Content
0000 h	Axis No.
0002 h	Event code (0609h)
0004 h	Time stamp
0006 h	
0008 h	0 (fixed value)
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(46) Other axes start complete

Offset	Content
0000 h	Axis No.
0002 h	Event code (0800h)
0004 h	Time stamp
0006 h	
0008 h	Other axes start data No.
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(48) SSCNET disconnection command

Offset	Content
0000 h	Axis No.
0002 h	Event code (0900h)
0004 h	Time stamp
0006 h	
0008 h	Disconnection axis No.
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(50) SSCNET disconnection error

Offset	Content
0000 h	Axis No.
0002 h	Event code (0902h)
0004 h	Time stamp
0006 h	
0008 h	Error code of reconnection/disconnection
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(52) SSCNET reconnection complete MC200

Offset	Content
0000 h	Axis No.
0002 h	Event code (0904h)
0004 h	Time stamp
0006 h	
0008 h	Controlling axis information (lower)
000 Ah	
000 Ch	Controlling axis information (upper) (O(fixed value))
000 Eh	Controlling station information

(47) Other axes start incomplete

Offset	Content
0000 h	Axis No.
0002 h	Event code (0801h)
0004 h	Time stamp
0006 h	
0008 h	Other axes start data No.
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(49) SSCNET disconnection complete MC200

Offset	Content
0000 h	Axis No.
0002 h	Event code (0901h)
0004 h	Time stamp
0006 h	
0008 h	Controlling axis information (lower)
000 Ah	
000 Ch	Controlling axis information (upper) (O(fixed value))
000 Eh	Controlling station information

(51) SSCNET reconnection command

Offset	Content
0000 h	Axis No.
0002 h	Event code (0903h)
0004 h	Time stamp
0006 h	
0008 h	0 (fixed value)
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(53) SSCNET reconnection error

Offset	Content
0000 h	Axis No.
0002 h	Event code (0905h)
0004 h	Time stamp
0006 h	
0008 h	Error code of reconnection/disconnection
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(54) SSCNET disconnection complete (axis) MC300

Offset	Content
0000 h	Axis No.
0002 h	Event code (0906h)
0004 h	Time stamp
0006 h	
0008 h	Controlling axis information 1
000 Ah	
000 Ch	Controlling axis information 2
000 Eh	

(56) SSCNET reconnection complete (axis) MC300

Offset	Content
0000h	Axis No.
0002h	Event code (0909h)
0004h	Time stamp
0006h	
0008h	Controlling axis information 1
000Ah	
000Ch	Controlling axis information 2
000Eh	

(58) Control mode switch complete

Offset	Content
0000 h	Axis No.
0002 h	Event code (0A00h)
0004 h	Time stamp
0006 h	Control mode before switch $0:$ Position control mode 1: Speed control mode 2: Torque control mode
0008 h	Control mode after switch 0: Position control mode 1: Speed control mode 2: Torque control mode
000 Ah	0 (fixed value) 000 Ch
000 Eh	0 (fixed value)

(55) SSCNET disconnection complete (station) MC300

Offset	Content
0000 h	Axis No.
0002 h	Event code (0908h)
y 0004h	Time stamp
0006 h	
0008 h	Controlling station information
000 Ah	
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(57) SSCNET reconnection error (station) MC300

Offset	Content
0000 h	Axis No.
0002 h	Event code (090Bh)
0004 h	Time stamp
0006 h	
0008 h	Controlling station information
000 Ah	
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(59) Control mode switch error

Offset	Content
0000h	Axis No.
0002h	Event code (0A01h)
0004h	Time stamp
0006h	
0008h	Control mode before switch 0: Position control mode 1: Speed control mode 2: Torque control mode
000Ah	Control mode after switch 0: Position control mode 1: Speed control mode 2: Torque control mode
000Ch	Switch error cause 0: Zero speed (ZSP) OFF 1: Control mode error 2: Incompatible axis 3: Switch not possible
000Eh	0 (fixed value)

(60) Mark detection signal detection

Offset	Content
0000 h	Axis No.
0002 h	Event code (0B00h)
0004h	Time stamp
0006 h	
0008 h	Mark detection number 0: Mark detection setting 1 1: Mark detection setting 2
000 Ah	Mark detection edge data 1: OFF edge 2: ON edge
000 Ch	Data latch 0: No latch 1: Latch
000 Eh	0 (fixed value)

(62) Mark detection disable start

Offset	Content
0000 h	Axis No.
0002 h	Event code (0B02h)
0004 h	Time stamp
0006 h	
0008 h	Mark detection setting number
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(64) Mark detection setting enable

Offset	Content
0000 h	Axis No.
0002 h	Event code (0B04h)
0004 h	Time stamp
0006 h	
0008 h	Mark detection setting number
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(66) Transient transmit error occurrence

Offset	Content
0000 h	Axis No.
0002 h	Event code (0C01h)
0004 h	Time stamp
0006 h	
0008 h	Transient command
000 hh	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(61) Mark detection clear

Offset	Content
0000 h	Axis No.
0002 h	Event code (0B01h)
00004 h	Time stamp
0000 h	
000 h	Mark detection setting number
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(63) Mark detection disable cancel

Offset	Content
0000 h	Axis No.
0002 h	Event code (0B03h)
0004 h	Time stamp
0006 h	
0008 h	Mark detection setting number
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(65) Transient transmit start

Offset	Content
0000 h	Axis No.
0002 h	Event code (0C00h)
0004 h	Time stamp
0006 h	
0008 h	Transient command
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(67) RIO control alarm occurrence

Offset	Content
0000 h	Station No.
0002 h	Event code (2100h)
0004 h	Time stamp
0006 h	
0008 h	Alarm number
000 Ah	Details number
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(68) RIO module alarm occurrence

Offset	Content
0000 h	Station No.
0002 h	Event code (2101h)
0004 h	Time stamp
0006 h	
0008 h	Alarm number
000Ah	Details number
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(70) RIO control alarm reset

Offset	Content
0000 h	Station No.
0002 h	Event code (2500h)
0004 h	Time stamp
0006 h	
0008 h	Alarm number
000 Ah	Details number
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(72) Transient transmit start (remote I/O)

Offset	Content
0000 h	Station No.
0002 h	Event code (2C00h)
0004 h	Time stamp
0006 h	
0008 h	Transient command
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(69) Writing to parameters (remote I/O)

Offset	Content
0000 h	Station No.
0002 h	Event code (2202h)
0004 h	Time stamp
0006 h	
0008 h	Parameter number
000 Ah	Parameter setting prior to change
000 Ch	Parameter setting after change
000 Eh	0 (fixed value)

(71) RIO module alarm reset

Offset	Content
0000 h	Station No.
0002 h	Event code (2501h)
0004 h	Time stamp
0006 h	
0008 h	Alarm number
000 Ah	Details number
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

(73) Transient transmit error occurrence (remote I/O)

Offset	Content
0000 h	Station No.
0002 h	Event code (2C01h)
0004 h	Time stamp
0006 h	
0008 h	Transient command
000 Ah	0 (fixed value)
000 Ch	0 (fixed value)
000 Eh	0 (fixed value)

POINT

- For change of parameters (event code 0202h), the parameter value prior to change and parameter value after change are compared and only if the setting is different is the parameter change recorded in the log data.
- For occurrence of system errors (event code 0311h), occurrence of system errors related to communication (E400h to) are recorded in the log data. However system errors that show issues with the position board (E001h to E302h) are not recorded in the log data, as the position board is in an error state.

7.13.5 Interface

(1) Command/status bit

System command/status bits related to log function are shown below.
(a) System command bits

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
03EA	000B0A	0	LOGC	Log command
		1	LOGR	Reading of log data command
		2	${ }^{\text {a }}$	Reserved
		3	LOGI	Log data initialization command
		4		Reserved
		5		
		6		
		7		

1) Details concerning system command bits

Symbol	Signal name	Function details	
		Function	Operation
LOGC	Log command	Starts/stops recording of log data. When the log command signal (LOGC) is turned on, recording of log data is started, and log operation being performed signal (LOGO) is turned on. The log operation being performed signal (LOGO) is turned off when the log command signal (LOGC) is turned off.	
LOGR	Reading of log data command	Reads the log data stored in the log data buffer area to the log data table on the dual port memory.	When the reading of log data command signal (LOGR) is turned on, the log data for the page number set as the read log data page number is read into the log data table. When reading of log data is complete, the reading of log data complete signal (LOGRF) is turned on or a reading of log data error signal (SMPRE) is turned on.
LOGI	Log data initialization command	Initialization of the log data stored in the log data buffer area.	When the log data initialization command signal (LOGI) is turned on, the log data is initialized and the number of valid log data events and time stamp are 0 cleared.

(b) System status bits

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3口■			
045A	000BEA	0	LOGO	Log operation being performed
		1	LOGRF	Reading of log data complete
		2	LOGRE	Reading of log data error
		3	LOGIF	Log data initialization is complete
		4	LOGIE	Log data initialization error
		5	OCMCO	Operation cycle monitor clear
		6	OCME	Operation cycle alarm
		7	OCMW	Operation cycle warning

1) Details concerning system status bits

Symbol	Signal name	Function details	
		Function	Operation
LOGO	Log operation being performed	Notifies that log is now being taken.	<Conditions for turning ON> The log command signal (LOGC) was turned on. <Conditions for turning OFF> The log command signal (LOGC) was turned off.
LOGRF	Reading of log data complete	Notifies that reading of log data was completed normally.	<Conditions for turning ON> Reading of log data is completed normally. <Conditions for turning OFF> Entered reading of data because the log command signal (LOGC) was turned on. Reading of log data command signal (LOGR) was turned off.
LOGRE	Reading of log data error	Notifies that reading of log data was not completed normally.	<Conditions for turning ON> Reading of log data command signal (LOGR) was turned on while log (LOGO: ON) was being taken. Reading of log data command signal (LOGR) was turned on with a reading of log data page number set outside page number limits. <Conditions for turning OFF> Reading of log data command signal (LOGR) was turned off.
LOGIF	Log data initialization is complete	Notifies that log data initialization was completed normally.	<Conditions for turning ON> Log data initialization command signal (LOGI) was turned on while log operation being performed signal (LOGO) was turned on. <Conditions for turning OFF> The log data initialization command signal (LOGI) was turned off.
LOGIE	Log data initialization error	Notifies that log data initialization was not completed normally.	<Conditions for turning ON> Log data initialization command signal (LOGI) was turned on while log operation being performed signal (LOGO) was turned on. <Conditions for turning OFF> The log data initialization command signal (LOGI) was turned off.

(2) System command/status table
(a) System Commands

Address		Name	Setting range	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
0428	000B58	Reading of log data page number	1 to 256	Sets the page number for the log data area for logged data to be read to. Data for 16 events of log data are read for each page. Example. When the number of valid events is 345 events $345 / 16=21 \cdots 9$ In other words, pages 1 to 22 are read.
0429	000B59			

(b) System status

Address		Name		Setting range

7.13.6 Timing chart for reading of log data

A method for reading log data stored in the log data buffer area is shown below.

POINT

- For reading of log data, turn off the log command signal (LOGC). If log data is read while the log operation being performed signal (LOGO) is turned on, the reading of log data error (LOGRE) is turned on.
- Log data is stored using a ring buffer format in the log data buffer area of the position board; however, when transferred to the dual port memory, the data is transferred from the oldest (oldest is transferred first) in order.

7.13.7 Log acquiring selection

By setting the log acquiring selection (parameter No. 0040 to 0042), the axis No. and system for which the log to be acquired can be set.
When the number of log events to be memorized is not enough, set the events (axis and system) for which log is to be acquired, using this function.
(1) System parameter

Parameter No.	Symbol	Name	Initial value	Unit	Setting range	Function
0040	LGS1	Log acquiring selection 1 (Note 1)	0000h		$\begin{aligned} & \text { 0000h to } \\ & 0001 \mathrm{~h} \end{aligned}$	Set whether to acquire the log of the system when the log function is used. System (bit 0) 0 : Not acquire 1: Acquire
0041	LGS2	Log acquiring selection 2 (Note 1)	0000h		0000h to FFFFh	Set the axis No. for which the log is to be acquired. Axis 1 (bit 0) to axis 16 (bit 15) 0: Not acquire 1: Acquire
0042	LGS3	Log acquiring selection 3 (Note 1)	0000h		0000h to FFFFh	Set the axis No. for which the log is to be acquired. Axis 17 (bit 0) to axis 32 (bit 15) 0 : Not acquire 1: Acquire
0043	LGS4	Log acquiring selection 4 (Note 1) (Note 3)	0000h		0000h to FFFFh	Set the axis No. for which the log is to be acquired. Axis 33 (bit 0) to axis 48 (bit 15) 0 : Not acquire 1: Acquire
0044	LGS5	Log acquiring selection 5 (Note 1)	0000h		0000h to 00FFh	Set the station No. for which the log is to be acquired. Station 1 (bit 0) to station 4 (bit 3) MC200 Station 1 (bit 0) to station 16 (bit 15) Mc300 0 : Not acquire 1: Acquire
004B	LGS6	Log acquiring selection 6 (Note 1) (Note 3)	0000h		0000h to 00FFh	Set the axis No. for which the log is to be acquired. Axis 49 (bit 0) to axis 64 (bit 15) 0 : Not acquire 1: Acquire

Note 1. When all the system parameters of the log acquiring selection (parameters No. 0040 to 0044, and 004B) are set to 0000h (initial value), log for all axes, stations, and systems will be acquired.
2. Since the parameter for the log acquiring selection is not determined before the system startup, log for all axes, stations, and systems will be acquired.
3. When using MR-MC2 $\square \square$, "for manufacturer setting".

7.14 Operation cycle monitor function

7.14.1 Summary

The operation cycle monitor function is a function that monitors the operation cycle current time, operation cycle maximum time, and operation cycle over time. The operation cycle monitor function becomes valid after the system starts.

The operation cycle is the position board processing (SSCNET communication process + motion operation process) time.

When the operation cycle exceeds the warning level (95% of the control cycle, 0.84 ms when control cycle 0.88 ms is selected), the operation cycle warning signal (OCMW) turns on. Also, when the operation cycle exceeds the alarm level (100% or more of the control cycle, 0.88 ms or more when control cycle 0.88 ms is selected), the count of the operation cycle over time increases and the operation cycle alarm signal (OCME) turns on.

7.14.2 Interface

Interfaces related to the operation cycle monitor function are shown below.
(1) System command bit
(2) System status bit

Address		Bit	Symbol	Signal name
MRMC2 \square	MRMC3			
03EA	000B0A	0	LOGC	Log command
		1	LOGR	Reading of log data command
		2	S^{-}	Reserved
		3	LOGI	Log data initialization command
		4	$\xrightarrow{\square}$	Reserved
		5	OCMC	Operation cycle monitor clear
		6	\checkmark	
		7		Reserved

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array}$	MR- MC3 $\square \square$			
045A	000BEA	0	LOGO	Log operation being performed
		1	LOGRF	Reading of log data complete
		2	LOGRE	Reading of log data error
		3	LOGIF	Log data initialization is complete
		4	LOGIE	Log data initialization error
		5	OCMCO	Operation cycle monitor clear
		6	OCME	Operation cycle alarm
		7	OCMW	Operation cycle warning

(3) Operation cycle monitor data

Address		Size	Name	Unit	Description
MR-MC2 $\square \square$	MR-MC3 \square				
0014	000014	2 byte	Operation cycle current time	$\mu \mathrm{s}$	Current processing time is stored
0016	000016	2 byte	Operation cycle maximum time	$\mu \mathrm{s}$	Maximum processing time is stored
0018	000018	2 byte	Operation cycle over time	Number of times	The cumulative value of the number of times which exceeds the control cycle is stored

7.14.3 Operation timing

(1) Operation cycle alarm, operation cycle warning occurrence timing

A timing chart for when the operation cycle exceeds the warning level (95% of the control cycle) and alarm level (100% of the control cycle) is shown below.
(The following figure shows: a < Operation cycle 95% < b < Operation cycle 100\% < c)

(2) Operation cycle monitor clear timing

When the operation cycle monitor clear signal (OCMC) is turned on, the during operation cycle monitor clear (OCMCO) is turned on. Then, the operation cycle alarm signal (OCME) and operation cycle warning signal (OCMW) are turned off, and each data item in the operation cycle monitor data is cleared to 0 .

POINT

- When the operation cycle alarm signal (OCME) and operation cycle warning (OCMW) are turned on, the load of the motion operation is high. Review the following contents.
- Extend the control cycle in the setting.
(Example. When the control cycle is 0.44 ms , change it to 0.88 ms .)
- Set less control axes.
- Reexamine the operation pattern so that each axis does not start operation simultaneously.
- For software version A4 or later, when operation cycle alarm (OCME) turns ON operation cycle alarm (system alarm 35, detail No.01) occurs. Operation continues even when operation cycle alarm (system alarm 35, detail No.01) has occurred. When clearing operation cycle alarm (system alarm 35, detail No.01) turn ON system alarm reset signal (CRST).

API LIBRARY

- Use the sscGetOperationCycleMonitor function to get the operation cycle current time/operation cycle maximum time/operation cycle over time.

7．15 External forced stop disabled

7．15．1 Summary

The external forced stop disabled function disables the external forced stop by input signal（EMI）from the I／O connector．

Note．Software forced stop by system command bit and forced stops due to system errors such as SSCNET communication errors（system status code $\mathrm{E} \square \square \square \mathrm{h}$ ）are not disabled．

7．15．2 Interface

The interface added for the external forced stop disabled function is as follows．
（1）System status bit

Address		Bit	Symbol	Signal name
MR－MC2■口	MR－MC3口ロ			
0452	000BE2	0	EMIO	During forced stop
		1	S^{-}	Reserved
		2	TSTO	In test mode
		3		
		4		Reserved
		5		
		6	EMID	External forced stop disabled
		7	－	Reserved

（2）System parameter

Parameter No．	Symbol	Name	Initial value	Unit	Setting range	Function
000E	＊EMID	External forced stop disabled	0000h		0000h to FFFFh	Disable the forced stop by EMI signal．

7．15．3 Setting method

To disable the external forced stop，set 5AE1h to external forced stop disabled（parameter No．000E），and start the system．When the external forced stop is disabled，external forced stop disabled signal（EMID）turns ON．

Note 1．External forced stop disabled（parameter No．000E）settings are imported at the system startup．Changes while the system is running are invalid．
2．External forced stop disabled signal（EMID）turns ON at system startup．

7.16 Amplifier-less axis function

7.16.1 Summary

The amplifier-less axis function is a function that enables to operate the position board without connecting a servo amplifier. This function enables to debug the user program at the start-up of the device and to simulate the positioning operation.

7.16.2 Interface

To use the amplifier-less axis function, set Valid in the amplifier-less axis function (parameter No.0200).

7.16.3 Control details

The operation details related to the amplifier-less axis function are shown below.

Item	Operation		
Servo amplifier	The specification of a supposedly connected servo amplifier is shown below.		
	SSCNET communication method	Number of encoder pulses per revolution [pulse]	Maximum motor speed [r/min]
	SSCNET III/H		6000
	Note. The servo amplifier operates as a servo amplifier compatible with a rotary servo motor. (It does not operate as a servo amplifier compatible with the fully closed, linear, and direct drive.)		
Home position return	Home position return using an incremental encoder or incremental linear scale including a scale home position signal detection method and a scale home position signal detection method 2 (home position return which searches a home position signal again) cannot be used.		
In-position signal (INP)	This signal turns on when the current command position and the current feedback position are the same.		
Servo alarm	No servo alarm occurs.		
Servo information	Servo information (monitor No. 0100 to 02FF) cannot be referred unless the servo amplifier is connected. Servo amplifier is not connected (MESV) turns on.		
High speed monitor	The current command position of the previous control cycle is displayed in the current feedback position. Electrical current feedback and always 0 is displayed.		
Torque limit	By turning on/off the torque limit signal (TL), on/off of the selecting torque limit signal (TLSO) can be confirmed. However, the torque limit effective signal (TLC) does not turn on and the operation of the amplifier-less axis is not affected.		
Gain switching	By turning on/off the gain switching command signal (GAIN), on/off of the gain switching signal (GAINO) can be confirmed. However, the operation of the amplifier-less axis is not affected.		
Fully closed loop control change	By turning on/off the fully closed loop control change signal (CLD), on/off of the fully closed loop control changing signal (CLDO) can be confirmed. However, the operation of the amplifier-less axis is not affected.		
PI-PID switching	By turning on/off the PID control command signal (CPC), on/off of the during PID control signal (SPC) can be confirmed. However, the operation of the amplifier-less axis is not affected.		
Forced stop	When forced stop occurs, amplifier-less axis continues the positioning operation without controller forced stop warning (servo warning E7).		
External signal	To simulate an operation using a limit switch signal or dog signal (such as home position return), set dual port memory to the sensor input system (parameter No.0219) and control the sensor signal command (LSPC, LSNC, DOGC) with the user program.		
Absolute position detection system	The absolute position detection system cannot be used. The incremental system is always used.		
Reconnect/disconnect function	The amplifier-less axis cannot be disconnected or reconnected.		
Continuous operation to torque control	After reaching the continuous operation to torque control speed limit value, it is regarded that the torque settle width has been reached, and operation is completed after the continuous operation to torque control time has passed. For electrical current feedback, torque 0% occurs before reaching the speed limit value, and target torque occurs after reaching the speed limit value.		
Operation with MR Configurator2	Servo amplifier cannot be operated or monitored with MR Configurator.		

POINT

- The operation of the current feedback position and the timing of the in-position signal (INP) are different from the case where the servo amplifier is connected. Confirm the operation finally with a real machine.

7.17 Alarm history function

7.17.1 Summary

The alarm history function is a function that records the history of system errors and alarms (system, operation, and servo alarms) when they occur. The alarm history data is stored in the alarm history area of the flash ROM. Alarm history can also be checked after the power is turned off.

POINT

- History data is also stored at system startup command (when 000Ah, or 000Ch is input to the system command code) and at completion of system startup (when system status code has become 000Ah).
- Alarm history data is stored to the flash ROM once every 10s. (max. 100 alarms each storing)
- When more than 100 alarms occur over 10s, the data passed 100 alarms is discarded.
- If power is turned off or a reboot is performed before alarm history write, the history data is not saved.
- Reading of alarm history data can be performed in the test tool.

API LIBRARY

- For a detailed procedure for getting alarm history data, refer to the sample program (AlarmHistory) contained on the utility software.

Note 1. Log data is read to the dual port memory from internal memory of the position board in units of pages (4 data).
2. There is a storage area for 2047 history data. However, when power supply is turned ON, or a software reboot is performed after storing 1536 data or more, the oldest 1024 items of history data are deleted.

7.17.2 Alarm history data details

There are three types of history data, system startup command data and completion of system startup data, and alarm history data. One history data is 64 bytes. The details of the data are shown in the following.
(1) System startup command data

Offset	Content
0000h	System startup time
0001h	
0002h	
0003h	
0004h	
0005h	
0006h	
0007h	
0008h	Free run counter
0009h	
000Ah	
000Bh	
000Ch	Control cycle
000Dh	Event code
000Eh	Reserved
000Fh	
0010h	Communication mode
0011h	Control mode
0012h	Reserved
0013h	
0014h	
0015h	
0016h	
0017h	
0018h	
0019h	
001Ah	
001Bh	
001Ch	
001Dh	
001Eh	
001Fh	

Offset	Content
0020h	
0021h	
0022h	
0023h	
0024h	
0025h	
0026h	
0027h	
0028h	
0029h	
002Ah	
002Bh	
002Ch	
002Dh	
002Eh	
002Fh	Reserved
0030h	
0031h	
0032h	
0033h	
0034h	
0035h	
0036h	
0037h	
0038h	
0039h	
003Ah	
003Bh	
003Ch	
003Dh	
003Eh	
003Fh	Checksum

(a) System startup time

When the API library is used, the number of seconds passed since 0000hrs, January 1, 1970 at the input time for system startup command is stored.
When the API library is not used, " 0 " is stored.
(b) Free-run counter

Stores the value of the free-run counter at the system startup command.
(c) Control cycle

Stores the control cycle.
00h: 0.88ms
01h: 0.44 ms
02h: 0.22 ms
(d) Event code

Stores the type of history content.
00h: System startup command
02h: Completion of system startup
10h: System error
11h: System alarm
12h: Servo alarm
13h: Operation alarm
92h: RIO module alarm
93h: RIO control alarm
(e) Communication mode

Stores the communication mode. 00h: SSCNETIII/H mode
(f) Control mode

Stores the control mode.
00h: Standard mode
01h: Interface mode
(g) Checksum

Stores the inverted sum of the 1 byte data from the whole area for history data as the checksum data.

POINT

- If control mode, communication mode, and control cycle for history data are set outside the range in system parameters, the following history is stored.
- Control cycle : OOh (0.88ms)
- Communication mode : 00h (SSCNETII/H mode)
- Control mode : OOh (Standard mode)
(2) Completion of system startup data

Offset	Content	Offset	Content
0000h	System startup time	0020h	Reserved
0001h		0021h	
0002h		0022h	
0003h		0023h	
0004h		0024h	
0005h		0025h	
0006h		0026h	
0007h		0027h	
0008h	Free run counter	0028h	
0009h		0029h	
000Ah		002Ah	
000Bh		002Bh	
000Ch	Control cycle	002Ch	
000Dh	Event code	002Dh	
000Eh	Reserved	002Eh	
000Fh		002Fh	
0010h		0030h	
0011h		0031h	
0012h		0032h	
0013h		0033h	
0014h		0034h	
0015h		0035h	
0016h		0036h	
0017h		0037h	
0018h		0038h	
0019h		0039h	
001Ah		003Ah	
001Bh		003Bh	
001Ch		003Ch	
001Dh		003Dh	
001Eh		003Eh	
001Fh		003Fh	Checksum

(a) Free-run counter

Stores the value of the free-run counter at the completion of system startup.
Note. Refer to "(1) System startup command data" of this section for details of other data.

(3) Alarm history data

Offset	Content
0000h	System startup time
0001h	
0002h	
0003h	
0004h	
0005h	
0006h	
0007h	
0008h	Free run counter
0009h	
000Ah	
000Bh	
000Ch	Control cycle
000Dh	Event code
000Eh	Reserved
000Fh	
0010h	
0011h	
0012h	
0013h	
0014h	Error axis (station) No.
0015h	
0016h	Alarm number
0017h	
0018h	Operation mode
0019h	Reserved
001Ah	
001Bh	
001Ch	Current command position
001Dh	
001Eh	
001Fh	

Offset	Content
0020h	Current feedback position
0021h	
0022h	
0023h	
0024h	Reserved
0025h	
0026h	
0027h	
0028h	
0029h	
002Ah	
002Bh	
002Ch	
002Dh	
002Eh	
002Fh	
0030h	
0031h	
0032h	
0033h	
0034h	
0035h	
0036h	
0037h	
0038h	
0039h	
003Ah	
003Bh	
003Ch	
003Dh	
003Eh	
003Fh	Checksum

(a) Free-run counter

Stores the value of the free-run counter at the alarm occurrence.
(b) Error axis (station) No.

Stores the error axis (station) No. when the event code is an alarm/error.

> 0000h : System
> 0001 h to 0020h: Axis No. MC200
> 0001 h to 003Fh: Axis No. MC300
> 0001 h to 0004h: Station No. MC200
> 0001h to 000Fh: Station No.
(c) Alarm number

Stores the alarm number (lower), and details number (upper) when the event code is an alarm/error.
(d) Operation mode

Stores the operation mode.
00h: Automatic operation
01h: Home position return
02h: JOG operation
03h: Incremental feed
04h: Mode not selected
05h: Mode error
06h: Home position reset
08h: Linear interpolation operation MC200 /interpolation operation MC300
Stores "04h: Mode not selected" when the event code is not a servo alarm or operation alarm.
(e) Current command position

Stores the signed current command position [command units] when the event code is a servo alarm or operation alarm.
Stores 0 when the event code is not a servo alarm or operation alarm.
(f) Current feedback position

Stores the signed current feedback position [command units] when the event code is a servo alarm or operation alarm.
Stores 0 when the event code is not a servo alarm or operation alarm.
Note. Refer to "(1) System startup command data" of this section for details of other data.

7．17．3 Interface

（1）System Command／Status Bit
System command／status bits related to alarm history function are shown below．
（a）System command bit

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3口ロ			
03F7	000B17	0	ALHR	Alarm history read command
		1	$\mathrm{S}^{\text {ALHR}}$	Reserved
		2	ALHI	Alarm history initialization command
		3		Reserved
		4		
		5		
		6		
		7		

1）Details concerning system command bits

Symbol	Signal name	Function details	
	Function	Operation	
ALHR	Alarm history read command	Reads the alarm history stored in the alarm history buffer area（flash ROM） to the alarm history table on the dual port memory．	When the alarm history read command signal（ALHR）is turned on，the alarm history for the page number set as the alarm history read page number is read to the alarm history table．When reading of alarm history is complete， the alarm history read complete signal（ALHRF）is turned on or alarm history read error signal（ALHRE）is turned on．
ALHI	Alarm history initialization command	Initialization of the alarm history stored in the alarm history buffer area（flash ROM）．	When the alarm history initialization command signal （ALHI）is turned on，the alarm history is initialized and the number of valid alarm history events are 0 cleared．

（b）System status bit

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array}$	MR－ MC3口ロ			
0451	000BE1	0	SMPW	Waiting for sampling trigger
		1	SMPO	Sampling is being performed
		2	SMPF	Sampling is complete
		3	SMPE	Sampling Error
		4	－	Reserved
		5	AHINF	Alarm history information
		6	－	Reserved
		7		

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
0467	000BF7	0	ALHRF	Alarm history read complete
		1	ALHRE	Alarm history read error
		2	ALHIF	Alarm history initialization complete
		3	ALHIE	Alarm history initialization error
		4		Reserved
		5		
		6		
		7		

1) Details concerning system status bits

Symbol	Signal name	Function details	
		Function	Operation
AHINF	Alarm history information	Shows that position board is alarm history compatible.	<Conditions for turning ON> An alarm history compatible position board is connected. <Conditions for turning OFF> A position board that is not alarm history compatible is connected.
ALHRF	Alarm history read complete	Notifies that reading of alarm history was completed normally.	<Conditions for turning ON> Reading of alarm history is completed normally. <Conditions for turning OFF> Alarm history read command signal (ALHR) was turned off.
ALHRE	Alarm history read error	Notifies that reading of alarm history was not completed normally.	<Conditions for turning ON> Alarm history read command signal (ALHR) was turned on with an alarm history read page number set outside page number limits. <Conditions for turning OFF> Alarm history read command signal (ALHR) was turned off.
ALHIF	Alarm history initialization complete	Notifies that alarm history initialization was completed normally.	<Conditions for turning ON> Initialization of alarm history is completed normally. <Conditions for turning OFF> Initialization of data entered through turning the alarm history initialization command signal (ALHI) on. The alarm history initialization command signal (ALHI) was turned off.
ALHIE	Alarm history initialization error	Notifies that alarm history initialization was not completed normally.	<Conditions for turning ON> Alarm history initialization command signal (ALHI) was turned on with a value other than E15Ah set to the alarm history initialization ID. <Conditions for turning OFF> The alarm history initialization command signal (ALHI) was turned off.

(2) System command/status table
(a) System Commands

Address		Name	Setting range	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
0444	000B74	Alarm history read page number	1 to 512	Sets the page number for the alarm history area for alarm history to be read to. Data for 4 events of alarm history are read for each page. Example. When the number of valid events is 1250 events $1250 / 4=312 \cdot \cdots 2$ In other words, pages 1 to 313 are read.
0445	000B75			
0446	000B76	Alarm history initialization ID	E15Ah	When initializing the alarm history, set "E15Ah" Refer to Section 7.17.5 for details.
0447	000B77			
0448	000B78	System startup time	$\begin{gathered} 00000000 \\ 00000000 \mathrm{~h} \\ \text { to } \\ \text { FFFFFFFF } \\ \text { FFFFFFFFFh } \end{gathered}$	When the API library sscSystemStart function is used, the host controller stores the time of system startup. When the API library is not used, perform system startup after storing the number of seconds since 0000hrs, January 1, 1970. Refer to Section 4.6 for details.
0449	000B79			
044A	000B7A			
044B	000B7B			
044C	000B7C			
044D	000B7D			
044E	000B7E			
044F	000B7F			

(b) System status

Address		Name	Setting range	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
04B4	000 C 54	Alarm history read page number	1 to 512	Stores the page number that was read.
04B5	000C55			The details of the settings for the alarm history read page number of the system command are stored.
04B6	000C56	Number of valid alarm history events	0 to 2047	Stores the number of valid events stored in current alarm
04B7	000C57			history. When the number of valid events reaches 2047 events the number of valid events becomes 2047.

7.17.4 Timing chart for alarm history read

A method for reading alarm history stored in the alarm history area is shown below.

POINT

- The alarm history is stored in the alarm history area of the position board flash ROM in ring buffer format. The data is read from the oldest data first when transmitting to the dual port memory.

API LIBRARY

- Use the sscGetAlarmHistoryData function to read the alarm history. Calculate the largest page number (divide the number of valid events by 4 and round up to nearest whole number) to be read by using the number of valid events got with the sscCheckAlarmHistoryEventNum function.
Use this function to get alarm history data from page 1 to the largest page number to be read.

7.17.5 Alarm history initialization procedure

The procedure for initialization of parameters are as follows.

POINT

- Do not turn off the power supply to the position board during initialization of alarm history.
- Alarm history data cannot be read during initialization of alarm history.

API LIBRARY

- Use the sscClearAlarmHistoryData function to initialize alarm history.
7.17.6 List of system errors that do not apply to alarm history storage

System errors that do not apply to alarm history storage are shown below.

Error code	Content
E001	ROM error
E002	RAM error 1
E003	Dual port memory error
E004	RAM error 2
E006	SSCNET communication IC error 1
E007	SSCNET communication IC error 2
E008	Board error
E1[D	CPU error
EF01	System command code error

7.18 Transient transmit

7.18.1 Summary

Using the transient transmit function allows the buffer memory of a servo amplifier or intelligent function module connected to a remote I/O module to be accessed directly from the position board.
Compared to the monitor function, the transient transmit data receives data at a slower speed, however it is used to get data that isn't required to be read at a fixed cycle. Additionally, commands can be sent depending on the data type.

API LIBRARY

> - Use the sscSendReceiveTransientData function to send and receive data by transient transmit.

7.18.2 Interface

The command/status data related to the transient transmit function are shown below.
(1) Transient transmit command table

Address (Note 1) (Note 2)		Name	Setting range	Remarks
MR-MC2■■	MR-MC3口■			
D400 D401	0F8B00 0F8B01	Command transmission request (2 bytes)	0000h to 0001h	Requests transmission of transient command. 1: Transient request Other than the above: No request Note 1. If the value is changed while processing, the process is not interrupted. Note 2. For "1: Transient request", all data is cleared to 0 upon the completion of all processes.
D402 D403	0F8B02 0F8B03	Transient command (2 bytes)	0000h to FFFFh	Sets the transient command to be sent. Note. Without checking the value, the set value is sent to the servo amplifier as a command. Do not set values other than those that are set for transient commands as the servo amplifier operation for other values is not guaranteed.
D404	0F8B04	Request data 1 (2 bytes)	0000h to FFFFh	Sets the request data. Note 1. Without checking the value, the set value is sent to the servo amplifier as a command. Note 2. Set "0" when request data is not defined by command.
D405	0F8B05			
D406	0F8B06	Request data 2 (2 bytes)	0000h to FFFFh	
D407	0F8B07			
D408	0F8B08	Request data 3 (2 bytes)	0000h to FFFFh	
D409	0F8B09			
D40A	0F8B0A	Request data 4 (2 bytes)	0000h to FFFFh	
D40B	0F8B0B			
D40C	0F8B0C	Reserved		
D40D	0F8B0D			
D40E	OF8B0E			
D40F	0F8B0F			

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 20h for each axis.
2. The start address for the first station is as follows. For the second station and after, increase by 20 h for each station.

- Using MR-MC2 $\square \square$: DA00h
- Using MR-MC3 $\square \square$: 0F9B00h
(2) Transient transmit status table

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 20 h for each axis.
2. The start address for the first station is as follows. For the second station and after, increase by 20 h for each station.

- Using MR-MC2 $\square \square$: DA10h
- Using MR-MC3 $\square \square$: 0F9B10h
7.18.3 Transient commands for servo amplifier

Data type	Transient command	Unit	Number of valid words (Note 1)	Remark
Servo motor ID (SSCNETII)/ Encoder ID	0304	-	3	
Servo motor ID (SSCNETII/H)	0309	-	2	
Encoder resolution	0305	[pulse]	2	
Servo amplifier serial number (First 8 characters)	0306	[characters]	4	
Servo amplifier serial number (Last 8 characters)	0307	[characters]	4	
Servo amplifier recognition information (First 8 characters)	0310	[characters]	4	
Servo amplifier recognition information (Last 8 characters)	0311	[characters]	4	
Servo amplifier software number (First 8 characters)	0312	[characters]	4	
Servo amplifier software number (Last 8 characters)	0313	[characters]	4	
Power ON cumulative time	0319	[h]	2	
Inrush relay ON/OFF number	031A	[times]	2	Returns the contactor ON count.
Read alarm history number	0323	[items]	1	
Alarm history/Detail \#1, \#2	0324	-	4	
Alarm history/Detail \#3, \#4	0325	-	4	
Alarm history/Detail \#5, \#6	0326	-	4	
Alarm history/Detai//Occurrence time	0328	-/[h]	4	
Alarm occurrence time \#1, \#2	0329	[h]	4	
Alarm occurrence time \#3, \#4	032A	[h]	4	
Alarm occurrence time \#5, \#6	032B	[h]	4	
Alarm history clear command	0382	-	0	
Home position [command unit]	0408	[pulse]/[rev]	3	
Main circuit bus voltage	040A	[V]	1	
Regenerative load ratio	040B	[\%]	1	
Effective load ratio	040C	[\%]	1	
Peak load ratio	040D	[\%]	1	
Estimate inertia moment ratio	040E	[$\times 0.1$]	1	
Model loop gain	040F	[rad/s]	1	
LED display	0410	[characters]	2	
Load-side encoder information 1	0416	[pulse]	2	Fully closed control or synchronous
Load-side encoder information 2	0417	[pulse]	2	encoder via servo amplifier use
Speed feedback	0418	[$0.01 \mathrm{~mm} / \mathrm{s}$]	2	Linear servo use
Servo motor thermistor temperature	0419	[${ }^{\circ} \mathrm{C}$]	1	Linear servo use
Z-phase counter	041A	[pulse]	2	
Module power consumption	0424	[W]	2	
Module integral power consumption	0425	[Wh]	2	
Disturbance torque	0427	[0.1\%]	1	
Instantaneous torque	0428	[0.1\%]	1	
Overload alarm margin	0429	[0.1\%]	1	
Error excessive alarm margin	042A	[pulse]	2	
Settling time	042B	[ms]	1	
Overshoot amount	042C	[pulse]	1	
Servo motor side/load-side position deviation	042D	-	2	Fully closed control use

Data type	Transient command	Unit	Number of valid words (Note 1)	Remark
Servo motor side/load-side speed deviation	042 E	-	2	
Machine diagnostic status	042 F	-	1	
Friction estimation data	0430	$[0.1 \%]$	4	
Vibration estimation data	0431	$[\mathrm{~Hz} / 0.1 \%]$	4	
Internal temperature of encoder	0434	$\left[{ }^{\circ} \mathrm{C}\right]$	1	For encoders that are not supported, 0 is returned.
Optional transient command	-	-	4	Used when using an optional transient command.

Note 1. Number of valid words for response data 1 to 4.
(1) Servo motor ID (SSCNETIII)/Encoder ID [0304h]

| Request data | Content |
| :---: | :--- | :--- |
| Request data 1 | Reserved |
| Request data 2 | Reserved |
| Request data 3 | Reserved |
| Request data 4 | Reserved |

Response data	Content
Response data 1	Servo motor ID (lower)
Response data 2	Servo motor ID (upper)
Response data 3	Encoder ID
Response data 4	Reserved

(2) Servo motor ID (SSCNETII/H) [0309h]

| Request data | Content |
| :---: | :--- | :--- |
| Request data 1 | Reserved |
| Request data 2 | Reserved |
| Request data 3 | Reserved |
| Request data 4 | Reserved |

Response data	Content
Response data 1	Servo motor ID (lower)
Response data 2	Servo motor ID (upper)
Response data 3	Reserved
Response data 4	Reserved

(3) Alarm history/Detail \#1, \#2 [0324h]

| Request data | Content |
| :---: | :--- | :--- |
| Request data 1 | Reserved |
| Request data 2 | Reserved |
| Request data 3 | Reserved |
| Request data 4 | Reserved |

Response data	Content
Response data 1	Alarm history 1
Response data 2	Alarm detail 1
Response data 3	Alarm history 2
Response data 4	Alarm detail 2

(4) Alarm history/Detail/Occurrence time [0328h]

Request data	Content
Request data 1	Alarm history number (from N=0)
Request data 2	Reserved
Request data 3	Reserved
Request data 4	Reserved

Response data	Content
Response data 1	Alarm history number \#($\mathrm{N}+1)$
Response data 2	Alarm history number \#($\mathrm{N}+1)$ detail
Response data 3	Alarm history number \#($\mathrm{N}+1)$ occurrence time (lower)
Response data 4	Alarm history number \#($\mathrm{N}+1)$ occurrence time (upper)

(5) Alarm history clear command [0382h]

Request data	Content
Request data 1	Alarm reset command (1EA5h)
Request data 2	Reserved
Request data 3	Reserved
Request data 4	Reserved

Response data	
Response data 1	Reserved
Response data 2	Reserved
Response data 3	Reserved
Response data 4	Reserved

(6) Home position [command unit] [0408h]

Request data	Content
Request data 1	Reserved
Request data 2	Reserved
Request data 3	Reserved
Request data 4	Reserved

Response data	Content
Response data 1	Home position within one revolution (lower)
Response data 2	Home position within one revolution (upper)
Response data 3	Home position multiple revolution counter
Response data 4	Reserved

(7) LED display [0410h]

Request data	Content
Request data 1	Reserved
Request data 2	Reserved
Request data 3	Reserved
Request data 4	Reserved

Response data	Content
Response data 1	Driver display status (7segLED) lower 2 digits
Response data 2	Character [JIS8 code] upper 2 digits
Response data 3	Reserved
Response data 4	Reserved

(8) Machine diagnostic status [042Fh]

Request data	
Request data 1	Reserved
Request data 2	
Request data 3	Reserved

Response data	Content	
Response data 1		- Forward rotation friction 0 : Estimating friction 1: Estimating complete 2: One side operation (motor rotation stays in one direction) 3: Parameter threshold exceeded 4: Low variation highspeed operation 5: Time constant underestimate 7: 60 minutes elapsed Reverse rotation friction 0 : Estimating friction 1: Estimating complete 2: One side operation (motor rotation stays in one direction) 3: Parameter threshold exceeded 4: Low variation highspeed operation 5: Time constant underestimate 7: 60 minutes elapsed Vibration estimation 0 : Estimating vibration 1: Estimating complete
Response data 2	Reserved	
Response data 3	Reserved	
Response data 4	Reserved	

(9) Friction estimation data [0430h]

Request data	Content
Request data 1	Reserved
Request data 2	Reserved
Request data 3	Reserved
Request data 4	Reserved

Response data	Content
Response data 1	Forward rotation torque static friction $[0.1 \%]$
Response data 2	Forward rotation torque kinetic friction (at rated speed) [0.1\%]
Response data 3	Reverse rotation torque static friction [0.1\%]
Response data 4	Reverse rotation torque kinetic friction (at rated speed) [0.1\%]

(10) Vibration estimation data [0431h]

Request data	Content
Request data 1	Reserved
Request data 2	Reserved
Request data 3	Reserved
Request data 4	Reserved

Response data	Content
Response data 1	Motor stopped/servo amplifier locked Oscillation frequency [Hz]
Response data 2	Motor stopped/servo amplifier locked Vibration level [0.1\%]
Response data 3	Motor operating Oscillation frequency $[\mathrm{Hz}]$
Response data 4	Motor operating Vibration level [0.1\%]

POINT

- Input 0 for request data that is reserved.
- Get the "friction estimation data" and "vibration estimation data" with transient command after conducting machine diagnosis estimation.
7.18.4 Example of using transient commands
(1) Friction estimation data/vibration estimation data

Setting "friction estimation data" and "vibration estimation data" to the transient command does not enable the correct values to be stored. With the procedure below, perform machine diagnosis and refer to the values.
(a) Operate the servo motor approximately 20 minutes in the operation pattern of machine diagnosis function - Friction judgment speed (servo parameter No.121E) until the diagnosis function is complete.
(b) Check that the "forward rotation friction", "reverse rotation friction", and "vibration estimation" values of machine diagnostic status are 1: Estimating complete. When the values are not that of estimating complete and machine diagnosis fails, repeat the operating procedure starting from (a).
(c) Set "friction estimation data" and "vibration estimation data" to the transient command, and turn ON the transient request.

POINT

- Refer to Servo Amplifier Instruction Manual for operation pattern of machine diagnosis function.
7.18.5 Transient commands for SSCNETII/H head module

Data type	Transient command	Unit	Number of valid words (Note 1)	Remark
Buffer memory read	0211	-	4	
Buffer memory write (2byte)	0291	-	1	
Buffer memory write (4byte)	0292	-	1	

Note 1. Number of valid words for response data 1 to 4.
(1) Buffer memory read [0211h]

Request data	Content
Request data 1	Start I/O No. (first 2 digits of 3-digit display)
Request data 2	Buffer memory address
Request data 3	Number of read data (1 to 4)
Request data 4	0 (fixed value)

Response data	Content
Response data 1	2-byte data of buffer memory address+0
Response data 2	2-byte data of buffer memory address+2
Response data 3	2-byte data of buffer memory address+4
Response data 4	2-byte data of buffer memory address+6

(2) Buffer memory write (2byte) [0291h]

Request data	Content
Request data 1	Start I/O No. (first 2 digits of 3-digit display)
Request data 2	Buffer memory address
Request data 3	Write data
Request data 4	0 (fixed value)

Response data	Content
Response data 1	0 (fixed value)
Response data 2	0 (fixed value)
Response data 3	0 (fixed value)
Response data 4	0 (fixed value)

(3) Buffer memory write (4byte) [0292h]

Request data	Content
Request data 1	Start I/O No. (first 2 digits of 3-digit display)
Request data 2	Buffer memory address
Request data 3	Write data (lower)
Request data 4	Write data (upper)

Response data	Content
Response data 1	0 (fixed value)
Response data 2	0 (fixed value)
Response data 3	0 (fixed value)
Response data 4	0 (fixed value)

POINT

- Set the first 2 digits for the start I/O No. when the start I/O No. of the intelligent function module is a 3-digit display.
(Example. When start I/O No. is 1F0h, set 1Fh)
7.18.6 Transient commands for sensing module (axis mode)

Data type	Transient command	Unit	Number of valid words (Note 1)	Remark
Encoder resolution	0305	[pulse]	2	
Servo amplifier recognition information (First 8 characters)	0310	[characters]	4	Refer to Section 7.18.3 for details.
Servo amplifier recognition information (Last 8 characters)	0311	[characters]	4	
Servo amplifier software number (First 8 characters)	0312	[characters]	4	
Servo amplifier software number (Last 8 characters)	0313	[characters]	4	
Read alarm history number	0323	[items]	1	
Alarm history/Detail \#1, \#2	0324	-	4	
Alarm history/Detail \#3, \#4	0325	-	4	
Alarm history/Detail \#5, \#6	0326	-	4	
Alarm history/Detai//Occurrence time	0328	-/[h]	4	
Alarm occurrence time \#1, \#2	0329	[h]	4	
Alarm occurrence time \#3, \#4	032A	[h]	4	
Alarm occurrence time \#5, \#6	032B	[h]	4	
Alarm history clear command	0382	-	0	
LED display	0410	[characters]	2	
Optional transient command	-	-	4	Used when using an optional transient command.

Note 1. Number of valid words for response data 1 to 4.
(1) Encoder resolution [0305h]

Request data	Content
Request data 1	0 (fixed value)
Request data 2	0 (fixed value)
Request data 3	0 (fixed value)
Request data 4	0 (fixed value)

Response data	Content
Response data 1	Encoder resolution (lower)
Response data 2	Encoder resolution (upper)
Response data 3	0 (fixed value)
Response data 4	0 (fixed value)

7.19 Hot line forced stop function

7.19.1 Summary

When an alarm occurs in a MR-JE- $\square \mathrm{B}$ servo amplifier, the hot line forced stop function stops the other axes on the same line with a deceleration stop, allowing the axes to stop safely. When the main circuit power is shut-off at a servo alarm occurrence, use this function.

POINT

- For the MR-JE- $\square \mathrm{B}$, the control power supply and main circuit power are integrated. Therefore when $L 1 / 2 / 3$, the equivalent of the main circuit power of MR-J4(W \square)- $\square B$ is shut-off, the control power supply of the servo amplifier is turned OFF. Consequently, SSCNET communication of the axes after the axis where the alarm occurred is disconnected when the wiring is designed to shutoff the main circuit power at an alarm occurrence. When this occurs, the position board can no longer control the disconnected axes and they are stopped by dynamic brake. Thus, if the hot line forced stop function is not used, machinery may cause a collision due to the coasting distance. When SSCNET communication is disconnected, a system error (E40ロh) occurs.
- System errors cannot be reset. Reboot the software, restart the system as required.

7.19.2 Control details

The hot line forced stop function is set by a servo parameter. By using this function, other axes are stopped with a deceleration stop by a notification from the axis where the servo alarm occurred, without going through the control from the position board. The hot line forced stop function is enabled by factory default in the MR-JE$\square B$. To disable the function, set 1 (disabled) in hot line forced stop function selection of hot line forced stop function (servo parameter No.111A).
Also, when using MR-JE- $\square B$ and MR-J4(W \square)- $\square B$ together, the hot line forced stop function can stop MR$J 4(\mathrm{~W} \square)-\square \mathrm{B}$ axes with a deceleration stop when an alarm occurs in a MR-JE- $\square \mathrm{B}$.
In order to stop MR-J4(W■)- $\square \mathrm{B}$ with a deceleration stop as well, set 2 (enabled) in hot line forced stop deceleration stop selection of hot line forced stop function (servo parameter No.111A) of MR-J4(WD)- $\square \mathrm{B}$. (The factory default is " 0 " (disabled).)
Refer to Servo Amplifier Instruction Manual for details.

POINT

- For axes that deceleration stop by the hot line forced stop function, a controller forced stop warning (servo warning E7) occurs.

The setting values for hot line forced stop function selection (servo parameter No.111A), and the operation in the servo amplifier is shown below.
(1) Using MR-JE-■B

Setting value	Hot line output	Deceleration stop at the receiving of hot line signal
0: Enabled (initial value)	Enabled	Enabled
1: Disabled	Disabled	Disabled

(2) Using MR-J4(W \square)- $\square B$

Setting value	Hot line output	Deceleration stop at the receiving of hot line signal
0: Disabled (initial value)	Disabled	Disabled
2: Enabled	Disabled	Enabled

Use a software version that supports hot line forced stop function for the servo amplifier. Servo amplifier software versions that support hot line forced stop function are shown in the table below.

Servo amplifier model	Software version
MR-J4(W \square)-B \square	B7 or later
MR-JE- \square B	B6 or later

POINT

- Servo amplifiers other than the above do not support the hot line forced stop function and therefore do not perform a hot line output or deceleration stop at the receiving of hot line signal.

7.19.3 Timing for alarm occurrences

A timing chart using for servo alarm occurrence is shown below.

1) A servo alarm occurs, and a stop is performed by dynamic brake.
2) The servo alarm non-occurring axis receives notification from the servo alarm occurring axis, and servo warning (SWRN) turns ON.
3) Checks that servo alarm non-occurring axes are stopped, and main circuit power is shut-off by host controller command. (If the main circuit power is shut-off before servo warning (SWRN) turns ON in the servo alarm non-occurring axis, a deceleration stop by this function may not perform correctly.)
4) System error (E40■h) occurs.

8. TANDEM DRIVE

Tandem drive is that 1 axis is physically connected to and driven by 2 motors. The position board provides the same position command to the 2 axes set up for tandem drive.
Tandem drive can be set up for a maximum of 8 sets (16 axes).

8.1 Drive modes

For tandem drive there are 2 drive modes; synchronous mode and non-synchronous micro-adjustment control mode.
Types of operation that can be performed for each mode are as follows.

Operation mode	Drive Modes	
	Synchronous mode	Non-synchronous mode
JOG operation	\bigcirc	\bigcirc
Incremental feed	\bigcirc	\bigcirc
Automatic operation	\bigcirc	\times
Linear interpolation operation	\bigcirc	\times
Home position return	$\triangle($ Note $)$	\times
Home position reset	\bigcirc	\times

Note. Home position return operation can be performed only using the following home position return method. If a different method is used to perform home position return, the tandem drive axis setting error (operation alarm 52, detail 01) occurs.
Compatible home position return method

- Dog cradle method
- Dog method
- Data set method
- Dog front end method
- Z-phase detection method
- Scale home position signal detection method
- Scale home position signal detection method 2

POINT

- Performing start operation with a non-compatible mode during a nonsynchronous micro-adjustment mode makes an alarm for tandem drive nonsynchronous mode (operation alarm 51, detail 01) occur.

8.1.1 Synchronous mode

Through providing the master and slave axes the same position command, they move together. Each axis uses a feedback signal position loop, speed loop, and current loop for control.

8.1.2 Non-synchronous micro-adjustment control mode

Non-synchronous micro-adjustment control mode temporarily cancels synchronizing in order to adjust the position balance between the master axis and the slave axis. This enables submitting different position commands to each of the axes. This can only be done using incremental feed or JOG operation. When home position return has been completed, even if the tandem drive mode is switched to nonsynchronous micro-adjustment mode, the system is not switched to non-home position return complete (home position return request (ZREQ) is not ON). After the mode is switched to the synchronous mode, automatic operation and linear interpolation can be performed without re-performing home position return.

POINT

- If the synchronization setting (parameter No.0265) is set to valid, synchronization is not completed when the mode is switched to the nonsynchronous micro-adjustment mode. When the mode is switched to the synchronous mode again, turn the servo off and then on, then perform synchronization. When automatic operation or linear interpolation is performed with synchronization incomplete, the tandem drive synchronous alignment error (operation error 58, detail 02) occurs.
- When the synchronization setting (parameter No.0265) is set to invalid, the operation in the synchronization mode is performed based on the master axis holding deviation between master axis and slave axis at switching the mode to the synchronization mode.

8.1.3 Changing of drive mode

The changing of modes is performed using ON/OFF of the non-synchronous command signal (ASYN $\square: \square$ is the group number). Changing of mode can be performed on a group basis.
Changing of drive mode can only be performed when all of the following conditions are satisfied.

- The during smoothing of stopping (SMZ) is on for both the master axis and the slave axis.
- The in-position signal (INP) is ON for both the master axis and slave axis.
- No operation alarm has occurred for both the master axis and slave axis.
- Neither the master axis nor the slave axis is operating.
- They are not being synchronized.

If even one of the conditions is not satisfied, the tandem drive mode change error (operation alarm 50, detail 01) occurs.
(1) Example when drive mode can be changed

(2) Example when drive mode can not be changed (the in-position signal (INP) of the master axis is OFF)

Note. When the tandem drive mode change error (operation alarm 50, detail 01) has been set, after returning the Non-synchronous command signal (ASYND) to its normal status, turn the operation alarm reset signal (ORST) on to cancel the operation alarm.

When changing from non-synchronous micro-adjustment mode to synchronous mode, of the axis data for the slave axis, only the data that is valid for the master axis (refer to Section 8.3) is saved from the nonsynchronous micro-adjustment mode. Zero clear and the like is not performed.

8.2 Parameter settings

8.2.1 Designation of tandem drive axes

Setting the group number in the tandem drive group (parameter No.0264) defines the tandem drive axis. The 2 axes that are set to the same group No. can be driven in parallel. The maximum number of groups that can be driven in parallel is 8 (groups 1 to 8). Of the 2 axes that are designated with the same tandem drive group number the axis with the smaller axis No. is the master axis and the axis with the larger axis No. is the slave axis.

Control cycle	Valid group number	
	MR-MC2ロロ	MR-MC3 $\square \square$
0.88 ms	1 to 8	1 to 8
0.44 ms	1 to 4	
0.22 ms		

POINT

- For the following conditions, upon system startup, the tandem drive axis setting value error (operation alarm 52, detail 02) occurs, and tandem drive control can not be performed.
- If the complement axis is not set up
- If 3 or more axes are set up with the same group number
- If the group number exceeds the valid group number

8.2.2 Servo parameters

Set the servo parameters to the same values for the axes for which tandem drive is performed. However, the rotation direction selection (servo parameter No.110D) can be different values depending on mechanical specifications.

8.2.3 Control parameters

The settings of the control parameters for when using tandem drive can be selected from among the following 3 selections: "only values of master axis are valid", "set master/slave axes to same values", and "master and slave can be set separately". Only master axis values are valid means that the parameter settings of the master axis are used for both the master and the slave. In this case, the parameters of the slave axis are ignored. Refer to Chapter 11 for setting classifications of each control parameter.

8.3 Axis data classifications

Axis data for tandem drive axes have 2 data type settings: "only master axis data is valid" and "master axis/slave axis data are separate".

POINT

- Refer to Section 10.7 concerning axis data classifications for tandem drive axes.

In this table, "only master axis data is valid" is designated as "master" while
"master axis/slave axis data are separate" is designated as "axes separate".

- It is possible to review monitor data for each axis individually.

8.3.1 Only data from master axis is valid

(1) Command table data

When the drive mode is synchronous mode, only the command table data from the master axis is valid. For this case the command table data for the slave is ignored. If the drive mode is non-synchronous microadjustment mode, each axis becomes valid.
(2) Status table data

When the drive mode is synchronous mode, only the status table data from the master axis is valid. For this case the status table data for the slave axis is optional. If the drive mode is non-synchronous microadjustment mode, each axis becomes valid.
8.3.2 Individual data for master axis/slave axis

Data that is valid for each axis independent of the drive mode.

8.4 Tandem drive axis operation

POINT

- Only have the master axis call the start operation functions of each axis when in synchronous mode.

8.4.1 Home position return during tandem drive

Methods for returning to home position while using tandem drive axes include: dog method, dog cradle method, data set method, Z-phase detection method, scale home position signal detection method, and scale home position signal detection method 2 . These home position return methods are performed while in synchronous mode.
Note 1. If a non-compatible method is used to perform home position return, the tandem drive axis setting error (operation alarm 52, detail 01) occurs when home position return is started.
2. When in non-synchronous micro-adjustment mode, the while in tandem drive non-synchronous mode (operation alarm 51, detail 01) occurs when home position return is started.

POINT

- If a non-compatible method is used to perform home position return, the tandem drive axis setting error (operation alarm 52, detail 01) occurs when home position return is started.
- When in non-synchronous micro-adjustment mode, the while in tandem drive non-synchronous mode (operation alarm 51, detail 01) occurs when home position return is started.
- The amount of home position shift is set using a control parameter No.0248, 0249. The home position can be shifted by setting the amount of home position shift.
- If the balance between tandem drive axes is not good just after turning on the power, it can cause stress to the equipment, therefore use non-synchronous micro-adjustment mode to adjust the balance and perform home position return.
- When home position return is completed, the home position coordinates (master axis parameter No.0246, 0247) are set to the current command position for both the master axis and the slave axis.
(1) Home position return using a dog method

Note 1. The proximity dog signal for the master is the only valid signal. The slave axis also returns to home position based on the dog signal for the master.
2. The final stop position for both the master axis and the slave axis is based on the final master axis motor Z-phase. Also, only the master axis parameter for the value for the home position shift amount is valid.
(2) Home position return using the dog cradle method

Note 1. The proximity dog signal for the master is the only valid signal. The slave axis also returns to home position based on the dog signal for the master.
2. The final stop position for both the master axis and the slave axis is based on the final master axis motor Z-phase. Also, only the master axis parameter for the value for the home position shift amount is valid.
(3) Home position return using a data set method

Note. This explanation is an example for using JOG operation for moving to home position.
(4) Home position return using a dog front end method

Home position return using a dog front end method uses the proximity dog front end as the home position. The following two methods are available for the home position return using a dog front end method with the tandem drive axes: using the proximity dog front end on the master axis as the home position and detecting each proximity dog front end for the master axis and slave axis to perform tweaking (compensation of deviation between master axis and slave axis). Set either of the methods with the compensation of home position return deviation in the tandem drive options (parameter No.0265).

Tandem drive options (parameter No.0265)		Application Compensation of home position return deviation Home position return method Deviation compensation invalid
valid	Adjustment mode	
	Normal mode	

(a) Deviation compensation invalid

The motion detected by the proximity dog slows down to stop, and return to the proximity dog front end, setting there to the home position. When deviation compensation is invalid, only the proximity dog signal for the master axis is used.

Note 1. The proximity dog signal for the master is the only valid signal. The slave axis also returns to home position based on the proximity dog signal for the master.
2. The final stop position for both the master axis and the slave axis is based on the master axis proximity dog front end. Also, only the master axis parameter for the value for the home position shift amount is valid.
(b) Deviation compensation valid

The motion detected by the proximity dog slows down to stop, and return to the proximity dog front end, setting there to the home position. When deviation compensation is valid, the proximity dog signals for the master axis and for the slave axis are used to calculate the amount of deviation between each dog front end position or to compensate the deviation between the master axis and the slave axis. To perform the calculation or the compensation of deviation amount, designate adjustment mode or normal mode using tandem drive options (parameter No.0265).

1) Adjustment mode
a) Summary

Adjustment mode is used during mechanical adjustment, and is used to calculate the dog front end position offset (amount of deviation in the position of the proximity dog front end for the master axis and slave axis).
When executing home position return while in adjustment mode, after detecting the master axis dog front end position and the slave axis dog front end position while returning to home position, the axes are moved to the dog front end position of the master axis. At this time the amount of offset from the position of the dog front end for the master axis to the position of the dog front end for the slave axis is calculated and output using the tandem drive home position signal offset (parameter No.026C, 026D). This amount of offset is used when compensating the amount of deviation between the master axis and slave axis when returning to home position; therefore, after completing home position return save this offset on the user program.

Note. Prior to returning to home position, set the axis linking the master axis and slave axis mechanically at a right angle to the movement direction. If it is not at a right angle, the dog front end position offset amount can not be correctly calculated.
b) Start operation method

1. Adjust the axis linking the master axis and slave axis mechanically at a right angle to the movement direction.
2. Set the home position return method (parameter No.0240) to "Dog front end method" and tandem drive option (parameter No.0265) to "Adjustment mode".
3. Start home position return operation.
4. After home position return is complete, read the tandem drive home position signal offset (parameter No.026C, 026D) and save it to the user program.
c) Operation example for adjustment mode

2) Normal mode
a) Summary

In normal mode, the amount of deviation between the master axis and slave axis is detected and tweaking (compensation of deviation between master axis and slave axis) is performed. This movement sets the axis linking the master axis and slave axis mechanically at a right angle to the movement direction.
When home position return is performed using normal mode, after detecting the master axis dog front end position and slave axis dog front end position while returning to home position, calculate the deviation of the master axis and slave axis based on the tandem drive home position signal offset (parameter No.026C, 026D). The master axis moves to the dog front end position and the slave axis moves to the slave axis home position calculated based on the tandem driver home position signal offset and the previously noted deviation.
Note 1. When performing home position return in normal mode, set the tandem drive home position signal offset (parameter No.026C, 026D) to the correct value. If the tandem drive home position signal offset value is erroneous, the axis that links the master axis and slave axis will not be at a right angle.
2. If the amount of deviation between the master axis and the slave axis exceeds the value calculated from the valid width of tandem drive deviation compensation (parameter No.026B) \times tandem drive deviation compensation units multiplication (parameter No.026E), an exceeding of valid width of tandem drive deviation compensation error (operation alarm 57, detail 01) occurs and home position return operation is terminated. (Tweak movement is not performed.)
b) Start operation method

1. Set the home position return method (parameter No.0240) to "Dog front end method" and tandem drive option (parameter No.0265) to "Normal mode".
2. Set the tandem drive home position signal offset (parameter No.026C, 026D).
3. Start home position return operation.

Note. Through setting the amount of home position shift (parameter No.0248, 0249), the position shifted from dog front end position can be defined as the home position.
c) Operation example for normal mode

(5) Home position return using a Z-phase detection method

Note 1. This explanation is an example for using JOG operation for moving to home position.
2. The final stop position for both the master axis and the slave axis is based on the first master axis motor Z-phase in the home position return direction from the start operation position.
Also, only the master axis parameter for the value for the home position shift amount is valid.
(6) Home position return using a scale home position signal detection method

Home position return is performed using a home position signal (Z-phase) on a linear scale. After detecting the proximity dog, move in the direction of the home position and in the opposite direction and the position where a home position signal is detected is defined to be the home position. When using scale home position signal detection home position return for tandem drive axes, designate adjustment mode or normal mode using tandem drive options (parameter No.0265).
(a) Adjustment mode

1) Summary

Adjustment mode is used during mechanical adjustment, and is used to calculate the home position signal offset (amount of deviation in the position of the home position signal for the master axis and slave axis) on a linear scale.
When executing home position return while in adjustment mode, after detecting the master axis home position signal and the slave axis home position signal while returning to home position, the axes are moved to the home position signal of the master axis. At this time the amount of offset from the position where the master home position signal was detected to the position where the slave home position was detected is calculated and output using the tandem drive home position signal offset (parameter No.026C, 026D). This amount of offset is used when compensating the amount of deviation between the master axis and slave axis when returning to home position; therefore, after completing home position return save this offset on the user program.

POINT

- Prior to returning to home position, set the axis linking the master axis and slave axis mechanically at a right angle to the movement direction. If it is not at a right angle, the home position signal position offset amount can not be correctly calculated.

2) Operation example for normal mode
a) Start operation method
1. Adjust the axis linking the master axis and slave axis mechanically at a right angle to the movement direction.
2. Set the home position return method (parameter No.0240) to scale home position signal detection method and tandem drive option (parameter No.0265) to normal mode.
3. Start home position return operation.
4. After home position return is complete, read the tandem drive home position signal offset (parameter No.026C, 026D) and save it to the user program.
b) Timing chart

Home position signal (Z-phase) (master axis)

Slave Axis

Home position signal (Z-phase) (slave axis) Home position return complete (ZP)

Note 1. When a limit switch signal is detected, an alarm occurs and execution of home position return is terminated.
Position the proximity dog in front of the limit switch signal.
(As shown in the diagram, position the proximity dog signal so that it overlaps the limit switch signal.)
2. Set the distance between the master axis/slave axis home position signals and the proximity dog so that it is greater than the deviation at maximum tolerance of the master axis and slave axis.
(b) Normal mode

1) Summary

In normal mode, the amount of deviation between the master axis and slave axis is detected and tweaking (compensation of deviation between master axis and slave axis) is performed. This movement sets the axis linking the master axis and slave axis mechanically at a right angle to the movement direction.
When home position return is performed using normal mode, after detecting the master axis home position signal and slave position home position signal while returning to home position, calculate the deviation of the master axis and slave axis based on the tandem drive home position signal offset (parameter No.026C, 026D). The master axis moves to the position of the home position signal and the slave axis moves to the slave axis home position calculated based on the tandem driver home position signal offset and the previously noted deviation.

POINT

- When performing home position return in normal mode, set the tandem drive home position signal offset (parameter No.026C, 026D) to the correct value. If the tandem drive home position signal offset value is erroneous, the axis that links the master axis and slave axis will not be at a right angle.
- If the amount of deviation between the master axis and the slave axis exceeds the value calculated from the valid width of tandem drive deviation compensation (parameter No.026B) \times tandem drive deviation compensation units multiplication (parameter No.026E), an exceeding of valid width of tandem drive deviation compensation error (operation alarm 57, detail 01) occurs and home position return operation is terminated. (Tweak movement is not performed.)

2) Operation example for normal mode
a) Startup method
1. Set the home position return method (parameter No.0240) to scale home position signal detection method and tandem drive option (parameter No.0265) to normal mode.
2. Set the tandem drive home position signal offset (parameter No.026C, 026D).
3. Start home position return operation.
b) Timing chart

Note 1. When a limit switch signal is detected, an alarm occurs and execution of home position return is terminated.
Position the proximity dog in front of the limit switch signal.
(As shown in the diagram, position the proximity dog signal so that it overlaps the limit switch signal.)
2. Set the distance between the master axis/slave axis home position signals and the proximity dog so that it is greater than the deviation at maximum tolerance of the master axis and slave axis.
(7) Home position return using a scale home position signal detection method 2

Home position return is performed using a home position signal (Z-phase) on a linear scale. After the start operation is performed, move in the opposite direction of the home position and the position where a home position signal is detected is defined to be the home position. When using scale home position signal detection home position return for tandem drive axes, designate adjustment mode or normal mode using tandem drive options (parameter No.0265).
(a) Adjustment mode

1) Summary

Adjustment mode is used during mechanical adjustment, and is used to calculate the home position signal offset (amount of deviation in the position of the home position signal for the master axis and slave axis) on a linear scale.
When executing home position return while in adjustment mode, after detecting the master axis home position signal and the slave axis home position signal while returning to home position, the axes are moved to the home position signal of the master axis. At this time the amount of offset from the position where the master home position signal was detected to the position where the slave home position was detected is calculated and output using the tandem drive home position signal offset (parameter No.026C, 026D). This amount of offset is used when compensating the amount of deviation between the master axis and slave axis when returning to home position; therefore, after completing home position return save this offset on the user program.

POINT

- Prior to returning to home position, set the axis linking the master axis and slave axis mechanically at a right angle to the movement direction. If it is not at a right angle, the home position signal position offset amount cannot be correctly calculated.

2) Operation example for adjustment mode
a) Start operation method
1. Adjust the axis linking the master axis and slave axis mechanically at a right angle to the movement direction.
2. Set the home position return method (parameter No.0240) to scale home position signal detection method and tandem drive option (parameter No.0265) to adjustment mode.
3. Start home position return operation.
4. After home position return is complete, read the tandem drive home position signal offset (parameter No.026C, 026D) and save it to the user program.
b) Timing chart

Note 1. When a limit switch signal is detected, an alarm occurs and execution of return to home position is terminated.
2. Set the distance between the master axis/slave axis home position signals and the start operation position so that it is greater than the deviation at maximum tolerance of the master axis and slave axis.
(b) Normal mode

1) Summary

In normal mode, the amount of deviation between the master axis and slave axis is detected and tweaking (compensation of deviation between master axis and slave axis) is performed. This movement sets the axis linking the master axis and slave axis mechanically at a right angle to the movement direction.
When home position return is performed using normal mode, after detecting the master axis home position signal and slave position home position signal while returning to home position, calculate the deviation of the master axis and slave axis based on the tandem drive home position signal offset (parameter No.026C, 026D). The master axis moves to the position of the home position signal and the slave axis moves to the slave axis home position calculated based on the tandem driver home position signal offset and the previously noted deviation.

POINT

- When performing home position return in normal mode, set the tandem drive home position signal offset (parameter No.026C, 026D) to the correct value. If the tandem drive home position signal offset value is erroneous, the axis that links the master axis and slave axis will not be at a right angle.
- If the amount of deviation between the master axis and the slave axis exceeds the value calculated from the valid width of tandem drive deviation compensation (parameter No.026B) \times tandem drive deviation compensation units multiplication (parameter No.026E), an exceeding of valid width of tandem drive deviation compensation error (operation alarm 57, detail 01) occurs and home position return operation is terminated. (Tweak movement is not performed.)

2) Operation example for normal mode
a) Start operation method
1. Set the home position return method (parameter No.0240) to scale home position signal detection method and tandem drive option (parameter No.0265) to normal mode.
2. Set the tandem drive home position signal offset (parameter No.026C, 026D).
3. Start home position return operation.
b) Timing chart
$\xrightarrow{\text { Home position return direction }}$

Note 1. When a limit switch signal is detected, an alarm occurs and execution of return to home position is terminated.
2. Set the distance between the master axis/slave axis home position signals and the start operation position so that it is greater than the deviation at maximum tolerance of the master axis and slave axis.

8.4.2 JOG operation during tandem drive

(1) Synchronous mode

When JOG operation is performed while in synchronous mode, master axis data and signals are used.
An example is shown below.

Important data classifications related to JOG operation during synchronous mode are shown in the following table. For other related data, refer to Section 10.7.

Type	Items for which only item associated with master is valid	Items defined for each axis
Command signal/data	JOG operation mode (JOG) Movement direction (DIR) Start operation (ST) Manual feed speed Acceleration time constant Deceleration time constant	None
Status signal	In JOG operation mode (JO) During operation (OP) During smoothing of stopping (SMZ)	In-position (INP) Position switch (PSW)

The in-position signal (INP) is output for each axis separately; therefore, when the axes have come to a stop and in-position signals are being used, check the in-position signal (INP) for both the master axis and the slave axis.
For other types of movement, normal axis movement is followed. (Refer to Section 5.1)
(2) Non-synchronous micro-adjustment mode

Movement is the same as for normal axis movement. (Refer to Section 5.1)

8.4.3 Incremental feed while using tandem drive

(1) Synchronous mode

When incremental feed operation is performed while in synchronous mode, master axis data and signals are used. An example is shown below.

Important data classifications related to incremental feed operation during synchronous mode are shown in the following table. For other related data, refer to Section 10.7.

Type	Items for which only item associated with master is valid	Items defined for each axis
Command signal/data	Incremental feed operation mode (S) Movement direction (DIR) Start operation (ST) Manual feed speed Acceleration time constant Deceleration time constant Incremental feed movement amount	None
Status signal	In incremental feed mode (SO) During operation (OP) During smoothing of stopping (SMZ)	In-position (INP) Position switch (PSW)

The in-position signal (INP) is output for each axis separately; therefore, when the axes have come to a stop and in-position signals (INP) are being used, check the in-position signal (INP) for both the master axis and the slave axis.
For other types of movement, normal axis movement is followed. (Refer to Section 5.2)
(2) Non-synchronous micro-adjustment mode

Movement is the same as for normal axis movement. (Refer to Section 5.2)

8.4.4 Automatic operation during tandem drive

(1) Synchronous mode

When automatic operation is entered while in synchronous mode, master axis data and signals are used. Also, the master axis table is used for the point table. An example is shown below.

Important data classifications related to automatic operation during synchronous mode are shown in the following table. For other related data, refer to Section 10.7.

Type	Items for which only item associated with master is valid	Items defined for each axis
Command signal/data	Automatic operation mode (AUT) Start operation (ST) Start point No. End point No. (Point table)	None
Status signal	In automatic operation mode (AUTO) During operation (OP) During smoothing of stopping (SMZ) Positioning complete (PF) Rough match (CPO)	In-position (INP) Position switch (PSW)

The in-position signal (INP) is output for each axis separately; therefore, when the axes have come to a stop and in-position signals (INP) are being used, check the in-position signal (INP) for both the master axis and the slave axis.
For other types of movement, normal axis movement is followed. (Refer to Section 5.3)
(2) Non-synchronous micro-adjustment mode

Automatic operation can not be entered while in non-synchronous micro-adjustment mode. The while in tandem drive non-synchronous mode (operation alarm 51, detail 01) occurs upon start of operation.

8.4.5 Linear interpolation during tandem drive

When performing linear interpolation operation MC200/interpolation operation MC300 , it is necessary to group the axes for which interpolation is to be set up. The groups are set up using linear interpolation group $M C 200$ /interpolation operation group $\operatorname{MC300}$ (parameter No.0260) and the master axis is the only one set up when in tandem drive axis operation. For other types of movement, normal axis movement is followed. (Refer to Section 5.6)

> | POINT |
| :--- |
| When performing linear interpolation operation $M C 200$ /interpolation |
| operation $\sqrt{M C 300}$, limit the total number of axes to 4 , including slave axes. If the |
| total number of axes exceeds 4, the linear interpolation start up |
| error $\triangle M C 200$ /interpolation start up error $M C 300$ (operation alarm 40, detail 02) |
| occurs upon start of operation. |

The following is a system configuration set up example.

The group number of the slave axis is set to the same number of the master axis independent of its setting.
(1) Synchronous mode

When linear interpolation operation MC200/interpolation operation MC300 is entered while in synchronous mode, master axis data and signals are used. Also, the master axis table is used for the point table. Important data classifications related to linear interpolation operation MC200 /interpolation operation MC300 during synchronous mode are shown in the following table. For other related data, refer to Section 10.7.

Type	Items for which only item associated with master is valid	Items defined for each axis
Command signal/data	Linear interpolation mode MC200/interpolation mode MC300 (LIP) Start operation (ST) Start point No. End point No. (Point table)	None
Status signal	In linear interpolation mode $\sqrt{M C 200}$ /in interpolation mode $M C 300$ (LIPO) During operation (OP) During smoothing of stopping (SMZ) Positioning complete (PF) Rough match (CPO)	In-position (INP) Position switch (PSW)

The in-position signal (INP) is output for each axis separately; therefore, when the axes have come to a stop and in-position signals are being used, check the in-position signal for both the master axis and the slave axis.
For other types of movement, normal axis movement is followed. (Refer to Section 5.6)
The following shows an example where start operation is performed for the linear interpolation group 1 from the configuration example on the previous page.

POINT

- For Linear interpolation operation, the XA axis and YA1 axis (master axis) are used for linear interpolation operation.
The YA2 axis (slave axis) moves synchronously with the master axis.
(2) Non-synchronous micro-adjustment mode

Linear interpolation operation cannot be entered while in non-synchronous micro-adjustment mode. The while in tandem drive non-synchronous mode (operation alarm 51, detail 01) occurs upon start of operation.

8.5 Servo on and servo off during tandem drive axis operation

(1) Synchronous mode

When the master axis servo on signal (SON) and slave axis servo on signal (SON) are turned on, the both axes are turned on. Also, when the servo on signal (SON) for either the master axis or the slave axis is turned off, both axes are turned servo off.

When an axis has moved while the servo off, the current command position is updated in accordance with the movement amount (Current feedback position) both for the master axis and for the slave axis. When there is a misalignment between the master axis and slave axis at the servo on, synchronous alignment is performed by aligning the command for the slave axis with the one for the master axis. During synchronous alignment, "synchronizing" status signal (SYEO \square : \square is the group number) turns on. After confirming the "synchronizing" status signal is off, perform the start operation.
However under the following conditions, the tandem drive synchronous alignment error (operation alarm 58, detail 01) occurs and synchronization is canceled. After the cause for the alarm is removed, turn the servo off and then on to perform synchronization again. When automatic operation or linear interpolation is performed with synchronization incomplete, the tandem drive synchronous alignment error (operation error 58, detail 02) occurs.
(a) If the deviation between the master axes command position and the slave axis command position exceeds the tandem drive synchronous alignment valid width (parameter No.0266), the tandem drive synchronous alignment valid width error (operation alarm 54, detail 01) occurs.
(b) If a stop command (STP, RSTP) is input while synchronizing, the tandem drive synchronous alignment error (operation alarm 58, detail 01) occurs.

POINT

- Synchronization is validated after home position return complete (after home position is established). When the home position return request (ZREQ) is ON, synchronization is not performed.
- Set the speed at synchronization using the tandem drive synchronous alignment speed (parameter No.0267) and the speed units multiplication factor (parameter No.020E, 020F).
- When start operation is performed during synchronization, the tandem drive while performing synchronization (operation alarm 55, detail 01) occurs.
- When drive mode is toggled during synchronization, the tandem drive mode change error (operation alarm 50, detail 01) occurs.
- If the "tandem drive synchronous alignment valid width error" (operation alarm 54, detail 01) or the "tandem drive synchronous alignment error" (operation alarm 58, detail 01) occurs within absolute position detection system, the absolute value will be lost.
(The absolute position data of the home position return option 2 (parameter No.0241) becomes invalid and "absolute position erased signal" (ABSE) turns on.)
- Implement a stop command on the master axis. Because system is in synchronous mode, a stop command to the slave axis is invalid.
- If the synchronization setting (parameter No.0265) is set to invalid, synchronization for turning servo on is not performed. The position board operates with the deviation between the master axis and the slave axis held. The setting of this parameter becomes valid at the leading edge of servo ready (RDY) signal.
While synchronization is invalid, the following operations may make a deviation between the master axis and the slave axis. As necessary, perform synchronization (micro-adjustment) with the user program. In addition, check the deviation between the master axis and the slave axis is within an allowance.
- At turning on the after turning off the servo
- At canceling a servo alarm after a servo alarm occurs
- At resetting a forced stop after a forced stop occurs
(2) While in non-synchronous micro-adjustment mode

The servos can be turned on and off separately. Movement is as the same as normal axes.
(Refer to Section 6.4)

8.6 Tandem drive axis limit switch

If the limit switches on either the master axis or the slave axis is detected, an alarm occurs and both axes are stopped using the rapid stop time constant. For other types of movement, normal axis movement is followed. (Refer to Section 6.8)

8.7 Tandem drive axis software limit

Software limits become valid after completing home position return (home position return request (ZREQ) is off). Software limits are checked for both the master axis and the slave axis. In this case, the software limit boundaries for the master axis become valid.
The following shows an example where the software limit is reached during JOG operation when the synchronization setting (parameter No.0265) is set to invalid and there is a deviation between the master axis and slave axis at servo-on.

For other types of software limit occurrences, normal axis movement is followed.
(Refer to Section 6.9)

8.8 Tandem drive interference check

Interference check is performed both for the master axis and slave axis. The parameter value of interference check width for the master axis becomes valid.

8.9 Tandem drive axis servo alarms

If an alarm occurs on the master axis or slave axis, dynamic braking and stoppage is implemented for the axis for which the servo alarm did not occur as well. When the cause for an alarm on an axis is cancelled such as through a servo alarm reset, the dynamic brake is cancelled.
This is the same for a servo forced stop warning (E6) or a main circuit off warning (E9) status on either the master axis or the slave axis.
This operation does not exist in drive modes (synchronous mode/non-synchronous micro adjustment mode).

POINT		
	Relationship between servo on/off and dynamic brake on/off	
	While Servo On command is ON	While Servo On command is OFF
Dynamic brake off	Servo control is operating (Positioning can be controlled.)	Servo is coasting (Is easily turned using an external force.)
Dynamic brake on	Dynamic brake status (If an external force is placed to try and rotate axis, dynamic brake resists the force.)	

8.10 Deviation monitoring function

A function where if the deviation between the master axis and the slave axis exceeds the tandem drive excessive deviation width (parameter No.0268) during synchronous mode while in tandem drive axis mode, the tandem drive excessive deviation (operation alarm 53, detail 01) occurs and both axes are stopped using a dynamic brake. When the setting for the excessive deviation width is set to 0 , it becomes invalid.

MEMO

9. INTERFACE MODE

9.1 Summary

Interface mode is a function for sending the commands for every operation cycle (position commands, speed commands and torque commands) straight to the servo amplifier. By using this function, any given acceleration/deceleration pattern, speed pattern, or torque pattern is possible.
To use interface mode, designate "1: Interface mode" with system option 2 (parameter No.0002), and perform system startup after setting Interface mode option (parameter No.000F).
When system startup is performed in interface mode, operation modes from standard mode such as JOG operation, automatic operation, etc. cannot be used.
The host controller controls the servo amplifier by updating the contents of the command buffer at a timing of either when the host controller receives the interrupt output for each control cycle given by the position board (when interrupt output is valid), or at any given timing (when interrupt output is invalid).
When interrupt output is valid, position control mode, speed control mode, and torque control mode can be used. When interrupt output is invalid, only position control mode can be used.
(1) Using MR-MC2 $\square \square$
(a) Software version A3 or earlier

Only position control mode can be used.
(b) Software version A4 or later Position control mode, speed control mode, and torque control mode can be used.
(2) Using MR-MC3
(a) No restrictions by software version

Position control mode, speed control mode, and torque control mode can be used.

POINT

- When using interface mode, all axes operate in interface mode. Cannot operate some axes in standard mode during interface mode.
- Cannot switch control modes (standard mode and interface mode) after system startup.
- When using the test operation function of MR Configurator2 connected to the position board with a USB connection, the position board stops importing commands. If the test operation function is executed while motors are rotating, they come to a stop. Be sure to perform test operation after stopping operation. The system must be restarted to control with commands from the position board again.
For details on test operation refer to Servo Amplifier Instruction Manual, and help of MR Configurator2.
- The test tool is not compatible with interface mode.

It can get monitors and graphs of servo information.

- When the number of buffers used in interface mode maximum buffer number (parameter No.023F) is set to "1", the number of axes that can be controlled is restricted. While it is possible to control more axes than the recommended number of control axes below, the during system program memory access signal (BMA) stays ON for a longer time, making the available time for command buffer writing from the user program shorter.
When controlling more axes than the recommended number of control axes below, and making the available time for command buffer writing from the user program longer, set the number of buffers used to "2" or more, or make the command data update cycle longer. MC300

Control cycle	Recommended number of control axes
0.88 ms	64 axes
0.44 ms	52 axes
0.22 ms	27 axes

- When connecting remote I/O modules, the number of axes that can be controlled, and the available time for command buffer writing varies with the number of modules to be connected, and the number of I/O device points to be used.
- The available time for command buffer writing from the user program can be calculated with control cycle[ms] $\times 1000$ - Operation cycle current time[$\mu \mathrm{s}]$. The calculation is an estimate, thus it is shorter than the actual writing time.

API LIBRARY

- For a detailed procedure for interface mode, refer to the sample program (InterruptlfmDrive/PollinglfmDrive) contained on the utility software.
- When the response of the host controller operating system is not on time due to the load of the user program etc., increase the number of position command buffers to be used (position control only), or set the command data update cycle longer.

9.2 Combinations with functions

The following shows the combinations of interface mode with each function.

Classification	Function		Control mode			Remarks
			Position control	Speed control	Torque control	
Operational function	JOG operation		\times	\times	\times	
	Incremental feed		\times	\times	\times	
	Automatic operation		\times	\times	\times	
	Linear interpolation MC200 Interpolation operation (linear interpolation, circular interpolation)		\times	\times	\times	
	Home position return		\times	\times	\times	The normal home position return function is invalid. After moving to the home position, use the home position set command. Check the DOG signal status with the high-speed monitor.
	Home position reset function		\times	\times	\times	
Application function	Command units	Electronic gear	\times	\times	\times	Command units are always pulse units.
	Speed unit	Speed unit	\triangle	\triangle	\triangle	Related only to speed units during monitor output.
		Speed units multiplication factor	\triangle	\triangle	\triangle	Related only to speed units during monitor output.
		Speed limit	\times	\times	\times	
	Acceleration/ deceleration	Linear acceleration/deceleration	\times	\times	\times	
		Smoothing filter	\times	\times	\times	
		Start up speed enable	\times	\times	\times	
		S-curve acceleration/ deceleration (Sine acceleration/deceleration)	\times	\times	\times	
		Jerk ratio acceleration/ deceleration MC300	\times	\times	\times	
		Vibration suppression command filter 1 MC300	\times	\times	\times	
	Servo off		\times	\times	\times	The system becomes servo free. Follow up processes are not performed after servo off. Perform them with the user program. Operation stop by servo off is invalid. Perform servo off after a deceleration stop.
	Forced stop		\bigcirc	\bigcirc	\bigcirc	
	Stop operation		\times	\times	\times	
	Rapid stop operation		\times	\times	\times	
	Limit switch (stroke end)		\times	\times	\times	Check the LSP/LSN signal status with the highspeed monitor.
	Software limit		\times	\times	\times	
	Interlock		\times	\times	\times	
	Rough match output		\times	\times	\times	
	Torque limit		\bigcirc	\bigcirc	\times	
	Command change	Speed change	\times	\times	\times	
		Change of time constants	\times	\times	\times	
		Position change	\times	\times	\times	
	Backlash		\times	\times	\times	
	Position switch		\times	\times	\times	
	Completion of operation signal		\times	\times	\times	

Classification	Function	Control mode			Remarks
		Position control	Speed control	Torque control	
Application function	Interference check function	\times	\times	\times	
	Home position search limit	\times	\times	\times	
	Gain switching	\bigcirc	\bigcirc	\bigcirc	
	PI-PID switching	\bigcirc	\times	\times	
	Home position set	\bigcirc	\times	\times	If home position set request is turned ON at speed control/torque control, home position set error (ZSE) turns ON.
	Absolute position detection system	\bigcirc	\bigcirc	0	
	Home position return request	\times	\times	\times	
	High response I/F	\times	\times	\times	
	Other axes start	\times	\times	\times	
	In-position function	\bigcirc	\times	\times	
	Digital I/O	\bigcirc	\bigcirc	\bigcirc	
	I/O device	\bigcirc	\bigcirc	\bigcirc	
	Servo amplifier general I/O	\bigcirc	\bigcirc	\bigcirc	
	Dual port memory exclusive control	\bigcirc	\bigcirc	\bigcirc	
	Pass position interrupt	\times	\times	\times	
	Mark detection	\bigcirc	\bigcirc	\bigcirc	
	Continuous operation to torque control	\times	\times	\times	
	SSCNETII/H head module	\bigcirc	\bigcirc	\bigcirc	
	Sensing module	\bigcirc	\bigcirc	\bigcirc	
		\bigcirc	\times	\times	
Auxiliary function	Reading/writing parameters	\bigcirc	\bigcirc	\bigcirc	
	Changing parameters at the servo	\bigcirc	\bigcirc	\bigcirc	
	Alarm and system error	\bigcirc	\bigcirc	\bigcirc	
	Monitor function	\bigcirc	\bigcirc	\bigcirc	
	High speed monitor function	\bigcirc	\bigcirc	\bigcirc	
	Interrupt	\triangle	\triangle	\triangle	Interrupt output is not performed by factor of interrupt. Interrupt is output according to the interrupt output cycle settings only during interrupt valid.
	Interrupt output cycle	\bigcirc	\bigcirc	\bigcirc	Can only be used in interface mode.
	Command data update cycle	\bigcirc	\bigcirc	\bigcirc	Can only be used in interface mode.
	User watchdog function	\bigcirc	\bigcirc	\bigcirc	
	Software reboot function	\bigcirc	\bigcirc	\bigcirc	
	Parameter backup	\bigcirc	\bigcirc	\bigcirc	
	Test mode	\bigcirc	\bigcirc	\bigcirc	
	Reconnect/disconnect function	\bigcirc	\triangle	\triangle	When reconnecting, startup is in position control mode.
	Sampling	\bigcirc	\bigcirc	\bigcirc	
	Log	\bigcirc	\bigcirc	\bigcirc	
	Operation cycle monitor function	\bigcirc	\bigcirc	\bigcirc	
	Amplifier-less axis function	\bigcirc	\bigcirc	\bigcirc	For torque control mode, operation stops when torque command is 0.0%, or when torque control speed limit value is 0 , and zero speed (ZSP) turns ON.
	Alarm history function	\bigcirc	\bigcirc	\bigcirc	
	External forced stop disabled	\bigcirc	\bigcirc	\bigcirc	
	Transient transmission	\bigcirc	\bigcirc	\bigcirc	
Tandem drive	Tandem drive	\times	\times	\times	

9.3 Parameters

For interface mode, the parameters used and some of the parameter functions change. The following are parameters used in interface mode.
(1) System parameters
(a) System parameters used

Parameter No.	Symbol	Name	Remarks
0001	*SYSOP1	System option 1	Designates interface mode in control mode.
0002	*SYSOP2	System option 2	
000 E	*EMID	External forced stop disabled	Designates the interrupt output cycle and command data update cycle.
000 F	*IFM0	Interface mode option	
0040	LGS1	Log acquiring selection1	
0041	LGS2	Log acquiring selection2	
0042	LGS3	Log acquiring selection3	
0043	LGS4	Log acquiring selection4 MC300	
0044	LGS5	Log acquiring selection5	
$004 A$	*IOTBL	I/O table	
$004 B$	LGS6	Log acquiring selection6MC300	

(b) Parameter details

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
0002	*SYSOP2	System option 2	0000h		$\begin{aligned} & 0000 \mathrm{~h} \\ & \text { to } \\ & 1101 \mathrm{~h} \end{aligned}$	0 0 0 \square Control mode selection Set the control mode. 0: Standard mode 1: Interface mode
000F	*IFM0	Interface mode option	0000h		$\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & \text { 0F0Fh } \end{aligned}$	

(2) Servo parameters

There are no differences to standard mode.
(3) Control parameters
(a) Control parameters used

Parameter No.	Symbol	Name	Remarks
0200	*OPC1	Control option 1	Speed units relates to the units during monitor output.
0203	*AXALC	Axis No. assignment	
020E	SUML	Speed units multiplication factor (lower)	Speed units multiplication factor relates to the units during monitor output.
020F	SUMH	Speed units multiplication factor (upper)	
0210	TLP	Forward rotation torque limit value	
0211	TLN	Reverse rotation torque limit value	
0213	*GIOO	General I/O option	
0214	*GDNA	General I/O number assignment	
0215	*GDINA	General input No. assignment MC300	
0216	*GDONA	General output No. assignment MC300	
0218	*SSIA	Sensor signal input assignment MC300	
0219	*SOP	Sensor input options	Sets the source of input for LSP/LSN/DOG signals. Each signal is used in monitor output only.
021A	*SLSP	Sensor signal (LSP) connection specification	
021B	*SLSN	Sensor signal (LSN) connection specification	
021C	*SDOG	Sensor signal (DOG) connection specification	
021D	*VEND	Vendor ID	
021E	*CODE	Type code	
023F	*IFBN	Interface mode maximum buffer number	Designates the maximum buffer number of the command buffer. Note. When controlling by interface mode with interrupt output invalid, 1 or more must be set.
0241	*OPZ2	Home position return Option 2	Can set valid/invalid of system only.
0246	ZPSL	Home position coordinates (lower)	Set only for absolute position system.
0247	ZPSH	Home position coordinates (upper)	
024D	*LSO	Home position multiple revolution data	Set only for absolute position system.
024E	*CYOL	Home position within 1 revolution position (lower)	Set only for absolute position system.
024F	${ }^{*} \mathrm{CYOH}$	Home position within 1 revolution position (upper)	

(b) Parameter details

The parameter details regarding interface mode are shown below.

Parameter No.	Symbol	Name	Initial value	Units	Setting range	When in tandem drive	
023F	*IFBN	Interface mode maximum buffer number	0		0 to 63	Sets the maximum value of the ring buffer number being used in interface mode. The set value+1 is the number of buffers. Note. When controlling by interface mode with interrupt output invalid, 1 or more must be set.	(

9.4 Interface

(1) System information

Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
0010	000010	Interrupt output cycle
0011	000011	
0012	000012	Command data update cycle
0013	000013	

(a) Interrupt output cycle

The interrupt output cycle (control cycle $\times \mathrm{N}$) outputs the value of N .
(b) Command data update cycle

The command data update cycle (control cycle $\times \mathrm{N}$) outputs the value of N .
(2) System status table

Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
0478	000 C 18	Command buffer read error counter
0479	000C19	

(3) System command/status bit
(a) System command bit

Address		Bit	Symbol	Signal name
MR-MC2■ロ	MR-MC3口■			
03E0	000B00	0	ITE	Interrupt processing complete
		1	ITS	Interrupt output valid
		2		Reserved
		3		Reserved
		4	HMA	During user program memory access
		5		
		6		Reserved
		7		

1) Details on system command bit

Symbol	Signal name	Function details	
	ITS	Function	Operation
HMA	During user program memory access	Commands when the user program is accessing the command buffer.	Outputs the interrupt each interrupt output cycle when interrupt output valid (ITS) is turned on.

(b) System status bit

Address		Bit	Symbol	Signal name
MR-MC2口■	MR-MC3口■			
0450	000BE0	0	ITO	Outputting with factor of interrupt
		1	IITO	During interface mode interrupt valid
		2	EVDO	Event detection enabled
		3	HRIF	During highly response I/F valid
		4	BMA	During system program memory access
		5	PRINF	Continuous operation to torque control compatible information
		6	$\mathrm{So}^{\text {che }}$	Reserved
		7	IFMO	In interface mode

1) Details on system status bit

Symbol	Signal name	Function details	
		Function	Operation
IITO	During interface mode interrupt valid	Notifies the interrupt during interface mode is valid.	```<Conditions for turning ON> Interrupt output valid (ITS) is turned on. <Conditions for turning OFF> Interrupt output valid (ITS) is turned off.```
EVDO	Event detection enabled	Notifies the event detection function is valid.	<Conditions for turning ON> Interface mode is selected in control mode, and system startup is performed.
BMA	During system program memory access	Notifies the system program is accessing the command buffer.	<Conditions for turning ON> The system program is accessing the command buffer. <Conditions for turning OFF> The system program is not accessing the command buffer.
IFMO	In interface mode	Notifies the control mode is in interface mode.	<Conditions for turning ON> Interface mode is selected in control mode, and system startup is performed. <Conditions for turning OFF> Standard mode is selected in control mode, and system startup is performed.

(4) Axis command/status
(a) Axis command

Address (Note)		Name		Setting range
MR-MC2 $\square \square$	MR-MC3 $\square \square$		Remarks	

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+$ COh
- Using MR-MC3 $\square \square:+140 h$
(b) Axis status

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+C 0 h$
- Using MR-MC3 $\square \square:+140 \mathrm{~h}$

2. A control mode switch error occurs when conducting the following operations.

- Switching from position control mode to another control mode while zero speed (ZSP) is OFF.
- Specifying a control mode outside of range to control mode command.
(5) Position command buffer

The number of buffers and the addresses that are used differ for each control mode. The buffers for each control mode are shown below.
(a) Position control mode

Address (Note)		Content	Address (Note)		Content
MR- MC2	MR- MC3		MR- MC2	MR- MC3	
5000	101000	Position command buffer 0 (pulse)	502C	10102C	Position command buffer 11 (pulse)
5001	101001		502D	10102D	
5002	101002		502E	10102E	
5003	101003		502F	10102F	
5004	101004	Position command buffer 1 (pulse)	5030	101030	Position command buffer 12 (pulse)
5005	101005		5031	101031	
5006	101006		5032	101032	
5007	101007		5033	101033	
5008	101008	Position command buffer 2 (pulse)	5034	101034	Position command buffer 13 (pulse)
5009	101009		5035	101035	
500A	10100A		5036	101036	
500B	10100B		5037	101037	
500C	10100C	Position command buffer 3 (pulse)	5038	101038	Position command buffer 14 (pulse)
500D	10100D		5039	101039	
500E	10100E		503A	10103A	
500F	10100F		503B	10103B	
5010	101010	Position command buffer 4 (pulse)	503C	10103C	Position command buffer 15 (pulse)
5011	101011		503D	10103D	
5012	101012		503E	10103E	
5013	101013		503F	10103F	
5014	101014	Position command buffer 5 (pulse)	5040	101040	Position command buffer 16 (pulse)
5015	101015		5041	101041	
5016	101016		5042	101042	
5017	101017		5043	101043	
5018	101018	Position command buffer 6 (pulse)	5044	101044	:
5009	101019		.		
501A	10101A		.		
501B	10101B		50EF	1010EF	
501C	10101C	Position command buffer 7 (pulse)	50F0	1010F0	Position command buffer 60 (pulse)
501D	10101D		50F1	1010F1	
501E	10101E		50F2	1010F2	
501F	10101F		50F3	1010F3	
5020	101020	Position command buffer 8 (pulse)	50F4	1010F4	Position command buffer 61 (pulse)
5021	101021		50F5	1010F5	
5022	101022		50F6	1010F6	
5023	101023		50F7	1010F7	
5024	101024	Position command buffer 9 (pulse)	50F8	1010F8	Position command buffer 62 (pulse)
5025	101025		50F9	1010F9	
5026	101026		50FA	1010FA	
5027	101027		50FB	1010FB	
5028	101028	Position command buffer 10 (pulse)	50FC	1010FC	Position command buffer 63 (pulse)
5029	101029		50FD	1010FD	
502A	10102A		50FE	1010FE	
502B	10102B		50FF	1010FF	

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, increase the units of 100 h for each axis.
(b) Speed control mode

Address (Note 1)		Content	
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
7800	109000	Speed command buffer 0 (0.01r/min)	
7801	109001		
7802	109002		
7803	109003		
7804	109004	Reserved	
:	:		
787F	10907F		
	109080		
	:		
	1090FF		

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+80 h$
- Using MR-MC3 $\square \square:+100 \mathrm{~h}$

2. Setting range: $-1000000000(-10000000 \mathrm{r} / \mathrm{min})$ to $1000000000(10000000 \mathrm{r} / \mathrm{min})$
(c) Torque control mode

Address (Note 1)		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
8C00	111000	Torque command buffer 0 $(0.01 \mathrm{r} / \mathrm{min})$ (When parameter No.010D is 0 , positive: CCW negative: CW)
8C01	111001	
8C02	111002	
8C03	111003	
8C04	111004	Reserved
:	:	
8C7F	11107F	
	111080	
	:	
	1110FF	

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +80h
- Using MR-MC3 $\square \square:+100 \mathrm{~h}$

2. Setting range: -32768 (-3276.8\%) to 32767 (3276.7\%)

9.5 Control method

9.5.1 Control mode

The control mode is switched by specifying the control mode in the "control mode command". Switching to/from position control mode to/from speed control mode/torque control mode is performed while the motor is stopped, and switching between speed control mode and torque control mode is possible at any given time. Refer to Section 9.5.7 and Section 9.5.8 for details on switching control mode.

POINT

- After turning power supply ON, or after SSCNET reconnection, the control mode is position control mode.
- When a control mode other than position control mode was specified at power supply ON, or SSCNET reconnection, startup in position control mode, before switching to the specified control mode.
-When a control mode switch error has occurred, return the control mode command to the current control mode before performing the control mode switch again.
- When switching from speed control mode or torque control mode, update the command position with the current feedback position after confirming zero speed (ZSP).
- The data for control mode command is applied at the timing of the command data update cycle.

9.5.2 Position control mode

Position control mode is where position commands (absolute position in pulse units) generated by the user program can be sent to the servo amplifier. The position command buffer is made up of position data \times a maximum of 64 ring buffers, and is controlled with the latest position command buffer number and the transmitting position buffer number.
Refer to Section 9.5 .5 or Section 9.5 .6 for the update method of the buffer.

POINT

- For the setting value of the position command buffer, ensure that the difference between the previous command value and the current command value is no more than 20000000. When the difference between the previous command value and the current command value exceeds 20000000, command data error (operation alarm A7, detail No.03) occurs, followed by an immediate stop.
- When an alarm other than command data error (operation alarm A7, detail No.03) occurs, conduct a deceleration stop by the user program.

(1) Parameter
(a) System parameter

Parameter No.	Symbol	Name	Remarks
000 F	*IFMO	Interface mode option	Specify the interrupt output cycle and command data update cycle.

(b) Control parameter

Parameter No.	Symbol	Name	Remarks
0210	TLP	Forward rotation torque limit value	Becomes valid when using torque limit.
0211	TLN	Reverse rotation torque limit value	*IFBN
$023 F$	Interface mode maximum buffer number	Set the maximum buffer number of the position command buffer. Note. When interrupt output is invalid in interface mode, 1 or higher must be set.	

(2) Axis data command/status table
(a) Axis data command table

Address (Note)		Content	Setting range
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
1030	005040	Latest position command buffer number	0 to 63
1031	005041	Lem	

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3 $\square \square:+140 \mathrm{~h}$
(b) Axis data status table

Address (Note)		Content	Setting range
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
108E	0050DE	Maximum position command buffer number	1 to 64
108F	0050DF		
1090	0050E0	Transmit position command buffer number	0 to 63
1091	0050E1		

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+C 0 h$
- Using MR-MC3 $\square \square$: +140h
(3) Position command buffer

Address (Note)		Name		Initial value	Units	Setting range

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 100h for each axis.

9.5.3 Speed control mode

Speed control mode is where speed commands (speed in units of $0.01 \mathrm{r} / \mathrm{min}$) generated by the user program can be sent to the servo amplifier. The speed command buffer is made up of speed command data $\times a$ maximum of 1 buffer.
Refer to Section 9.5 .6 for the update method of the buffer.

POINT

- If a value outside of the range is input to the speed command buffer, command data error (operation alarm A7, detail No.01) occurs. The speed command value becomes $0[0.01 \mathrm{r} / \mathrm{min}]$, followed by an immediate stop.
- When an alarm other than command data error (operation alarm A7, detail No.01) occurs, conduct a deceleration stop by the user program.

(1) Parameter
(a) System parameter

Parameter No.	Symbol	Name	Remarks
000 F	*IFMO	Interface mode option	Specify the interrupt output cycle and command data update cycle.

(b) Control parameter

Parameter No.	Symbol	Name	Remarks
0210	TLP	Forward rotation torque limit value	Becomes valid when using torque limit.
0211	TLN	Reverse rotation torque limit value	

(2) Speed command buffer

Address (Note)		Name	Initial value	Units	Setting range	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$					
7800	109000	Speed command buffer 0	0	0.01r/min	$\begin{gathered} -1000000000 \\ \text { to } \\ 1000000000 \end{gathered}$	Input the target speed for every command data update cycle.
7801	109001					
7802	109002					
7803	109003					

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+80 h$
- Using MR-MC3 $\square \square:+100 \mathrm{~h}$
(3) Monitor

When using speed control mode in interface mode, use the following monitor numbers to monitor/sample the speed commands being sent to the servo amplifier.
(a) Operation information

Monitor No.	Content	Units	Remarks
0324	Speed command (lower)	$0.01 \mathrm{r} / \mathrm{min}$	Notifies the speed command during speed control.
0325	Speed command (upper)		

(b) Operation information (double word)

Monitor No.	Content	Units	Remarks
1324	Speed command	$0.01 \mathrm{r} / \mathrm{min}$	Notifies the speed command during speed control.

9.5.4 Torque control mode

Torque control mode is where torque commands (torque in units of 0.1%) generated by the user program of the host controller can be sent to the servo amplifier. The torque command buffer is made up of torque command data \times a maximum of 1 buffer.
Refer to Section 9.5.6 for the update method of the buffer.

The relationship between the torque command and the direction of the output torque of the servo motor differs depending on the settings of rotation direction selection/movement direction selection (servo parameter No.110D) and function selection C-B (servo parameter No.119C). The torque command during torque control mode is restricted by the torque control speed limit value.
The meanings of the signs for the following data that can referred to by the monitor during torque control mode differ from other control modes.

- Servo information (2)

Monitor No.	Content	Units
020A	Electrical current command	0.1%
020B	Electrical current feedback	0.1%

The meanings of the signs for electrical current command (monitor No.020A) and electrical current feedback (monitor No.020B) during torque control mode are as follows.

Parameter No.	Command direction	Motor revolution		Electrical current command/electrical current feedback sign		
			Position control	Speed control	Torque control	
0	Positive	CCW (positive)	Positive	Positive	Positive	
	Negative	CW (negative)	Negative	Negative	Negative	
1	Positive	CW (negative)	Negative	Negative	Positive	
	Negative	CCW (positive)	Positive	Positive	Negative	

POINT

- If a value outside of the range is input to the torque command buffer, command data error (operation alarm A7, detail No.02) occurs. The torque command value becomes the value before the change.
-When an alarm occurs, conduct a deceleration stop by the user program.

(1) Parameter
(a) System parameter

Parameter No.	Symbol	Name	Remarks
000 F	*IFMO	Interface mode option	Specify the interrupt output cycle and command data update cycle.

(2) Axis data command/status table
(a) Axis data command table

Address (Note)		Content	Setting range
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
1048	005058		
1049	005059	Torque control speed limit value	0 to 1000000000
104 A	00505 A	(0.01r/min)	
104 B	00505 B		

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3ロロ: +140h
(3) Torque command buffer

Address (Note)		Name		Initial value	Units	Setting range

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+80 h$
- Using MR-MC3 $\square \square$: +100h

9.5.5 Control method for interrupt output invalid

Interrupt output invalid is compatible with position control mode only.

POINT

- When the update of the latest position command buffer number is delayed etc. due to the load, etc. on the user program, and the latest position command buffer number and transmit position command buffer number continue to get closer, the same position command details are transmitted to the servo amplifier, and over time, an axis that was in operation, begins to output a command of speed 0 .
- When controlling with interrupt output invalid, set the Interface mode maximum buffer number (parameter No.023F) to 1 or more. When set to 0 , the position command buffer cannot be updated and thus cannot control. (The same position command is transmitted to the servo amplifier)

The following is the control method for when interrupt output is invalidated (ITS is turned off).
The user program updates the latest position command buffer number by checking the latest position command buffer number and transmit position command buffer number at any given time, and setting the position command for each command data update cycle to an empty buffer. At this time, do not change the contents of the buffers between the transmit position command buffer number and latest position command buffer number.
The position board transmits the contents of the next buffer every command data update cycle, and updates the transmit position command buffer number.

Note. When a value outside the range is set to the latest position command buffer number, a latest command buffer number setting error (operation alarm 2D) is output, and it stops.

The following is an example of when the maximum buffer number is 11.
When the buffer status resembles "Example 1: Before buffer set", and there are 5 cycles of position command data that have been calculated by the user program, set the latest position command buffer number to 1 after setting position command data to empty buffers 9 to 11, and buffers 0 to 1 . After processing, the buffer status resembles "Example 2: After buffer set (5 cycles)".
Under the same conditions, when there are 10 cycles of position command data that have been calculated by the user program, set the latest position command buffer number to 4 after setting position command data to buffers 9 to 11, and buffers 0 to 4 . At this time, because there are only 8 empty buffers, 2 cycles of position command data cannot be set. Set these buffers the next time the buffers empty. After processing, the buffer status is becomes similar to "Example 3: After buffer set (10 cycles)".

Example 1: Before buffer set

Example 2: After buffer set (5 cycles)

Example 3: After buffer set (10 cycles)

(1) Procedure for updating position command data

The procedure for updating position command data when interrupt output is invalid is shown below.

POINT

- During servo off always perform a follow up (store current feedback position to the latest position command buffer). Immediately after servo on, the motor may operate at a very high speed.
- When servo ready (RDY) switches from ON to OFF due to an alarm factor etc., turn servo on (SON) OFF. After removing the cause, an unexpected operation may occur.

9.5.6 Control method for interrupt output valid

There is no difference in control method for position control mode, speed control mode and torque control mode when control method for interrupt output is valid. The control method is as follows.
The following is the control method for when interrupt output is validated (ITS is turned on), and the number of command buffers used is 0 .
The position board outputs the command set by the user program for every command data update cycle after the system startup. While ITS is turned on, an interrupt is generated every interrupt output cycle. Have the user program update the command buffer 0 , and read the high speed monitor from the generation of an interrupt (interrupt output cycle - control cycle/2). The command data update cycle, and interrupt output cycle can be set in Interface mode option (parameter No.000F).
In the time from the generation of an interrupt until the completion of the above process, turn on the during user program memory access signal (HMA). When the system program reads the command, it checks the during user program memory access signal (HMA). When the signal is on, the update is regarded as incomplete and does not perform the read, and the command buffer read error counter is incremented. When this happens, the previous position command value is sent to the servo amplifier, and when in position control mode, an immediate stop follows. When in speed control mode or torque control mode, operation continues with the previous values and same command data.
While the position board is reading command and writing high speed monitor, the during system program memory access signal (BMA) is turned on. (When it is not a control cycle where command data is updated, during system program memory access signal (BMA) is not turned on).
When in position control mode and using several buffers in interrupt output valid, perform the same process at every interrupt output as interrupt output invalid. Clear the interrupt signal (IRQ) by writing 0 to the interrupt clear register. Be sure to clear the interrupt signal within the interrupt handler.

Note. For real time processing, the execution of command read, high speed monitor, and communication with servo amplifier within the control cycle are guaranteed processes.

The timing of control differs depending on the settings of the command data update cycle and interrupt output cycle.
Use the table below when referring to the timing charts.

Command data update cycle	Interrupt output cycle	Reference
Control cycle $\times 1$	Control cycle $\times 1$	Refer to (2)(a)
	Control cycle $\times \mathrm{n}(\mathrm{n}=2$ to 16)	(Note 2)
Control cycle $\times 2$	Control cycle $\times 1$	Refer to (3), (Note 1)
	Control cycle $\times 2$	Refer to (2)(b)
	Control cycle $\times \mathrm{n}(\mathrm{n}=3$ to 16)	(Note 2)
Control cycle $\times 3$	Control cycle $\times 1$	Refer to (3), (Note 1)
	Control cycle $\times 2$	Unavailable
	Control cycle $\times 3$	Refer to (2)(b)
	Control cycle $\times \mathrm{n}$ ($\mathrm{n}=4$ to 16)	(Note 2)
Control cycle $\times 4$	Control cycle $\times 1$	Refer to (3), (Note 1)
	Control cycle $\times 2$	Refer to (3), (Note 1)
	Control cycle $\times 3$	Unavailable
	Control cycle $\times 4$ ($\mathrm{n}=4$ to 16)	Refer to (2)(b)
	Control cycle $\times \mathrm{n}(\mathrm{n}=5$ to 16)	(Note 2)
:	:	:
Control cycle $\times \mathrm{m}$$(m=5 \text { to } 16)$	Control cycle $\times n$ (when $n<m$, and m is a factor of n)	Refer to (3), (Note 1)
	Control cycle $\times n$ (when $n<m$, and m is not a factor of n)	Unavailable
	Control cycle $\times n$ (when $n=m)$	Refer to (2)(b)
	Control cycle $\times \mathrm{n}($ when $\mathrm{n}>\mathrm{m}$)	(Note 2)

Note 1. When the update of the command is slower than the control cycle, the servo amplifier in-position signal and current feedback position is still used when importing in a cycle shorter than the command data update is necessary.
2. When command data update cycle < interrupt output cycle, and command is updated for every interrupt output cycle, the timing of the update of command data is still too late. For position control mode, the update of several position command buffers every interrupt output cycle is necessary. Set the maximum buffer number so that (command data update cycle) \times (maximum buffer number +1) > (interrupt output cycle), and perform the control method for interrupt output invalid at the timing of the interrupt generation. For speed control mode or torque control mode, the above setting cannot be used.
(1) Procedure for updating command data

The procedure for storing command data is shown below.
There is no difference in the procedure for position control mode, speed control mode, or torque control mode.

(2) When command data update cycle = interrupt output cycle
(a) When command data update cycle is control cycle $\times 1$, and interrupt out cycle is control cycle $\times 1$.

Note 1. For real time processing, the execution of command read, high speed monitor, and communication with servo amplifier within the control cycle are guaranteed processes.
2. For background processing, the execution of monitor, parameter read/write within the control cycle are not guaranteed processes.
(b) When command data update cycle is control cycle $\times \mathrm{n}$, and interrupt output cycle is control cycle $\times \mathrm{n}$. The following is an example of when command data update cycle $=$ interrupt output cycle $=$ control cycle $\times 2$.

Note 1. For real time processing, the execution of command read, high speed monitor, and communication with servo amplifier within the control cycle are guaranteed processes.
2. Reading of command is not performed for this real time process. (During system program memory access (BMA) does not turn on)
3. For background processing, the execution of monitor, parameter read/write within the control cycle are not guaranteed processes.
(3) When command data update cycle > interrupt output cycle

The following is an example of when command data update cycle is control cycle $\times 2$, and interrupt output cycle is control cycle $\times 1$.

Using the interrupt output cycle as a reference, the user program updates the command buffer during the command data update cycle once only. Make sure the user program occupy period is within (interrupt output cycle) - (control cycle/2).

Note 1. For real time processing, the execution of command read, high speed monitor, and communication with servo amplifier within the control cycle are guaranteed processes.
2. Reading of command is not performed for this real time process. (During system program memory access (BMA) does not turn on)
3. For background processing, the execution of monitor, parameter read/write within the control cycle are not guaranteed processes.

9.5.7 Procedure for switching control mode

The procedure when switching control mode is as follows.
(1) Position control mode

Switch to position control mode is performed with the following procedure.
(a) Check that zero speed (ZSP) is turned ON.
(b) Perform a follow up to update the position command to match the current feedback position.
(c) Input " 0 : Position control mode" to the control mode command.
(d) Check that control mode status is " 0 : Position control mode".
(e) Stop follow up.

API LIBRARY

- To check if zero speed (ZSP) is ON/OFF in (a) above, set SSC_STSBIT_AX_ZSP to the status bit number with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx functions.
- Use the ssclfmRenewLatestBufferEx function to perform follow up in (b) above.
- Use the ssclfmSetControlMode function to set control mode command in (c) above.
- Use the ssclfmGetControlMode function to check control mode status in (d) above.
(2) Speed control mode

Switch to speed control mode is performed with the following procedure.
(a) Check that zero speed (ZSP) is turned ON.
(Not required when switching from torque control mode)
(b) Input "1: Speed control mode" to the control mode command.
(c) Check that control mode status is "1: Speed control mode".

POINT

- Use the value of the torque limit (parameter No.0210, 0211) during speed control mode. Set the value before switching modes.

API LIBRARY

- To check if zero speed (ZSP) is ON/OFF in (a) above, set

SSC_STSBIT_AX_ZSP to the status bit number with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx functions.

- Use the ssclfmSetControlMode function to set control mode command in (b) above.
- Use the ssclfmGetControlMode function to check control mode status in (c) above.
(3) Torque control mode

Switch to torque control mode is performed with the following procedure.
(a) Check that zero speed (ZSP) is turned ON.
(Not required when switching from speed control mode)
(b) Input the speed limit value during torque control mode to the torque control speed limit value.
(c) Input "2: Torque control mode" to the control mode command.
(d) Check that control mode status is " 2 : Torque control mode".

POINT

- Set the torque control speed limit value before switching modes.

API LIBRARY

- To check if zero speed (ZSP) is ON/OFF in (a) above, set

SSC_STSBIT_AX_ZSP to the status bit number with the sscGetStatusBitSignalEx or sscWaitStatusBitSignalEx functions.

- Use the ssclfmTrqSetSpeedLimit function to set torque control speed limit value in (b) above.
- Use the ssclfmSetControlMode function to set control mode command in (c) above.
- Use the ssclfmGetControlMode function to check control mode status in (d) above.

9.5.8 Examples of switching control mode

The switch timing for every setting of position control mode, speed control mode, and torque control mode when using interface mode is as follows.
(1) Position control mode \leftrightarrow speed control mode

POINT

- When switching to position control mode and the travel amount at follow up exceeds 20000000, set position command data to the position command buffer to ensure that the travel amount per cycle is 20000000 or less.
(2) Position control mode \leftrightarrow torque control mode

POINT

- Set the torque control speed limit value before switching control modes.
- When returning to position control mode, switch control modes after checking that zero speed (ZSP) is turned ON. If control mode is switched while zero speed (ZSP) is OFF, control mode switch error (operation alarm 2E, detail No.01) occurs.
- When switching to position control mode and the travel amount at follow up exceeds 20000000, set position command data to the position command buffer to ensure that the travel amount per cycle is 20000000 or less.
(3) Speed control mode \leftrightarrow torque control mode

Note 1. The torque at speed control, and the speed at torque control depends on the system the servo motor is connected to.
2. When returning to speed control during torque control, set the speed command data before switching to torque control. Depending on the speed command data at this time, the torque may increase/decrease due to torque control.

POINT

- Set the torque control speed limit value before switching control modes.

9.6 Interrupt output cycle

When several buffer are used in interrupt valid, and interrupt output for every control cycle is not needed, the cycle of interrupt output can be changed by the interrupt output cycle of Interface mode option (parameter No.000F).
(1) System parameters

(2) Interrupt output cycle

The relationship between interrupt output cycle and control cycle is shown in the table below.

Setting value	0	1	2	3	'	8	-	15
Control cycle 0.88 ms	0.88 ms	1.77 ms	2.66 ms	3.55 ms	* "	8.00 ms	- ${ }^{\prime}$	14.22 ms
Control cycle 0.44 ms	0.44 ms	0.88 ms	1.33 ms	1.77 ms		4.00 ms		7.11 ms
Control cycle 0.22 ms	0.22 ms	0.44 ms	0.66 ms	0.88 ms		2.00 ms		3.55 ms

9.7 Command data update cycle

The update cycle of command can be changed by command data update cycle of Interface mode option (parameter No.000F). Have the user program generate the command for every command data update cycle, and set to command buffer.

Note. Because communication with the servo amplifier is performed every control cycle, the current feedback position and other high speed monitors are updated every control cycle.
(1) System parameters

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function		
000F	*IFMO	Interface mode option	0000h		$\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & \text { OFOFh } \end{aligned}$	0		Command data update cycle Set the cycle for which position command is updated in interface mode. Command data update cycle: Control cycle \times (setting value +1) Example: When command data update cycle is set to 2 and control cycle is 0.88 ms , position command is updated approximately every 2.66 ms .

(2) Command data update cycle

The relationship between command data update cycle and control cycle is shown in the table below.

Setting value	0	1	2	3	' \cdot	8	-	15
Control cycle 0.88 ms	0.88 ms	1.77 ms	2.66 ms	3.55 ms	-	8.00 ms	"	14.22 ms
Control cycle 0.44 ms	0.44 ms	0.88 ms	1.33 ms	1.77 ms		4.00 ms		7.11 ms
Control cycle 0.22 ms	0.22 ms	0.44 ms	0.66 ms	0.88 ms		2.00 ms		3.55 ms

9.8 Event detection function

The event detection function detects the ON/OFF edges of specified status bits. Using this function eliminates the process of getting the status bits for every control cycle, reducing the processing load of the user program. The event detection function outputs the factor of event to the dual port memory when an event (alarm occurrence, change in the status of sensor input) occurs. The user program monitors the factor of event in addition to referring to outputting with factor of interrupt (ITO), and information of outputting with factor of interrupt.
The event detection function can be used at any time, and no settings are required to use it.
For clearing the factor of event, turn ON the interrupt processing high speed complete signal (ITFE). When the position board receives the interrupt processing high speed complete signal (ITFE), it turns OFF the interrupt processing high speed complete signal (ITFE), and clears the factor of event.

Note 1. The outputting with factor of interrupt (ITO), information of outputting with factor of interrupt, and factor of axis event are read by the interrupt handler.
2. The position board gets the commands for every control cycle.
3. ON is performed on the API library side (interrupt handler), and OFF is performed by the position board.

POINT

- When more than one event is detected in the same control cycle, all applicable factors of event turn ON.
- Factors of event are held until interrupt processing high speed complete signal (ITFE) is conducted. However, if the status of a signal changes while it is being held, the last status is retained. (Example. While a factor of event is being held, when an OFF edge is detected after the detection of an ON edge, only the OFF edge is output.)
- A factor of event in the system is the same as a system interrupt factor. Refer to Section 7.6.

API LIBRARY

- Getting the factor of event and turning ON the interrupt processing high speed complete signal are processed by the interrupt thread and device driver that is created when calling the sscIntStart function. Thus processing by user program is unnecessary.
- Use the ssclfmGetEventStatusBits function for getting factor of event.
(1) Factor of axis event

Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	

Address		Content
MR-MC2■	MR-MC3口	
\square	004560	Factor of event Axis 49
	004561	
	004562	
	004563	
	004564	
	004565	
	004566	
	004567	
	004568	Factor of event Axis 50
	004569	
	00456A	
	00456B	
	00456C	
	00456D	
	00456E	
	00456F	
	004570	:
	:	
	0045D7	
	0045D8	Factor of event Axis 64
	0045D9	
	0045DA	
	0045DB	
	0045DC	
	0045DD	
	0045DE	
	0045DF	
	0045E0	Reserved
	:	
	0047DF	

Note. When using MR-MC2םa, 0F60 to OF9F is "Reserved".
（a）Details on factor of event on axis n
The addresses in the table are the addresses for the first axis．For the second axis and after，add the following value for each axis．
－Using MR－MC2ロロ：＋04h
－Using MR－MC3ロロ：＋08h

Address		Bit	Symbol （Note）	Signal name
MR－MC2■	MR－MC3口ロ			
$\begin{gathered} \hline \text { OEEO } \\ \text { to } \\ \text { 0EE3 } \end{gathered}$	0043E0 to 0043 E7	0	iRDYON	Servo ready（ON edge）
		1	ilNPON	In－position（ON edge）
		2	iZSPON	Zero speed（ON edge）
		3	iTLCON	Torque limit effective（ON edge）
		4	iSALMON	Servo alarm（ON edge）
		5	iSWRNON	Servo warning（ON edge）
		6	iABSEON	Absolute position erased（ON edge）
		7	iOALMON	Operation alarm（ON edge）
		8	iMAK1ON	Mark detection 1 （ON edge）
		9	iMAK2ON	Mark detection 2 （ON edge）
		10		
		11		Reserved
		12		
		13	iLSPON	＋side limit switch（ON edge）
		14	iLSNON	－side limit switch（ON edge）
		15	iDOGON	Proximity dog（ON edge）
		16	iRDYOF	Servo ready（OFF edge）
		17	ilNPOF	In－position（OFF edge）
		18	iZSPOF	Zero speed（OFF edge）
		19	iTLCOF	Torque limit effective（OFF edge）
		20	iSALMOF	Servo alarm（OFF edge）
		21	iSWRNOF	Servo warning（OFF edge）
		22	iABSEOF	Absolute position erased（OFF edge）
		23	iOALMOF	Operation alarm（OFF edge）
		24	iMAK1OF	Mark detection 1 （OFF edge）
		25	iMAK2OF	Mark detection 2 （OFF edge）
		26	－	
		27		Reserved
		28		
		29	iLSPOF	＋side limit switch（OFF edge）
		30	iLSNOF	－side limit switch（OFF edge）
		31	iDOGOF	Proximity dog（OFF edge）
		32		
		：		Reserved
		63		

Note．OFF：No factor of event exists．
ON：A factor of event exists．

9.9 Servo off

When axes are moved by an external force during servo off, perform a follow up (refer to the formula below) that updates the position command to align with the movement (feedback position).

\triangle CAUTION

- If a follow up is not performed, the servo amplifiers will align the current command position with the position command at servo on, and the motors may operate at a very high speed.

```
Position command = Feedback position
Machinery command position = Position command - Home position offset
```

Coordinate return processing such as home position return after servo off are not necessary. If servo off is performed during axis operation, a free-run state occurs which is very dangerous. Be sure to servo off after stopping operation.

POINT

- After updating the position command to match the current feedback position, do not servo on until the transmit position command buffer number is the same as the latest position command buffer number.
- When the command data update cycle (control cycle $\times 2$ or more) is set, the time of the command data update cycle set to the position board follow up applies. When the command data update cycle is set, make sure servo on is performed at the next command data update or later.

9.10 Home position return

When startup is performed in interface mode, the operational function home position return cannot be used. Therefore, for an absolute position detection system, use the following method to perform a home position return. For an incremental system, home position set is not necessary. (The position at power supply ON is treated as 0).

1) Update the position command buffer and move to the home position.
2) Check that the in-position signal (INP) is on.
3) Turn ON the home position set command (ZSC).
4) Check that home position set complete (ZSF) turns ON.
5) Read the home position multiple revolution data (parameter 024D), and home position within 1 revolution position (parameter 024E, 024F), and save to the user program.
6) The next time power supply is ON, set the parameters read in 5)
7) The position board will restore the absolute position based on the parameters above.

When home position return is performed by this function, coordinate systems such as the current command position and current feedback position are in the same state before home position return and do not change until the power supply is turned OFF/ON again. Therefore after home position return, perform a home position offset for position commands at home position return as shown in the formula below.

$$
\text { Position command }=\text { Machinery command position }+ \text { Home position offset }
$$

- Position command : Position provided to the position board. (pulse)
- Machinery command position : The actual position to move the machine to. (pulse)
- Home position offset : The difference between machinery command position and position command. (pulse)

When the home position coordinates are set by parameters, the absolute position is restored so that the place of set home position is the same as the home position coordinates.

When the home position set command turns on during in-position signal (INP) off, home position set error (ZSE) turns on, and home position return is not completed.
Also, when position command exceeds 32 bit or motor exceeds ± 32767 revolutions when moving from the home position in an absolute position detection system, the current command position cannot be normally restored at power supply on. Use absolute position detection system within ± 32767 revolutions and with position commands within 32 bit.

（1）Axis data command／status bit
（a）Axis data command bit

Address（Note）		Bit	Symbol	Signal name	When in tandem drive
MR－MC2 $\square \square$	MR－MC3 $\square \square$				
100A	00500A	0		Reserved	
		1			
		2			
		3			
		4	ZSC	Home position set command	
		5		Reserved	
		6			
		7			

Note．The addresses in the table are the addresses for the first axis．For the second axis and after，add the following value for each axis．
－Using MR－MC2口■：＋C0h
－Using MR－MC3■ロ：＋140h
1）Details on axis data command bit

Symbol	Signal name		Function details	
	Function	Operation		
ZSC	Home position set command	Commands home position set．	When home position set command（ZSC）is turned on，the current position is set as home position． This is used when absolute position detection system is valid．	

（b）Axis data status bit

Address（Note）		Bit	Symbol	Signal name	When in tandem drive
MR－MC2 $\square \square$	MR－MC3 $\square \square$				
106A	0050AA	0		Reserved	
		1			
		2			
		3			
		4	ZSF	Home position set complete	
		5	ZSE	Home position set error	
		6		Reserved	
		7			

Note．The addresses in the table are the addresses for the first axis．For the second axis and after，add the following value for each axis．
－Using MR－MC2ロロ：＋C0h
－Using MR－MC3■a：＋140h
1）Details on axis data status bit

Symbol	Signal name	Function details	
	Function	Operation	
ZSF	Home position set complete	Notifies the home position set is complete．	＜Conditions for turning ON＞ Home position set is completed． ＜Conditions for turning OFF＞ Home position set command（ZSC）is turned off．
ZSE	Home position set error	Notifies the home position set failed．	＜Conditions for turning ON＞ • During an operation alarm． －During servo off（including servo alarm）． • During test mode． • In－position signal is off．
＜Conditions for turning OFF＞			
Home position set command（ZSC）is turned off．			

9.11 Coordinate management

This section shows an example of how to approach coordination management.

9.11.1 Incremental system

When using servo amplifiers with incremental system setting, the current command position (position command) when SSCNET connection is restored is 0 . Afterwards, a coordinate system value for a position of 0 when the SSCNET is connected needs to be used for the position command that the user program applies to position board until connecting to SSCNET again. In many cases, the actual home position of the machine and the home position of the position command (position when SSCNET is connected) are different, therefore, the position command is calculated using the machinery command position and home position offset with the following formula.

Position command = Machinery command position + Home position offset
(1) When connected to SSCNET

Because the current command position (position command) when SSCNET connection is restored is 0 , set home position offset to 0 .
Until home position is determined, machinery command position is undefined. Use the position that is referred to when connected to SSCNET $(=0)$ as the machinery command position.

(2) Home position return

When home position return is required, move to home position on the user program side. The home position of the position command (distance from position when connected to SSCNET to home position) is the home position offset after home position return.
In an incremental system, home position set for position board is not required.

(3) After home position return

Calculate the position command (=machinery command position + home position offset) by using the home position offset determined at home position return.

9.11.2 Absolute position system

When using servo amplifiers with absolute position system setting, the absolute position restored when connected to SSCNET is a position calculated from the "home position coordinates", "home position within 1 revolution", and "home position multiple revolution data" set to the parameters. Afterwards, a coordinate system value for when the SSCNET is connected needs to be used for the position command that the user program applies to position board until connecting to SSCNET again.
Similar to an incremental system, the coordinate system does not change after home position return operation (after home position set). As a result, the actual home position of the machine and the home position of the position command (position when SSCNET is connected) is different, therefore, the position command is calculated using the machinery command position and home position offset with the following formula.

> Position command = Machinery command position + Home position offset
(1) When connected to SSCNET (home position is not determined)

Because the current command position (position command) when SSCNET connection is restored is 0 , set home position offset to 0 .
Until home position is determined, machinery command position is undefined. Use the position that is referred to when connected to SSCNET $(=0)$ as the machinery command position.

(2) Home position return

Move to home position on the user program side, execute home position set, and determine the home position. The home position of the position command (distance from position when connected to SSCNET to home position) is the home position offset after home position return.

(3) After home position return

Position board also operates with the same coordinate system as when connected to SSCNET after home position return. As a result, the machinery command position and position command deviate by the difference between the new coordinate system and the coordinate system when connected to SSCNET. Set the amount of deviation to the home position offset.

Note. 0 position is the position in the coordinate system where machinery command position is 0 when restoring absolute position, or after home position return. (When the home position coordinate is 0 , this is the position after performing home position return)

Except for when home position coordinate is 0 , the formula for calculating home position offset is as follows.

$$
\text { Home position offset }=\text { Position command at home position return }- \text { Home position coordinate }
$$

(4) After restoring absolute position

After restoring the home position, the machinery command position and position command are equivalent, thus set home position offset to 0 .

Note. 0 position is the position in the coordinate system where machinery command position is 0 when restoring absolute position, or after home position return. (When the home position coordinate is 0 , this is the position after performing home position return)

9.12 Precautions

When performing interface mode the following precautions apply.
(1) For the setting value of the position command buffer, ensure that the difference between the previous command value and the current command value is no more than 20000000. When the difference between the previous command value and the current command value exceeds 20000000, command data error (operation alarm A7, detail No.03) occurs, followed by an immediate stop.
(2) If a value outside of the range is input to the speed command buffer, command data error (operation alarm A7, detail No.01) occurs. The speed command value becomes $0[0.01 \mathrm{r} / \mathrm{min}]$, followed by an immediate stop.
(3) If a value outside of the range is input to the torque command buffer, command data error (operation alarm A7, detail No.02) occurs. The torque command value becomes the value before the change.

10. TABLE MAP

10.1 Table list

POINT

- Do not write to reserved areas.
- The start number in the point table for each axis can be designated using point number offset.

10.1.1 MR-MC2 $\square \square$ table

Dual port memory							
0000h	System information table (992 bytes)						
03E0h	System command/status table (224 bytes)						
04C0h	Outputting information table with factor of interrupt (16 bytes)						
04DOh	Interrupt factor table for each axis (192 bytes)						
0590h	System interrupt table (32 bytes)					Command/status table	
05B0h	Interrupt factor table for each station (16 bytes)				1000h	Axis 1 (192 bytes)	Command
05COh	Reserved (272 bytes)				10COh	Axis 2	Command
06D0h	System configuration table (176 bytes)					(192 bytes)	Status
					1180h	Axis 3	Command
0780h	Reserved (1888 bytes)					(192 bytes)	Status
OEEOh	Factor of event table (192 bytes)				1240h	Axis 4	Command
						(192 bytes)	Status
OFAOh	Details on factor of pass position interrupt (64 bytes)				1300h	Axis 5 (192 bytes)	$\begin{array}{\|c\|} \hline \text { Command } \\ \hline \text { Status } \\ \hline \end{array}$
OFEOh	Details on factor of other axes start interrupt (32 bytes)				13C0h	Axis 6 (192 bytes)	$\begin{array}{\|c\|} \hline \text { Command } \\ \hline \text { Status } \end{array}$
1000h	Command/status table for each axis (7680 bytes)				1480h	Axis 7 (192 bytes)	Command Status
2E00h	(1536 bytes)				1540h	Axis 8	Command
3400h	RIO command/status table (1024 bytes)					(192 bytes)	Status
		RIO command/status table			1600h	Axis 9	Command
3800h	Reserved (112 bytes)					(192 bytes)	Status
3870h	Servo parameter change number table (J4) (1024 bytes)	3400h	Station 1 (128 bytes)	Command	16C0h	Axis 10 (192 bytes)	Command
39F0h	Reserved (5552 bytes)	3480h	Station 2 (128 bytes)	Command Status	1780h	Axis 11 (192 bytes)	$\begin{array}{\|c\|} \hline \text { Command } \\ \hline \text { Status } \\ \hline \end{array}$
4FAOh	Point number offset table (80 bytes)	3500h	Station 3 (128 bytes)	Command Status			Command
4FFOh	Reserved (16 bytes)	3580h	Station 4 (128 bytes)	Command	2740h	Axis 32 (192 bytes)	$\begin{array}{\|c\|} \hline \text { Command } \\ \hline \text { Status } \\ \hline \end{array}$
		3600h	Reserved (512 bytes)		2800h	Reserved (1536 bytes)	

10.1.2 MR-MC3 $\square \square$ table

10.2 System information table

Address		Content		
MRMC2				
0000	000000	CH number		
0001	000001			
0002	000002	Number of lines		
0003	000003			
0004	000004	Control cycle status	0001h: 0.88ms	
0005	000005		0002h: 0.44 ms $0003 \mathrm{~h}: 0.22 \mathrm{~ms}$	
0006	000006	Reserved		
0007	000007			
0008	000008	SSCNET communication method	0: Not connected 2: SSCNET III/H	
0009	000009			
000A	00000A	Reserved		
000B	00000B			
000C	00000C			
000D	00000D			
000E	00000E			
000F	00000F			
0010	000010	Interrupt output cycle		
0011	000011			
0012	000012	Command data update cycle		
0013	000013			
0014	000014	Operation cycle current time		
0015	000015			
0016	000016	Operation cycle maximum time		
0017	000017			
0018	000018	Operation cycle over time		
0019	000019			
001A	00001A	Reserved		
001B	00001B			
001C	00001C			
001D	00001D			
001E	00001E			
001F	00001F			
0020	000020			
0021	000021			
:	:			
002E	00002E			
002F	00002F			
	000030			
	000031			
	:			
	0000BE			
	0000BF			

Address		Content
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \\ \hline \end{array}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \\ \hline \end{gathered}$	
	0000C0	Serial number
	0000C1	
	0000C2	
	0000C3	
	0000C4	
	0000C5	
	0000C6	
	0000C7	
	0000C8	
	0000C9	
	0000CA	
	0000CB	
	0000CC	
	0000CD	
	0000CE	
	0000CF	
0030	0000D0	System program software version
0031	0000D1	
0032	0000D2	
0033	0000D3	
0034	0000D4	
0035	0000D5	
0036	0000D6	
0037	0000D7	
0038	0000D8	
0039	0000D9	
003A	0000DA	
003B	0000DB	
003C	0000DC	
003D	0000DD	
003E	0000DE	
003F	0000DF	
0040	0000E0	Reserved
0041	0000E1	
0042	0000E2	
0043	0000E3	
0044	0000E4	
0045	0000E5	
0046	0000E6	
:	:	
005E	0000FE	
005F	0000FF	

Address		Content	Address		Content
MR- MC2	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$		MR- MC2	MR- MC3	
0060	000100	Servo amplifier software version (Axis 1)		000500	Reserved
0061	000101			:	
0062	000102			0008FF	
0063	000103		0360	000900	Remote I/O software version (Station 1)
0064	000104		0361	000901	
0065	000105		0362	000902	
0066	000106		0363	000903	
0067	000107		0364	000904	
0068	000108		0365	000905	
0069	000109		0366	000906	
006A	00010A		0367	000907	
006B	00010B		0368	000908	
006C	00010C		0369	000909	
006D	00010D		036A	00090A	
006E	00010E		036B	00090B	
006F	00010F		036C	00090C	
0070	000110	Servo amplifier software version (Axis 2)	036D	00090D	
:	:		036E	00090E	
007F	00011F		036F	00090F	
0080	000120	Servo amplifier software version (Axis 3)	0370	000910	Remote I/O software version (Station 2)
:	:		:	:	
008F	00012F		037F	00091F	
0090	000130	Servo amplifier software version (Axis 4)	0380	000920	Remote I/O software version (Station 3)
:	:		:	:	
009F	00013F		038F	00092F	
00A0	000140		0390	000930	Remote I/O software version (Station 4)
:	:		:	:	
024F	0002EF		039F	00093F	
0250	0002F0	Servo amplifier software version (Axis 32)	03A0	000940	Remote I/O software version (Station 5) (Note)
:	:		:	:	
025F	0002FF		03AF	00094F	
0260	000300	Servo amplifier software version (Axis 33) (Note)	03B0	000950	
:	:		:	:	
026F	00030F		03CF	00096F	
0270	000310		03D0	000970	Remote I/O software version (Station 8) (Note)
:	:		:	:	
034F	0003EF		03DF	00097F	
0350	0003F0	Servo amplifier software version (Axis 48) (Note)		000980	Remote I/O software version (Station 9)
:	:			:	
035F	0003FF			00098F	
	000400	Servo amplifier software version (Axis 49)		000990	:
	:			:	
	00040F			0009EF	
	000410			0009F0	Remote I/O software version (Station 16)
	:			:	
	0004EF			0009FF	
	0004F0	Servo amplifier software version (Axis 64)		000A00	Reserved
	:			:	
	0004FF			000AFF	

Note. When using MR-MC2 $\square \square, 0260$ to 035F, and 03A0 to 03DF are "Reserved".

10.3 System command/status table

10.3.1 System commands

Address		Content
MR－ MC2口ロ	MR－ MC3口ロ	
042A	000B5A	Reserved
042B	000B5B	
042C	000B5C	
042D	000B5D	
042E	000B5E	
042F	000B5F	
0430	000B60	
0431	000B61	
0432	000B62	
0433	000B63	
0434	000B64	Disconnection axis No．
0435	000B65	
0436	000B66	Reserved
0437	000B67	
0438	000B68	
0439	000B69	
043A	000B6A	
043B	000B6B	
043C	000B6C	
043D	000B6D	
043E	000B6E	
043F	000B6F	

Address		Content
MR－ MC2	MR－ MC3	
0440	000B70	Reserved
0441	000B71	
0442	000B72	
0443	000B73	
0444	000B74	Alarm history read page number
0445	000B75	
0446	000B76	Alarm history initialization ID
0447	000B77	
0448	000B78	System startup time
0449	000B79	
044A	000B7A	
044B	000B7B	
044C	000B7C	
044D	000B7D	
044E	000B7E	
044F	000B7F	
	000B80	Reserved
	：	
	000BDF	

（1）System command code

System command code	Content
0000	Initial value
0003	Parameter initialization
0004	Flash ROM parameter reading
000 A	Start system startup

（2）Reboot ID

Reboot ID	Remarks
1EA5	Set when rebooting software．

（3）Flash ROM transfer ID（Flash ROM initialization ID）

Flash ROM transfer ID （Flash ROM initialization ID）	Remarks
A51E	Set when transferring data to flash ROM．
A55A	Set when initializing flash ROM．

(4) Command bit

For each bit, 0 stands for invalid and 1 stands for valid.

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \\ \hline \end{array}$	MR- MC3			
03E0	000B00	0	ITE	Interrupt processing complete
		1	ITS	Interrupt output valid
		2	-	Reserved
		3		Reserved
		4	HMA	During user program memory access
		5		
		6	SPWED1	Reserved
		7		

Address		Bit	Symbol	Signal name
MRMC2	MRMC3 \square			
03E1	000B01	0	SMPS	Sampling start
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR- MC2 \square	MRMC3口			
03E2	000B02	0	SEMI	Software forced stop (Note)
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MRMC2 \square	MR- MC3			
03E3	000B03	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MRMC2 \square	MRMC3口 \square			
03E4	000B04	0	ITFE	Interrupt processing high speed complete
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MRMC2 \square	MRMC3			
03E5	000B05	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR- MC2	MR- MC3 $\square \square$			
03E6	000B06	0	ASYN1	Non-synchronous command (group 1)
		1	ASYN2	Non-synchronous command (group 2)
		2	ASYN3	Non-synchronous command (group 3)
		3	ASYN4	Non-synchronous command (group 4)
		4	ASYN5	Non-synchronous command (group 5)
		5	ASYN6	Non-synchronous command (group 6)
		6	ASYN7	Non-synchronous command (group 7)
		7	ASYN8	Non-synchronous command (group 8)

Address		Bit	Symbol	Signal name
MRMC2	MRMC3			
03E7	000B07	0 1 2 3 4 5 6 7		Reserved

Note. Software forced stop is a normally-open contact (an external forced stop is a normally-closed contact). When the signal is turned on, the status becomes forced stop status. This is different than an external forced stop, in that it is performed through software processing.

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
03E8	000B08	0	RBR	Reboot preparation
		1	RBS	Execution of reboot
		2	CRST	System alarm reset
		3	，	Reserved
		4	SMON	Monitor command
		5	SMONR	Monitor latch command
		6		Reserved
		7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3口 } \end{gathered}$			
03E9	000B09	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
03EA	000B0A	0	LOGC	Log command
		1	LOGR	Reading of log data command
		2	－	Reserved
		3	LOGI	Log data initialization command
		4	$\mathrm{Sc}^{\text {OCMC }}$	Reserved
		5	OCMC	Operation cycle monitor clear
		6		Reserved
		7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
03EB	000B0B	0	RCC	Reconnection command
		1		Reserved
		3	CCC	Disconnection command
		4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
03EC	000B0C	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
03ED	000B0D	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3口 } \end{gathered}$			
03EE	000B0E	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
03EF	000B0F	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \hline \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
03F0	000B10	0	SPWRT	Parameter write command
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2口ロ } \\ \hline \end{array}$	MR－ MC3口ロ			
03F1	000B11	0	SPRD	Parameter read command
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array}$	MR－ MC3 \square			
03F2	000B12	0	SMPSW	Sampling setting write command
		1		Reserved
		2		
		3		
		4		Sampling setting read command
		5		Reserved
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3口			
03F3	000B13	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \\ \hline \end{array}$	MR－ MC3口ロ			
03F4	000B14	0		Reserved
		1		
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3 \square			
03F5	000B15	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2口ロロ } \\ \hline \end{array}$	MR－ MC3口			
03F7	000B17	0	ALHR	Alarm history read command
		1	－	Reserved
		2	ALHI	Alarm history initialization command
		3		Reserved
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \\ \hline \end{array}$	MR－ MC3			
03F8	000B18	0		Reserved
		1		
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
03F9	000B19	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
03FA	000B1A	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3 $\square \square$			
03FB	000B1B	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MRMC2 \square	MRMC3口ロ			
03FC	000B1C	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MRMC2	MRMC3			
03FD	000B1D	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \\ \hline \end{array}$	$\begin{array}{r} \text { MR- } \\ \text { MC3 } \square \end{array}$			
03FE	000B1E	0		Reserved
		1		
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MRMC2	MR- MC3			
03FF	000B1F	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR- MC2	MR- MC3			
	$\begin{aligned} & \text { 000B20 } \\ & \text { to } \\ & \text { 000B2F } \end{aligned}$	0 1 2 3 4 5 6 7		Reserved

10.3.2 System status

Address		Content
MRMC2	MR- MC3	
0470	000C10	System status code
0471	000C11	
0472	000C12	Watchdog timer
0473	000C13	
0474	000C14	System alarm number
0475	000C15	
0476	000C16	Specific system alarm number
0477	000C17	
0478	000C18	Command buffer read error counter
0479	000C19	
047A	000C1A	Reserved
047B	000C1B	
047C	000C1C	
047D	000C1D	
047E	000C1E	
047F	000C1F	
0480	000C20	Monitor number 1
0481	000C21	
0482	000C22	Monitor number 2
0483	000C23	
0484	000C24	Monitor data 1
0485	000C25	
0486	000C26	Monitor data 2
0487	000C27	
0488	000C28	Parameter write number 1
0489	000C29	
048A	000C2A	Parameter write data 1
048B	000C2B	
048C	000C2C	Parameter write number 2
048D	000C2D	
048E	000C2E	Parameter write data 2
048F	000C2F	
0490	000C30	Parameter read number 1
0491	000C31	
0492	000C32	Parameter read data 1
0493	000C33	
0494	000C34	Parameter read number 2
0495	000C35	
0496	000C36	Parameter read data 2
0497	000C37	
0498	000C38	Log data read page number
0499	000C39	
049A	000C3A	Number of valid log data events
049B	000C3B	
049C	000C3C	Reserved
049D	000C3D	
049E	000C3E	
049F	000C3F	

Address		Content
MR－ MC2口	MR－ MC3口	
04A0	000C40	Reserved
04A1	000C41	
04A2	000C42	
04A3	000C43	
04A4	000C44	Error code of reconnection／disconnection
04A5	000C45	
04A6	000C46	Reserved
04A7	000C47	
04A8	000C48	
04A9	000C49	
04AA	000C4A	
04AB	000C4B	
04AC	000C4C	
04AD	000C4D	
04AE	000C4E	
04AF	000C4F	

（1）System status code

System status code	Content
0000	During system preparation
0001	System preparation completion
0003	Parameter initialization completion
0004	Flash ROM parameter read completion
0005	Flash ROM parameter read error
0009	Waiting for SSCNET response
000 A	During system running
000 F	Rebooting
EDロם	System error

Note．Notification items when a system error（E $\square \square \square$ to）occurs．
－Forced stop is executed for servo amplifier．However，depending on the system status，there are cases where forced stop is not executed．
－System errors（E400h to）are SSCNET communication errors．Confirm the status of the servo amplifiers as well as the SSCNETIII cable．For details，refer to Section 13．6．
（2）Error code of reconnection／disconnection

Error code of reconnection／disconnection	Content
0000	No error
0001	Disconnected axis specification error
0002	Reconnected axis No．duplication error
0003	Reconnected axis type code error
0004	Reconnection error during communication error
0006	Communication cycle error

（3）Status bit
For each bit， 0 stands for invalid and 1 stands for valid．

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3			
0450	000BE0	0	ITO	Outputting with factor of interrupt
		1	IITO	During interface mode interrupt valid
		2	EVDO	Event detection enabled
		3	HRIF	During highly response I／F valid
		4	BMA	During system program memory access
		5	PRINF	Continuous operation to torque control compatible information
		6	C^{2}	Reserved
		7	IFMO	In interface mode

Address		Bit	Symbol	Signal name
MR－ MC2	$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC3口ロ } \end{array}$			
0451	000BE1	0	SMPW	Waiting for sampling trigger
		1	SMPO	Sampling is being performed
		2	SMPF	Sampling is complete
		3	SMPE	Sampling error
		4	$>$	Reserved
		5	AHINF	Alarm history information
		6		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
0452	000BE2	0	EMIO	During forced stop
		1	STO	Reserved
		2	TSTO	In test mode（Note）
		3		
		4		Reserved
		5		
		6	EMID	External forced stop disabled
		7	${ }^{\text {c }}$	Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3口			
0453	000BE3	0		Reserved
		1		
		2		
		3		
		4		
		5		
		6	IPCH	Changeable interpolation group
		7		Reserved

Note．If test mode is selected from MR Configurator2，status becomes test mode in operation（TSTO）．The following items concerning control exist during test mode．
－Operation from the position board（such as automatic operation）cannot be performed．
－In order to perform operations using the position board，the system must be restarted．

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
0454	000BE4	0		Reserved
		1		
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3 \square			
0455	000BE5	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3口			
0456	000BE6	0	ASYO1	In non－synchronous mode （group 1）
		1	ASYO2	In non－synchronous mode （group 2）
		2	ASYO3	In non－synchronous mode （group 3）
		3	ASYO4	In non－synchronous mode （group 4）
		4	ASYO5	In non－synchronous mode （group 5）
		5	ASYO6	In non－synchronous mode （group 6）
		6	ASYO7	In non－synchronous mode （group 7）
		7	ASYO8	In non－synchronous mode （group 8）

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array}$	MR－ MC3口ロ			
0457	000BE7	0	SYEO1	Synchronizing（group 1）
		1	SYEO2	Synchronizing（group 2）
		2	SYEO3	Synchronizing（group 3）
		3	SYEO4	Synchronizing（group 4）
		4	SYEO5	Synchronizing（group 5）
		5	SYEO6	Synchronizing（group 6）
		6	SYEO7	Synchronizing（group 7）
		7	SYEO8	Synchronizing（group 8）

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3 \square			
0458	000BE8	0	RBOK	Reboot preparation complete
		1	RBNG	Reboot preparation error
		2	CALM	Current system alarm
		3	－	Reserved
		4	SMOUT	Monitor output
		5	SMRCH	Monitor latch
		6	SMER1	Monitor number error 1
		7	SMER2	Monitor number error 2

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
0459	000BE9	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3口ロ			
045A	000BEA	0	LOGO	Log operation being performed
		1	LOGRF	Reading of log data complete
		2	LOGRE	Reading of log data error
		3	LOGIF	Log data initialization is complete
		4	LOGIE	Log data initialization error
		5	OCMCO	Operation cycle monitor clear
		6	OCME	Operation cycle alarm
		7	OCMW	Operation cycle warning

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3			
045B	000BEB	0	RCO	During reconnection processing
		1	RCF	Reconnection complete
		2	RCE	Reconnection error
		3	CCO	During disconnection processing
		4	CCF	Disconnection complete
		5	CCE	Disconnection error
		6		
		7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3			
045C	000BEC	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2口 } \square \end{gathered}$	MR－ MC3口ロ			
045D	000BED	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3口ロ			
045E	000bEE	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
045F	000BEF	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
0460	000BF0	0	SPWFIN1	Parameter write complete 1
		1	SPWEN1	Parameter number error 1
		2	SPWED1	Parameter data out of bounds 1
		3	C^{-}	Reserved
		4	SPWFIN2	Parameter write complete 2
		5	SPWEN2	Parameter number error 2
		6	SPWED2	Parameter data out of bounds 2
		7	${ }^{\text {r }}$	Reserved

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array}$	MR－ MC3口ロ			
0461	000BF1	0	SPRFIN1	Parameter read complete 1
		1	SPREN1	Parameter number error 1
		2	SPRFIN2	Parameter read complete 2
		3	SPREN2	Parameter number error 2
		4		Reserved
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3口ロ			
0462	000BF2	0	SWFIN	Sampling setting write complete
		1	SWEN	Sampling setting number error
		2	SWED	Sampling setting data out of bounds
		3	I	Reserved
		4	SRFIN	Sampling setting read complete
		5	SREN	Sampling setting number error
		6	－	
		7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3			
0463	000BF3	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
0464	000BF4	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	$\begin{gathered} \text { MR- } \\ \text { MC3口口 } \end{gathered}$			
0465	000BF5	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MRMC2 \square	MRMC3 \square			
0466	000BF6	0	FROK	Flash ROM transfer preparation complete
		1	FRNG	Flash ROM transfer preparation error
		2	FSOK	Flash ROM transfer complete
		3	FSNG	Flash ROM transfer error
		4	FIROK	Flash ROM initialization preparation complete
		5	FIRNG	Flash ROM initialization preparation error
		6	FIOK	Flash ROM initialization complete
		7	FING	Flash ROM initialization error

Address		Bit	Symbol	Signal name
MRMC2	MRMC3			
0467	000BF7	0	ALHRF	Alarm history read complete
		1	ALHRE	Alarm history read error
		2	ALHIF	Alarm history initialization complete
		3	ALHIE	Alarm history initialization error
		4 5		Reserved
		6		

Address		Bit	Symbol	Signal name
MRMC2	MRMC3			
0468	000BF8	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR- MC2	MR- MC3			
0469	000BF9	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MRMC2 \square	MR- MC3			
046A	000BFA	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MRMC2	MR- MC3			
046B	000BFB	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \\ \hline \end{array}$	$\begin{array}{r} \text { MR- } \\ \text { MC3 } \\ \hline \end{array}$			
046C	000BFC	0		Reserved
		1		
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MRMC2	MR- MC3			
046D	000BFD	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MRMC2 \square	MRMC3 \square			
046E	000BFE	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MRMC2	MRMC3			
046F	000BFF	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	MR- MC3			
	000C00 to 000C0F	0 1 2 3 4 5 6 7		Reserved

10.4 Factor of interrupt

10.4.1 Information of outputting with factor of interrupt

When an interrupt occurs, the bit corresponding to the axis No., station No., or system which is the factor of the interrupt turns on.

Address		Content	Remarks
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
04C0	002000	Outputting with factor of axis interrupt 1	Axis 1 (bit 0) to axis 32 (bit 31)
04C1	002001		
04C2	002002		
04C3	002003		
04C4	002004	Outputting with factor of axis interrupt 2 (Note)	Axis 33 (bit 0) to axis 64 (bit 31)
04C5	002005		
04C6	002006		
04C7	002007		
	002008	Reserved	
	002009		
	00200A		
	00200B		
	00200C		
	00200D		
	00200E		
	00200F		
04C8	002010	Outputting with factor of station interrupt (Note)	Station 1 (bit0) to station 4 (bit3) MC200 Station 1 (bit0) to station 16 (bit15) MC300
04C9	002011		
	002012		
	002013		
04CA	002014	Outputting with factor of system interrupt	System (bit 0)
04CB	002015	Reserved	
04CC	002016		
04CD	002017		
04CE	002018		
04CF	002019		
	00201A		
	00201B		
	00201C		
	00201D		
	00201E		
	00201F		

[^9]10.4.2 Factor of axis interrupt

Address		Content	Address		Content
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$		$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$	
04D0	002020	Factor of interrupt Axis 1	04FC	00204C	Factor of interrupt Axis 12
04D1	002021		04FD	00204D	
04D2	002022		04FE	00204E	
04D3	002023		04FF	00204F	
04D4	002024	Factor of interrupt Axis 2	0500	002050	Factor of interrupt Axis 13
04D5	002025		0501	002051	
04D6	002026		0502	002052	
04D7	002027		0503	002053	
04D8	002028	Factor of interrupt Axis 3	0504	002054	:
04D9	002029		.	.	
04DA	00202A		.	.	
04DB	00202B		054B	00209B	
04DC	00202C	Factor of interrupt Axis 4	054C	00209C	Factor of interrupt Axis 32
04DD	00202D		054D	00209D	
04DE	00202E		054E	00209E	
04DF	00202F		054F	00209F	
04E0	002030	Factor of interrupt Axis 5	0550	0020A0	Factor of interrupt Axis 33 (Note)
04E1	002031		0551	0020A1	
04E2	002032		0552	0020A2	
04E3	002033		0553	0020A3	
04E4	002034	Factor of interrupt Axis 6	0554	0020A4	:
04E5	002035		.	.	
04E6	002036		.	.	
04E7	002037		058B	0020DB	
04E8	002038	Factor of interrupt Axis 7	058C	0020DC	Factor of interrupt Axis 48 (Note)
04E9	002039		058D	0020DD	
04EA	00203A		058E	0020DE	
04EB	00203B		058F	0020DF	
04EC	00203C	Factor of interrupt Axis 8		0020E0	Factor of interrupt Axis 49
04ED	00203D			0020E1	
04EE	00203E		-	0020E2	
04EF	00203F		,	0020E3	
04F0	002040	Factor of interrupt Axis 9	,	0020E4	:
04F1	002041		,		
04F2	002042			:	
04F3	002043			00211B	
04F4	002044	Factor of interrupt Axis 10	1	00211C	Factor of interrupt Axis 64
04F5	002045			00211D	
04F6	002046			00211E	
04F7	002047			00211F	
04F8	002048	Factor of interrupt Axis 11		002120	Reserved
04F9	002049				
04FA	00204A			.	
04FB	00204B			00221F	

Note. When using MR-MC2 $\square \square, 0550$ to 058F is "Reserved".
(1) Details on factor of interrupt on axis n

The addresses in the table are the addresses for the first axis. For the second axis and after, add +04 h for each axis.

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{gathered} \text { 04D0 } \\ \text { to } \\ 04 \mathrm{D} 3 \end{gathered}$	$\begin{gathered} 002020 \\ \text { to } \\ 002023 \end{gathered}$	0	iRDY	Servo ready (interrupt)
		1	ilNP	In-position (interrupt)
		2	iZSP	Zero speed (interrupt)
		3	iZPAS	Passed Z-phase (interrupt)
		4	iTLC	Torque limit effective (interrupt)
		5	iSALM	Servo alarm (interrupt)
		6	iSWRN	Servo warning (interrupt)
		7	iABSE	Absolute position erased (interrupt)
		8	iOP	During operation (interrupt)
		9	iCPO	Rough match (interrupt)
		10	iPF	Positioning complete (interrupt)
		11	iZP	Home position return complete (interrupt)
		12	iSMZ	During smoothing of stopping (interrupt)
		13	iOALM	Operation alarm (interrupt)
		14	iOPF	Completion of operation (interrupt)
		15	iPSW	Position switch (interrupt)
		16	iGAINO	During gain switching (interrupt)
		17	iFCLSO	Fully closed loop control changing (interrupt)
		18	iTLSO	Selecting torque limit (interrupt)
		19	iSPC	During PID control (interrupt)
		20	-	Reserved
		21	iMAK1	Mark detection 1 (interrupt)
		22	iMAK2	Mark detection 2 (interrupt)
		23	iPRSMO	During continuous operation to torque control (interrupt)
		24	ilWT	Interference check standby (interrupt)
		25	iSINP	Servo amplifier in-position (interrupt)
		26		Reserved
		27		
		28		
		29		
		30		
		31		

Note. OFF: No factor of interrupt exists.
ON: A factor of interrupt exists.
10.4.3 System interrupt factors

Address		Content
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$	
0590	002220	System interrupt factors
0591	002221	
0592	002222	Reserved
0593	002223	
	002224	
	002225	
	002226	
	002227	
0594	002228	Factor of other axes start interrupt MC200 Factor of other axes start interrupt 1
0595	002229	
0596	00222A	
0597	00222B	
	00222C	Factor of other axes start interrupt 2
	00222D	
	00222E	
	00222F	
	002230	Reserved
	002231	
	002232	
	002233	
	002234	
	002235	
	002236	
	002237	

Address		Content
MR- MC2	MR- MC3	
0598	002238	Factor of pass position interrupt 1
0599	002239	
059A	00223A	
059B	00223B	
059C	00223C	Factor of pass position interrupt 2
059D	00223D	
059E	00223E	
059F	00223F	
	002240	Factor of pass position interrupt 3
	002241	
	002242	
	002243	
	002244	Factor of pass position interrupt 4
	002245	
	002246	
	002247	
05A0	002248	Reserved
:	:	
05AF	00229F	

(1) Details on factor of system interrupt

Address		Bit	Symbol (Note)	Signal name
MR-MC2■■	MR-MC3 $\square \square$			
$\begin{gathered} 0590 \\ \text { to } \\ 0591 \end{gathered}$	$\begin{gathered} 002220 \\ \text { to } \\ 002221 \end{gathered}$	0	iSYSE	System error (interrupt)
		1	iCALM	System alarm (interrupt)
		2	iEMIO	During forced stop (interrupt)
		3		Reserved
		4		
		5		
		6		
		7	iOCME	Operation cycle alarm (interrupt)
		8	iOASF	Outputting with factor of other axes start interrupt (interrupt)
		9	iPPI	Outputting with factor of pass position interrupt (interrupt)
		10		Reserved
		11		
		12		
		13		
		14		
		15		

Note. OFF: No factor of interrupt exists.
ON: A factor of interrupt exists.
(2) Factor of other axes start interrupt

When the outputting with factor of other axes start interrupt (iOASF) is on, the bit corresponding to other axes start data No. turns on.
(a) Factor of other axes start interrupt MC200 /Factor of other axes start interrupt 1 MC300

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{gathered} 0594 \\ \text { to } \\ 0597 \end{gathered}$	$\begin{aligned} & 002228 \\ & \text { to } \\ & 00222 B \end{aligned}$	0	iOAS1	Other axes start data 1 (interrupt)
		1	iOAS2	Other axes start data 2 (interrupt)
		2	iOAS3	Other axes start data 3 (interrupt)
		3	iOAS4	Other axes start data 4 (interrupt)
		4	iOAS5	Other axes start data 5 (interrupt)
		5	iOAS6	Other axes start data 6 (interrupt)
		6	iOAS7	Other axes start data 7 (interrupt)
		7	iOAS8	Other axes start data 8 (interrupt)
		8	iOAS9	Other axes start data 9 (interrupt)
		9	iOAS10	Other axes start data 10 (interrupt)
		10	iOAS11	Other axes start data 11 (interrupt)
		11	iOAS12	Other axes start data 12 (interrupt)
		12	iOAS13	Other axes start data 13 (interrupt)
		13	iOAS14	Other axes start data 14 (interrupt)
		14	iOAS15	Other axes start data 15 (interrupt)
		15	iOAS16	Other axes start data 16 (interrupt)
		16	iOAS17	Other axes start data 17 (interrupt)
		17	iOAS18	Other axes start data 18 (interrupt)
		18	iOAS19	Other axes start data 19 (interrupt)
		19	iOAS20	Other axes start data 20 (interrupt)
		20	iOAS21	Other axes start data 21 (interrupt)
		21	iOAS22	Other axes start data 22 (interrupt)
		22	iOAS23	Other axes start data 23 (interrupt)
		23	iOAS24	Other axes start data 24 (interrupt)
		24	iOAS25	Other axes start data 25 (interrupt)
		25	iOAS26	Other axes start data 26 (interrupt)
		26	iOAS27	Other axes start data 27 (interrupt)
		27	iOAS28	Other axes start data 28 (interrupt)
		28	iOAS29	Other axes start data 29 (interrupt)
		29	iOAS30	Other axes start data 30 (interrupt)
		30	iOAS31	Other axes start data 31 (interrupt)
		31	iOAS32	Other axes start data 32 (interrupt)

(b) Factor of other axes start interrupt 2

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
	$\begin{gathered} 00222 \mathrm{C} \\ \text { to } \\ 00222 \mathrm{~F} \end{gathered}$	0	iOAS33	Other axes start data 33 (interrupt)
		1	iOAS34	Other axes start data 34 (interrupt)
		2	iOAS35	Other axes start data 35 (interrupt)
		3	iOAS36	Other axes start data 36 (interrupt)
		4	iOAS37	Other axes start data 37 (interrupt)
		5	iOAS38	Other axes start data 38 (interrupt)
		6	iOAS39	Other axes start data 39 (interrupt)
		7	iOAS40	Other axes start data 40 (interrupt)
		8	iOAS41	Other axes start data 41 (interrupt)
		9	iOAS42	Other axes start data 42 (interrupt)
		10	iOAS43	Other axes start data 43 (interrupt)
		11	iOAS44	Other axes start data 44 (interrupt)
		12	iOAS45	Other axes start data 45 (interrupt)
		13	iOAS46	Other axes start data 46 (interrupt)
		14	iOAS47	Other axes start data 47 (interrupt)
		15	iOAS48	Other axes start data 48 (interrupt)
		16	iOAS49	Other axes start data 49 (interrupt)
		17	iOAS50	Other axes start data 50 (interrupt)
		18	iOAS51	Other axes start data 51 (interrupt)
		19	iOAS52	Other axes start data 52 (interrupt)
		20	iOAS53	Other axes start data 53 (interrupt)
		21	iOAS54	Other axes start data 54 (interrupt)
		22	iOAS55	Other axes start data 55 (interrupt)
		23	iOAS56	Other axes start data 56 (interrupt)
		24	iOAS57	Other axes start data 57 (interrupt)
		25	iOAS58	Other axes start data 58 (interrupt)
		26	iOAS59	Other axes start data 59 (interrupt)
		27	iOAS60	Other axes start data 60 (interrupt)
		28	iOAS61	Other axes start data 61 (interrupt)
		29	iOAS62	Other axes start data 62 (interrupt)
		30	iOAS63	Other axes start data 63 (interrupt)
		31	iOAS64	Other axes start data 64 (interrupt)

(3) Details on factor of other axes start interrupt

When the factor of other axes start interrupt (iOAS \square) is on, the interrupt factor of other axes start status bit corresponding to other axes start data No. turns on.

Address		Content	Address		Content
MR- MC2	MR- MC3		MR- MC2	MR- MC3	
OFE0	0048E0	Details on factor of other axes start interrupt 1		004900	Details on factor of other axes start interrupt 33
0FE1	0048E1	Details on factor of other axes start interrupt 2		004901	Details on factor of other axes start interrupt 34
0FE2	0048E2	Details on factor of other axes start interrupt 3		004902	Details on factor of other axes start interrupt 35
0FE3	0048E3	Details on factor of other axes start interrupt 4		004903	Details on factor of other axes start interrupt 36
0FE4	0048E4	Details on factor of other axes start interrupt 5		004904	Details on factor of other axes start interrupt 37
0FE5	0048E5	Details on factor of other axes start interrupt 6		004905	Details on factor of other axes start interrupt 38
0FE6	0048E6	Details on factor of other axes start interrupt 7		004906	Details on factor of other axes start interrupt 39
0FE7	0048E7	Details on factor of other axes start interrupt 8		004907	Details on factor of other axes start interrupt 40
0FE8	0048E8	Details on factor of other axes start interrupt 9		004908	Details on factor of other axes start interrupt 41
0FE9	0048E9	Details on factor of other axes start interrupt 10		004909	Details on factor of other axes start interrupt 42
OFEA	0048EA	Details on factor of other axes start interrupt 11		00490A	Details on factor of other axes start interrupt 43
OFEB	0048EB	Details on factor of other axes start interrupt 12		00490B	Details on factor of other axes start interrupt 44
OFEC	0048EC	Details on factor of other axes start interrupt 13		00490C	Details on factor of other axes start interrupt 45
OFED	0048ED	Details on factor of other axes start interrupt 14		00490D	Details on factor of other axes start interrupt 46
OFEE	0048EE	Details on factor of other axes start interrupt 15		00490E	Details on factor of other axes start interrupt 47
OFEF	0048EF	Details on factor of other axes start interrupt 16		00490F	Details on factor of other axes start interrupt 48
OFFO	0048F0	Details on factor of other axes start interrupt 17		004910	Details on factor of other axes start interrupt 49
0FF1	0048F1	Details on factor of other axes start interrupt 18		004911	Details on factor of other axes start interrupt 50
0FF2	0048F2	Details on factor of other axes start interrupt 19		004912	Details on factor of other axes start interrupt 51
0FF3	0048F3	Details on factor of other axes start interrupt 20		004913	Details on factor of other axes start interrupt 52
0FF4	0048F4	Details on factor of other axes start interrupt 21		004914	Details on factor of other axes start interrupt 53
0FF5	0048F5	Details on factor of other axes start interrupt 22		004915	Details on factor of other axes start interrupt 54
0FF6	0048F6	Details on factor of other axes start interrupt 23		004916	Details on factor of other axes start interrupt 55
0FF7	0048F7	Details on factor of other axes start interrupt 24		004917	Details on factor of other axes start interrupt 56
0FF8	0048F8	Details on factor of other axes start interrupt 25		004918	Details on factor of other axes start interrupt 57
0FF9	0048F9	Details on factor of other axes start interrupt 26		004919	Details on factor of other axes start interrupt 58
OFFA	0048FA	Details on factor of other axes start interrupt 27		00491A	Details on factor of other axes start interrupt 59
OFFB	0048FB	Details on factor of other axes start interrupt 28		00491B	Details on factor of other axes start interrupt 60
OFFC	0048FC	Details on factor of other axes start interrupt 29		00491C	Details on factor of other axes start interrupt 61
OFFD	0048FD	Details on factor of other axes start interrupt 30		00491D	Details on factor of other axes start interrupt 62
OFFE	0048FE	Details on factor of other axes start interrupt 31		00491E	Details on factor of other axes start interrupt 63
OFFF	0048FF	Details on factor of other axes start interrupt 32		00491F	Details on factor of other axes start interrupt 64

(a) Details on factor of other axes start interrupt \square

Address (Note 1)		Bit	Symbol (Note 2)	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
OFEO	0048E0	0	iOSOP口	Other axes start notice \square (interrupt)
		1	iOSFIN \square	Other axes start complete \square (interrupt)
		2	iOSERR \square	Other axes start incomplete \square (interrupt)
		3		Reserved
		4		
		5		
		6		
		7		

Note 1. The addresses in the table are the addresses for the other axes start status table 1. For the other axes status table 2 and after, increase in units of 1 h for each other axes start status table.
2. \square : Other axes start No.
(4) Factor of pass position interrupt

When the outputting with factor of pass position interrupt (iPPI) is on, the bit corresponding to the pass position condition number of the factor of the pass position interrupt turns on.
(a) Factor of pass position interrupt 1

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{gathered} 0598 \\ \text { to } \\ 059 \mathrm{~B} \end{gathered}$	$\begin{aligned} & 002238 \\ & \text { to } \\ & 00223 B \end{aligned}$	0	iPPI1	Pass position condition 1 (interrupt)
		1	iPPI2	Pass position condition 2 (interrupt)
		2	iPPI3	Pass position condition 3 (interrupt)
		3	iPPI4	Pass position condition 4 (interrupt)
		4	iPPI5	Pass position condition 5 (interrupt)
		5	iPPI6	Pass position condition 6 (interrupt)
		6	iPPI7	Pass position condition 7 (interrupt)
		7	iPPI8	Pass position condition 8 (interrupt)
		8	iPPI9	Pass position condition 9 (interrupt)
		9	iPPI10	Pass position condition 10 (interrupt)
		10	iPPI11	Pass position condition 11 (interrupt)
		11	iPPI12	Pass position condition 12 (interrupt)
		12	iPPI13	Pass position condition 13 (interrupt)
		13	iPPI14	Pass position condition 14 (interrupt)
		14	iPPI15	Pass position condition 15 (interrupt)
		15	iPPI16	Pass position condition 16 (interrupt)
		16	iPPI17	Pass position condition 17 (interrupt)
		17	iPPI18	Pass position condition 18 (interrupt)
		18	iPPI19	Pass position condition 19 (interrupt)
		19	iPPI20	Pass position condition 20 (interrupt)
		20	iPPI21	Pass position condition 21 (interrupt)
		21	iPPI22	Pass position condition 22 (interrupt)
		22	iPPI23	Pass position condition 23 (interrupt)
		23	iPPI24	Pass position condition 24 (interrupt)
		24	iPPI25	Pass position condition 25 (interrupt)
		25	iPPI26	Pass position condition 26 (interrupt)
		26	iPPI27	Pass position condition 27 (interrupt)
		27	iPPI28	Pass position condition 28 (interrupt)
		28	iPPI29	Pass position condition 29 (interrupt)
		29	iPPI30	Pass position condition 30 (interrupt)
		30	iPPI31	Pass position condition 31 (interrupt)
		31	iPPI32	Pass position condition 32 (interrupt)

(b) Factor of pass position interrupt 2

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{gathered} 059 \mathrm{C} \\ \text { to } \\ 059 \mathrm{~F} \end{gathered}$	$\begin{gathered} 00223 \mathrm{C} \\ \text { to } \\ 00223 \mathrm{~F} \end{gathered}$	0	iPPI33	Pass position condition 33 (interrupt)
		1	iPPI34	Pass position condition 34 (interrupt)
		2	iPPI35	Pass position condition 35 (interrupt)
		3	iPPI36	Pass position condition 36 (interrupt)
		4	iPPI37	Pass position condition 37 (interrupt)
		5	iPPI38	Pass position condition 38 (interrupt)
		6	iPPI39	Pass position condition 39 (interrupt)
		7	iPPI40	Pass position condition 40 (interrupt)
		8	iPPI41	Pass position condition 41 (interrupt)
		9	iPPI42	Pass position condition 42 (interrupt)
		10	iPPI43	Pass position condition 43 (interrupt)
		11	iPPI44	Pass position condition 44 (interrupt)
		12	iPPI45	Pass position condition 45 (interrupt)
		13	iPPI46	Pass position condition 46 (interrupt)
		14	iPPI47	Pass position condition 47 (interrupt)
		15	iPPI48	Pass position condition 48 (interrupt)
		16	iPPI49	Pass position condition 49 (interrupt)
		17	iPPI50	Pass position condition 50 (interrupt)
		18	iPPI51	Pass position condition 51 (interrupt)
		19	iPPI52	Pass position condition 52 (interrupt)
		20	iPPI53	Pass position condition 53 (interrupt)
		21	iPPI54	Pass position condition 54 (interrupt)
		22	iPPI55	Pass position condition 55 (interrupt)
		23	iPPI56	Pass position condition 56 (interrupt)
		24	iPPI57	Pass position condition 57 (interrupt)
		25	iPPI58	Pass position condition 58 (interrupt)
		26	iPPI59	Pass position condition 59 (interrupt)
		27	iPPI60	Pass position condition 60 (interrupt)
		28	iPPI61	Pass position condition 61 (interrupt)
		29	iPPI62	Pass position condition 62 (interrupt)
		30	iPPI63	Pass position condition 63 (interrupt)
		31	iPPI64	Pass position condition 64 (interrupt)

(c) Factor of pass position interrupt 3

Address		Bit	Symbol	Signal name
MR-MC2■■	MR-MC3 $\square \square$			
	$\begin{gathered} 002240 \\ \text { to } \\ 002243 \end{gathered}$	0	iPPI65	Pass position condition 65 (interrupt)
		1	iPPI66	Pass position condition 66 (interrupt)
		2	iPPI67	Pass position condition 67 (interrupt)
		3	iPPI68	Pass position condition 68 (interrupt)
		4	iPPI69	Pass position condition 69 (interrupt)
		5	iPPI70	Pass position condition 70 (interrupt)
		6	iPPI71	Pass position condition 71 (interrupt)
		7	iPPI72	Pass position condition 72 (interrupt)
		8	iPPI73	Pass position condition 73 (interrupt)
		9	iPPI74	Pass position condition 74 (interrupt)
		10	iPPI75	Pass position condition 75 (interrupt)
		11	iPPI76	Pass position condition 76 (interrupt)
		12	iPPI77	Pass position condition 77 (interrupt)
		13	iPPI78	Pass position condition 78 (interrupt)
		14	iPPI79	Pass position condition 79 (interrupt)
		15	iPPI80	Pass position condition 80 (interrupt)
		16	iPPI81	Pass position condition 81 (interrupt)
		17	iPPI82	Pass position condition 82 (interrupt)
		18	iPPI83	Pass position condition 83 (interrupt)
		19	iPPI84	Pass position condition 84 (interrupt)
		20	iPPI85	Pass position condition 85 (interrupt)
		21	iPPI86	Pass position condition 86 (interrupt)
		22	iPPI87	Pass position condition 87 (interrupt)
		23	iPPI88	Pass position condition 88 (interrupt)
		24	iPPI89	Pass position condition 89 (interrupt)
		25	iPPI90	Pass position condition 90 (interrupt)
		26	iPPI91	Pass position condition 91 (interrupt)
		27	iPPI92	Pass position condition 92 (interrupt)
		28	iPPI93	Pass position condition 93 (interrupt)
		29	iPPI94	Pass position condition 94 (interrupt)
		30	iPPI95	Pass position condition 95 (interrupt)
		31	iPPI96	Pass position condition 96 (interrupt)

(d) Factor of pass position interrupt 4

Address		Bit	Symbol	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
	$\begin{gathered} 002244 \\ \text { to } \\ 002247 \end{gathered}$	0	iPPI97	Pass position condition 97 (interrupt)
		1	iPPI98	Pass position condition 98 (interrupt)
		2	iPPI99	Pass position condition 99 (interrupt)
		3	iPPI100	Pass position condition 100 (interrupt)
		4	iPPI101	Pass position condition 101 (interrupt)
		5	iPPI102	Pass position condition 102 (interrupt)
		6	iPPI103	Pass position condition 103 (interrupt)
		7	iPPI104	Pass position condition 104 (interrupt)
		8	iPPI105	Pass position condition 105 (interrupt)
		9	iPPI106	Pass position condition 106 (interrupt)
		10	iPPI107	Pass position condition 107 (interrupt)
		11	iPPI108	Pass position condition 108 (interrupt)
		12	iPPI109	Pass position condition 109 (interrupt)
		13	iPPI110	Pass position condition 110 (interrupt)
		14	iPPI111	Pass position condition 111 (interrupt)
		15	iPPI112	Pass position condition 112 (interrupt)
		16	iPPI113	Pass position condition 113 (interrupt)
		17	iPPI114	Pass position condition 114 (interrupt)
		18	iPPI115	Pass position condition 115 (interrupt)
		19	iPPI116	Pass position condition 116 (interrupt)
		20	iPPI117	Pass position condition 117 (interrupt)
		21	iPPI118	Pass position condition 118 (interrupt)
		22	iPPI119	Pass position condition 119 (interrupt)
		23	iPPI120	Pass position condition 120 (interrupt)
		24	iPPI121	Pass position condition 121 (interrupt)
		25	iPPI122	Pass position condition 122 (interrupt)
		26	iPPI123	Pass position condition 123 (interrupt)
		27	iPPI124	Pass position condition 124 (interrupt)
		28	iPPI125	Pass position condition 125 (interrupt)
		29	iPPI126	Pass position condition 126 (interrupt)
		30	iPPI127	Pass position condition 127 (interrupt)
		31	iPPI128	Pass position condition 128 (interrupt)

(5) Details on factor of pass position interrupt

When the outputting with factor of pass position interrupt (iPPID) is on, the pass position status bit corresponding to the pass position condition number turns on.

Address		Content	
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
0FA0	0047E0	Details on factor of pass position interrupt	Details on factor of pass position interrupt 1
0FA1	0047E1		Details on factor of pass position interrupt 2
0FA2	0047E2		Details on factor of pass position interrupt 3
0FA3	0047E3		Details on factor of pass position interrupt 4
:	:		:
OFDF	00481F		Details on factor of pass position interrupt 64
	004820		Details on factor of pass position interrupt 65
	:		:
	00485F		Details on factor of pass position interrupt 128

(a) Details on factor of pass position interrupt \square

Address (Note 1)		Bit	Symbol (Note 2)	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
0FA0	0047E0	0	iPPIF口	Pass position interrupt complete \square (interrupt)
		1	iPPIED	Pass position interrupt incomplete \square (interrupt)
		2		Reserved
		3		
		4		
		5		
		6		
		7		

Note 1. The address in the table is for the pass position condition number 1. For the pass position condition number 2 and above, increase in units of 01 h for each pass position condition number.
2. \square : Pass position condition number
10.4.4 Station interrupt factors

Address		Content
MR- MC2	MR- MC3	
05B0	0022A0	Station interrupt factor station 1
05B1	0022A1	
05B2	0022A2	Station interrupt factor station 2
05B3	0022A3	
05B4	0022A4	Station interrupt factor station 3
05B5	0022A5	
05B6	0022A6	Station interrupt factor station 4
05B7	0022A7	
05B8	0022A8	Station interrupt factor station 5 (Note)
05B9	0022A9	
05BA	0022AA	Station interrupt factor station 6 (Note)
05BB	0022AB	
05BC	0022AC	Station interrupt factor station 7 (Note)
05BD	0022AD	
05BE	0022AE	Station interrupt factor station 8 (Note)
05BF	0022AF	
	0022B0	Station interrupt factor station 9
	0022B1	

Address		Content
MR- MC2	MR- MC3	
	0022B2	Station interrupt factor station 10
	0022B3	
	0022B4	Station interrupt factor station 11
	0022B5	
	0022B6	Station interrupt factor station 12
	0022B7	
	0022B8	Station interrupt factor station 13
	0022B9	
	0022BA	Station interrupt factor station 14
	0022BB	
	0022BC	Station interrupt factor station 15
	0022BD	
	0022BE	Station interrupt factor station 16
	0022BF	
	0022C0	Reserved
	0022C1	
	:	
	0022DF	

Note. When using MR-MC2 $\square \square, 05 B 8$ to 05BF is "Reserved".
(1) Details on station n interrupt factors

The addresses in the table are the addresses for the first axis. For the second axis and after, increase in units of 02 h for each axis.

Address		Bit	Symbol (Note)	Signal name
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
$\begin{aligned} & \text { 05B0 } \\ & \text { to } \\ & 05 \mathrm{~B} 1 \end{aligned}$	$\begin{aligned} & \text { 0022A0 } \\ & \text { to } \\ & 0022 A 1 \end{aligned}$	0		Reserved
		1		
		2		
		3		
		4		
		5	iRUALM	RIO module alarm (interrupt)
		6	iRUWRN	RIO module warning (interrupt)
		7		Reserved
		8		
		9		
		10		
		11		
		12		
		13	iRCALM	RIO control alarm (interrupt)
		14		Reserved
		15		

Note. OFF: No factor of interrupt exists.
ON: A factor of interrupt exists.

10.5 Factor of event

Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
0EE0	0043E0	Factor of event Axis 1
0EE1	0043E1	
0EE2	0043E2	
0EE3	0043E3	
	0043E4	
	0043E5	
	0043E6	
	0043E7	
0EE4	0043E8	Factor of event Axis 2
0EE5	0043E9	
0EE6	0043EA	
0EE7	0043EB	
	0043EC	
	0043ED	
	0043EE	
	0043EF	
0EE8	0043F0	
:	:	
0F5B	0044D7	
0F5C	0044D8	Factor of event Axis 32
0F5D	0044D9	
0F5E	0044DA	
0F5F	0044DB	
	0044DC	
	0044DD	
	0044DE	
	0044DF	
0F60	0044E0	Factor of event Axis 33 (Note)
0F61	0044E1	
0F62	0044E2	
0F63	0044E3	
	0044E4	
	0044E5	
	0044E6	
	0044E7	
0F64	0044E8	
:	:	
0F9B	004557	
0F9C	004558	Factor of event Axis 48 (Note)
0F9D	004559	
0F9E	00455A	
0F9F	00455B	
	00455C	
	00455D	
	00455E	
	00455F	

Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
-	004560	Factor of event Axis 49
	004561	
	004562	
	004563	
	004564	
	004565	
	004566	
	004567	
	004568	Factor of event Axis 50
	004569	
	00456A	
	00456B	
	00456C	
	00456D	
	00456E	
	00456F	
	004570	:
	:	
	0045D7	
	0045D8	Factor of event Axis 64
	0045D9	
	0045DA	
	0045DB	
	0045DC	
	0045DD	
	0045DE	
	0045DF	
	0045E0	Reserved
	:	
	0047DF	

[^10](1) Details on factor of event on axis n

The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2口 $\square:+04 h$
- Using MR-MC3 $\square \square:+08 h$

Note. OFF: No factor of event exists
ON: A factor of event exists.
10.6 System configuration information table

Address			
MR-MC2 $\square \square$	MR-MC3 $\square \square$	Content	
06D0	000CC0	Reserved	
:	:		
06DF	000CCF		
06E0	000CD0	Controlling axis information (lower)	The bit corresponding to the axis which is currently controllable (SSCNET communicating axis or amplifier-less axis) turns on. The bit is the axis 1 (bit 0) to the axis 32 (bit 31).
06E1	000CD1		
06E2	000CD2		
06E3	000CD3		
06E4	000CD4	Controlling axis information (upper)	- Using MR-MC2 Fixed at 0 . - Using MR-MC3 The bit corresponding to the axis which can currently be controlled (SSCNET communicating axis or the amplifier-less axis) turns on. The bit is the axis 33 (bit 0) to the axis 64 (bit 31).
06E5	000CD5		
06E6	000CD6		
06E7	000CD7		
	000CD8	Reserved	
	:		
	000CDF		
06E8	000CE0	Controlling station information	The bit corresponding to the station which is currently controllable (SSCNET communicating station or the remote I/O disconnect station) turns on. The bit is the station 1 (bit 0) to the station 4 (bit3). The bit is the station 1 (bit 0) to the station 16 (bit15). MC300
06E9	000CE1		
	000CE2		
	000CE3		
06EA	000CE4	Reserved	
:	:		
0777	000FF7		
0778	000FF8	Time synchronization information	Set the time when starting up system, or reconnecting. When the set value is 0 , the time is 0000 hrs on January 1 st , 2000.
0779	000FF9		
077A	000FFA		
077B	000FFB		
077C	000FFC		
077D	000FFD		
077E	000FFE		
077F	000FFF		

(1) Details on time synchronization information

Address		Content	
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
0778	000FF8	Year	
0779	000FF9		
077A	000FFA	Month	
007B	000FFB	Date	
077C	000FFC	Hour	
077D	000FFD	Minute	
077E	000FFE	Seconds	
077F	000FFF	Day 0: Sunday 1: Monday 2: Tuesday 3: Wednesday	4: Thursday 5: Friday 6: Saturday

10．7 Axis data

10．7．1 Axis data command table

The addresses in the table are the addresses for the first axis．For the second axis and after，add the following value for each axis．
－Using MR－MC2口ロ：＋COh
－Using MR－MC3DC：＋140h
The when in tandem drive（synchronous）column in the table is for axis data classification for when using tandem drive．
－Master ：The data only valid for the master axis（refer to Section 8．3）
－Each axis ：The data valid for both the master axis and slave axis（refer to Section 8．3）

Address		Content	When in tandem drive （synchronous）	Address		Content	When in tandem drive （synchronous）
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{aligned} & \text { MR- } \\ & \text { MC3口 } \end{aligned}$			MR- MC2	$\begin{aligned} & \text { MR- } \\ & \text { MC3 } \end{aligned}$		
1000	005000	Command bit	Refer to（1）of this section		005024	Command bit	Refer to（1）of this section
1001	005001				005025		
1002	005002				005026		
1003	005003				005027		
1004	005004				005028		
1005	005005				005029		
1006	005006				00502A		
1007	005007				00502B		
1008	005008				00502C		
1009	005009				00502D		
100A	00500A				00502E		
100B	00500B				00502F		
100C	00500C			1020	005030	Manual feed speed（Note）	Master
100D	00500D			1021	005031		
100E	00500E			1022	005032		
100F	00500F			1023	005033		
1010	005010			1024	005034	Manual feed acceleration time constant	Master
1011	005011			1025	005035		
1012	005012			1026	005036	Manual feed deceleration time constant	Master
1013	005013			1027	005037		
1014	005014			1028	005038	Incremental feed movement amount	Master
1015	005015			1029	005039		
1016	005016			102A	00503A		
1017	005017			102B	00503B		
1018	005018			102C	00503C	Start point No．	Master
1019	005019			102D	00503D		
101A	00501A			102E	00503E	End point No．	Master
101B	00501B			102F	00503F		
101C	00501C			1030	005040	Latest position command buffer number	
101D	00501D			1031	005041		
101E	00501E			1032	005042	Control mode command	\triangle
101F	00501F			1033	005043		
	005020			1034	005044	Pass position condition start number	Each axis
	005021			1035	005045		
	005022			1036	005046	Pass position condition end number	Each axis
	005023			1037	005047		

[^11]| Address | | Content | When in tandem drive (synchronous) |
| :---: | :---: | :---: | :---: |
| MR-
 MC2 | $\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$ | | |
| 1038 | 005048 | Reserved | |
| 1039 | 005049 | | |
| 103A | 00504A | Latest command point No. | Master |
| 103B | 00504B | | |
| 103C | 00504C | Reserved | |
| 103D | 00504D | | |
| 103E | 00504E | | |
| 103F | 00504F | | |
| 1040 | 005050 | Monitor number 1 | Each axis |
| 1041 | 005051 | | |
| 1042 | 005052 | Monitor number 2 | Each axis |
| 1043 | 005053 | | |
| 1044 | 005054 | Monitor number 3 | Each axis |
| 1045 | 005055 | | |
| 1046 | 005056 | Monitor number 4 | Each axis |
| 1047 | 005057 | | |
| 1048 | 005058 | Torque control speed limit value | |
| 1049 | 005059 | | |
| 104A | 00505A | | |
| 104B | 00505B | | |
| 104C | 00505C | Reserved | |
| 104D | 00505D | | |
| 104E | 00505E | | |
| 104F | 00505F | | |

Address		Content	When in tandem drive (synchronous)
MR- MC2	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$		
1050	005060	Parameter write number 1	Each axis
1051	005061		
1052	005062	Parameter write data 1	Each axis
1053	005063		
1054	005064	Parameter write number 2	Each axis
1055	005065		
1056	005066	Parameter read data 2	Each axis
1057	005067		
1058	005068	Reserved	
1059	005069		
105A	00506A	Parameter read number 2	Each axis
105B	00506B		
105C	00506C	Reserved	
105D	00506D		
105E	00506E		
105F	00506F		
	005070		
	:		
	00509F		

(1) Command bit

The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3 $\square \square$: +140h

The when in tandem drive column in the table is for axis data classification for when using tandem drive synchronous mode.

- Master : The data only valid for the master axis (refer to Section 8.3)
- Each axis : The data valid for both the master axis and slave axis (refer to Section 8.3)
- Special : Refer to Section 8.5 for details.
- Not supported : The data not supported by tandem drive.

Address		Bit	Symbol	Signal name	When in tandem drive
MRMC2口	MRMC3 $\square \square$				
1000	005000	0	SON	Servo on	Special
		1 2 3		Reserved	
		4	TL	Torque limit	Each axis
		5	SRST	Servo alarm reset	Each axis
		6		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MRMC3 $\square \square$				
1001	005001	0	ST	Start operation	Master
		1	DIR	Movement direction	Master
		2	STP	Stop operation	Master
		3	RSTP	Rapid stop	Master
		4	${ }^{\text {r }}$	Reserved	
		5	ORST	Operation alarm reset	Master
		6		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \end{array}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
1002	005002	0	AUT	Automatic operation mode	Master
		1	ZRN	Home position return mode	Master
		2	JOG	JOG operation mode	Master
		3	S	Incremental feed mode	Master
		4	${ }^{-}$	Reserved	
		5	LIP	Linear interpolation mode MC200 Interpolation operation mode MC300	Master
		6	DST	Home position reset mode	Master
		7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MR- MC3				
1003	005003	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \end{array}$	MR- MC3				
1004	005004	0	ITL	Interlock	Master
		1	RMONR	High speed monitor latch command	Each axis
		2 3	\searrow	Reserved	
		4	LSPC	+ side limit switch input	Each axis
		5	LSNC	- side limit switch input	Each axis
		6	DOGC	Proximity dog input	Each axis
		7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$				
1005	005005	0	SCHG	Change speed	Master
		1	TACHG	Change acceleration time constant	Master
		2	TDCHG	Change deceleration time constant	Master
		3	PCHG	Position change	Master
		4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MR- MC3				
1006	005006	0	FST	Fast start operation	Master
		1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MR- MC3				
1007	005007	0	PPISTP	Pass position interrupt cancel	Master
		1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$				
1008	005008	0	GAIN	Gain changing command	Each axis
		1	FCLS	Fully closed loop control change command	Each axis
		2	-	Reserved	
		3	CPC	PID control command	Each axis
		4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \square \end{array}$	MR- MC3				
1009	005009	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\left\|\begin{array}{c} \text { MR- } \\ \text { MC2 } \square \square \end{array}\right\|$	MR－ MC3 \square				
100A	00500A	0 1 2 3		Reserved	
		4	ZSC	Home position set command	\checkmark
		5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2口ロ	MR－ MC3口ロ				
100B	00500B	0	\bigcirc	Reserved	－
		1	MKC1	Mark detection clear command 1	Each axis
		2	MKD1	Mark detection disable command 1	Each axis
		3	MKSEN1	Mark detection setting enable command 1	Each axis
		4		Reserved	
		5	MKC2	Mark detection clear command 2	Each axis
		6	MKD2	Mark detection disable command 2	Each axis
		7	MKSEN2	Mark detection setting enable command 2	Each axis

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2 \square	MR－ MC3				
100C	00500C	$\begin{aligned} & \frac{0}{1} \\ & \frac{1}{2} \\ & \hline 3 \\ & \hline \end{aligned}$		Reserved	
		4	CTLMC	Control mode switch command	Not supported
		$\frac{5}{\frac{5}{7}}$		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2	MR－ MC3 \square				
100D	00500D	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2 \square	MR－ MC3口ロ				
100E	00500E	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2	MR－ MC3 \square				
100F	00500F	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2 \square	MR－ MC3 $\square \square$				
1010	005010	0	MON	Monitor command	Each axis
		1	MONR	Monitor latch command	Each axis
		2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2口ロ	MR－ MC3 \square				
1011	005011	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
1012	005012	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MR- MC3				
1013	005013	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	MR- MC3				
1014	005014	0	PWRT	Parameter write command	Each axis
		1 2 3 4 5 6		Reserved	
		7	PSF	Servo parameter read complete	Each axis

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$				
1015	005015	0	PRD	Parameter read command	Each axis
		1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$				
1016	005016	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$				
1017	005017	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MR- MC3				
1018	005018	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	MRMC3				
1019	005019	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \end{array}$	MR- MC3				
101A	00501A	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MRMC2口	MR- MC3口				
101B	00501B	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
101C	00501C	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MR- MC3				
101D	00501D	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$				
101E	00501E	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
101F	00501F	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \end{array}$	MR- MC3				
	$\begin{aligned} & 005020 \\ & \text { to } \\ & 00502 \mathrm{~F} \end{aligned}$	0 1 2 3 4 5 6 7		Reserved	

10.7.2 Axis data status table

The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3 $\square \square$: +140h

The when in tandem drive (synchronous) column in the table is for axis data classification for when using tandem drive.

- Master : The data only valid for the master axis (refer to Section 8.3)
- Each axis : The data valid for both the master axis and slave axis (refer to Section 8.3)

Address		Content	When in tandem drive (synchronous)
MRMC2口	MRMC3口		
1060	0050A0	Status bit	Refer to (1) of this section
1061	0050A1		
1062	0050A2		
1063	0050A3		
1064	0050A4		
1065	0050A5		
1066	0050A6		
1067	0050A7		
1068	0050A8		
1069	0050A9		
106A	0050AA		
106B	0050AB		
106C	0050AC		
106D	0050AD		
106E	0050AE		
106F	0050AF		
1070	0050B0		
1071	0050B1		
1072	0050B2		
1073	0050B3		
1074	0050B4		
1075	0050B5		
1076	0050B6		
1077	0050B7		
1078	0050B8		
1079	0050B9		
107A	0050BA		
107B	0050BB		
107C	0050BC		
107D	0050BD		
107E	0050BE		
107F	0050BF		
	0050C0		
	0050C1		
	0050C2		
	0050C3		
	0050C4		
	0050C5		
	0050C6		

Address		Content	When in tandem drive (synchronous)
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{array}{r} \text { MR- } \\ \text { MC3 } \end{array}$		
	0050C7	Status bit	Refer to (1) of this section
	0050C8		
	0050C9		
	0050CA		
	0050CB		
	0050CC		
	0050CD		
	0050CE		
	0050CF		
1080	0050D0	Operation alarm number	Master
1081	0050D1		
1082	0050D2	Specific operation alarm number	Master
1083	0050D3		
1084	0050D4	Servo alarm number	Each axis
1085	0050D5		
1086	0050D6	Specific servo alarm number	Each axis
1087	0050D7		
1088	0050D8	Reserved	
1089	0050D9		
108A	0050DA		
108B	0050DB		
108C	0050DC	Operation point No.	Master
108D	0050DD		
108E	0050DE	Maximum position command buffer number	
108F	0050DF		
1090	0050E0	Transmit position command buffer number	
1091	0050E1		
1092	0050E2	Control mode status	
1093	0050E3		
1094	0050E4	Executing pass position condition number	Master
1095	0050E5		
1096	0050E6	Reserved	
1097	0050E7		
1098	0050E8		
1099	0050E9		
109A	0050EA		
109B	0050EB		
109C	0050EC		
109D	0050ED		

Address		Content	When in tandem drive （synchronous）
MR－ MC2	MR－ MC3		
109E	0050EE	Reserved	
109F	0050EF		
10A0	0050F0	Monitor number 1	Each axis
10A1	0050F1		
10A2	0050F2	Monitor number 2	Each axis
10A3	0050F3		
10A4	0050F4	Monitor number 3	Each axis
10A5	0050F5		
10A6	0050F6	Monitor number 4	Each axis
10A7	0050F7		
10A8	0050F8	Monitor data 1	Each axis
10A9	0050F9		
10AA	0050FA	Monitor data 2	Each axis
10AB	0050FB		
10AC	0050FC	Monitor data 3	Each axis
10AD	0050FD		
10AE	0050FE	Monitor data 4	Each axis
10AF	0050FF		
10B0	005100	Parameter write number 1	Each axis
10B1	005101		

Address		Content	When in tandem drive （synchronous）
MR－ MC2	MR－ MC3		
10B2	005102	Parameter write data 1	Each axis
10B3	005103		
10B4	005104	Parameter write number 2	Each axis
10B5	005105		
10B6	005106	Parameter write data 2	Each axis
10B7	005107		
10B8	005108	Parameter read number 1	Each axis
10B9	005109		
10BA	00510A	Parameter read data 1	Each axis
10BB	00510B		
10BC	00510C	Parameter read number 2	Each axis
10BD	00510D		
10BE	00510E	Parameter read data 2	Each axis
10BF	00510F		
	005110	Reserved	
	：		
	00513F		

（1）Status bit
The addresses in the table are the addresses for the first axis．For the second axis and after，add the following value for each axis．
－Using MR－MC2 $\square \square$ ：＋C0h
－Using MR－MC3口ロ：＋140h
For each bit， 0 stands for invalid and 1 stands for valid．
The when in tandem drive column in the table is for axis data classification for when using tandem drive synchronous mode．
－Master ：The data only valid for the master axis（refer to Section 8．3）
－Each axis ：The data valid for both the master axis and slave axis（refer to Section 8．3）
－Not supported ：The data not supported by tandem drive

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2口ロ	MR－ MC3 \square				
1060	0050A0	0	RDY	Servo ready	Each axis
		1	INP	In－position	Each axis
		2	ZSP	Zero speed	Each axis
		3	ZPAS	Passed Z－phase	Each axis
		4	TLC	Torque limit effective	Each axis
		5	SALM	Servo alarm	Each axis
		6	SWRN	Servo warning	Each axis
		7	ABSE	Absolute position erased	Each axis

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2口	MR－ MC3 \square				
1061	0050A1	0	OP	During operation	Master
		1	CPO	Rough match	Master
		2	PF	Positioning complete	Master
		3	ZP	Home position return complete	Master
		4	SMZ	During smoothing of stopping	Master
		5	OALM	Operation alarm	Master
		6	OPF	Completion of operation	Master
		7	PSW	Position switch	Each axis

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \square \end{array}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
1062	0050A2	0	AUTO	In automatic operation mode	Master
		1	ZRNO	In home position return mode	Master
		2	JO	In JOG operation mode	Master
		3	SO	In incremental feed mode	Master
		4	\bigcirc	Reserved	
		5	LIPO	In linear interpolation mode MC200 In interpolation operation	Master
		6	DSTO	In home position reset mode	Master
		7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \end{array}$	MRMC3				
1064	0050A4	0	ISTP	Interlock stop	Master
		1	RMRCH	High speed monitor is latched	Each axis
		2	POV	Stop position overround	Master
		3	STO	Start up acceptance complete	Master
		4 5		Reserved	
		6	ZREQ	Home position return request	Master
		7		Reserved	

Address		MR- MC2 $\square \square$	MR- MC3 $\square \square$	Bit	Symbol

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
1066	0050A6	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \end{array}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
1067	0050A7	0	PPIOP	Pass position interrupt	Master
		1	PPIFIN	Pass position interrupt complete	Master
		2	PPIERR	Pass position interrupt incomplete	Master
		3 4 5 6		Reserved	
		7	AUTLO	In point table loop	Master

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2	MR－ MC3				
1068	0050A8	0	GAINO	During gain switching	Each axis
		1	FCLSO	Fully closed loop control changing	Each axis
		2	TLSO	Selecting torque limit	Each axis
		3	SPC	During PID control	Each axis
		$\frac{4}{\frac{5}{6}}$		Reserved	
		7	PRSMO	During continuous operation to torque control	Not supported

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2 \square	MR－ MC3口ロ				
1069	0050A9	0	IWT	Interference check standby	Each axis
		1	SINP	Servo amplifier in－ position	Each axis
		2 3 4 5 6 7 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2 \square	MR－ MC3口ロ				
106A	0050AA	0 1 2 3		Reserved	
		4	ZSF	Home position set complete	Not supported
		5	ZSE	Home position set error	Not supported
		6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2 $\square \square$	MR－ MC3 $\square \square$				
106B	0050AB	0	MKIF1	Mark detection compatible information 1	Each axis
		1	MKCF1	Mark detection clear complete 1	Each axis
		2	MKDO1	Mark detection disabled 1	Each axis
		3	MKSEF1	Mark detection setting enable complete 1	Each axis
		4	MKIF2	Mark detection compatible information 2	Each axis
		5	MKCF2	Mark detection clear complete 2	Each axis
		6	MKDO2	Mark detection disabled 2	Each axis
		7	MKSEF2	Mark detection setting enable complete 2	Each axis

Address		Bit	Symbol	Signal name	When in tandem drive
MR－ MC2 \square	MR－ MC3 $\square \square$				
106C	0050AC	$\begin{aligned} & \hline 0 \\ & \hline \frac{1}{2} \\ & \hline 3 \\ & \hline \end{aligned}$		Reserved	
		4	CTLMCF	Control mode switch complete	Not supported
		5	CTLMCE	Control mode switch error	Not supported
		6	－	Reserved	\checkmark

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	MR- MC3				
106E	0050AE	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{aligned} & \text { MR- } \\ & \text { MC2 } \end{aligned}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$				
106F	0050AF	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$				
1070	0050B0	0	MOUT	Monitor output	Each axis
		1	MRCH	Monitor latch	Each axis
		2	MER1	Monitor number error 1	Each axis
		3	MER2	Monitor number error 2	Each axis
		4	MER3	Monitor number error 3	Each axis
		5	MER4	Monitor number error 4	Each axis
		6	MESV	Servo amplifier is not connected	Each axis
		7		Reserved	-

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MR- MC3				
1072	0050B2	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	$\begin{gathered} \text { MR- } \\ \text { MC3口 } \end{gathered}$				
1073	0050B3	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \end{array}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
1074	0050B4	0	PWFIN1	Parameter write complete 1	Each axis
		1	PWEN1	Parameter number error 1	Each axis
		2	PWED1	Parameter data out of bounds 1	Each axis
		3		Reserved	\bigcirc
		4	PWFIN2	Parameter write complete 2	Each axis
		5	PWEN2	Parameter number error 2	Each axis
		6	PWED2	Parameter data out of bounds 2	Each axis
		7	PSCHG	Changes to servo parameters exist	Each axis

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{array}{r} \text { MR- } \\ \text { MC3 } \end{array}$				
1075	0050B5	0	PRFIN1	Parameter read complete 1	Each axis
		1	PREN1	Parameter number error 1	Each axis
		2	PRFIN2	Parameter read complete 2	Each axis
		3	PREN2	Parameter number error 2	Each axis
		4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
1076	0050B6	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$				
1077	0050B7	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
1078	0050B8	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \end{array}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
1079	0050B9	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
107A	0050BA	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MR- MC3				
107B	0050BB	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$				
107C	0050BC	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \square \end{array}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
107D	0050BD	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$				
107E	0050BE	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2	MR- MC3				
107F	0050BF	0 1 2 3 4 5 6 7		Reserved	

Address		Bit	Symbol	Signal name	When in tandem drive
MR- MC2口ロ	MR- MC3 \square				
		0 1 2 3 4 5 6 7		Reserved	

10．8 Axis data（sensing module（axis mode））

10．8．1 Axis data command table

The addresses in the table are the addresses for the first axis．For the second axis and after，add the following value for each axis．
－Using MR－MC2口ロ：＋COh
－Using MR－MC3Da：＋140h

Address		Content	Address		Content
$\begin{array}{\|c} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array}$	MR－ MC3口ロ		MR－ MC2 $\square \square$	$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC3 } \square \square \end{array}$	
1000	005000	Command bit		005028	
1001	005001			005029	
1002	005002			00502A	
1003	005003			00502B	
1004	005004			00502C	Command bit
1005	005005			00502D	
1006	005006			00502E	
1007	005007			00502F	
1008	005008		1020	005030	
1009	005009		1021	005031	
100A	00500A		1022	005032	Manual feed speed（Note）
100B	00500B		1023	005033	
100C	00500C		1024	005034	nt
100D	00500D		1025	005035	Manual feed acceleration time constant
100 E	00500E		1026	005036	Manual feed deceleration time constant
100F	00500F		1027	005037	Manual feed deceleration time constant
1010	005010		1028	005038	
1011	005011		1029	005039	Incremental feed movement amount
1012	005012		102A	00503A	incremental feed movement amount
1013	005013		102B	00503B	
1014	005014		102C	00503C	
1015	005015		102D	00503D	Start point No．
1016	005016		102E	00503E	
1017	005017		102F	00503F	End point No．
1018	005018		1030	005040	
1019	005019		1031	005041	Latest position command buffer number
101A	00501A		1032	005042	
101B	00501B		1033	005043	Reserved
101C	00501C		1034	005044	
101D	00501D		1035	005045	Pass position condition start number
101E	00501E		1036	005046	
101F	00501F		1037	005047	Pass position condition end number
	005020		1038	005048	Reserved
	005021		1039	005049	
	005022		103A	00504A	Latest command point No．
	005023		103B	00504B	Latest command point No．
	005024		103C	00504C	
	005025		103D	00504D	Reserved
	005026		103E	00504E	
	005027		103F	00504F	

Note．The manual feed speed is the moving speed for manual operation（JOG operation as well as incremental feed）．

Address		Content
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	MR- MC3	
1040	005050	Monitor number 1
1041	005051	
1042	005052	Monitor number 2
1043	005053	
1044	005054	Monitor number 3
1045	005055	
1046	005056	Monitor number 4
1047	005057	
1048	005058	Torque control speed limit value
1049	005059	
104A	00505A	
104B	00505B	
104C	00505C	Reserved
104D	00505D	
104E	00505E	
104F	00505F	
1050	005060	Parameter write number 1
1051	005061	

Address		Content
MR－ MC2	MR- MC3	
1052	005062	Parameter write data 1
1053	005063	
1054	005064	Parameter write number 2
1055	005065	
1056	005066	Parameter read data 2
1057	005067	
1058	005068	Parameter read number 1
1059	005069	
105A	00506A	Reserved
105B	00506B	
105C	00506C	Parameter read number 2
105D	00506D	
105E	00506E	Reserved
105F	00506F	
	005070	
	：	
	00509F	

（1）Command bit
The addresses in the table are the addresses for the first axis．For the second axis and after，add the following value for each axis．
－Using MR－MC2 $\square \square$ ：＋C0h
－Using MR－MC3口ロ：＋140h

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1000	005000	0	SON	Servo on
		1	SRST	Reserved
		2		
		3		
		4		
		5		Servo alarm reset
		6		Reserved
		7		

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2口ロ } \end{array}$	MR－ MC3D			
1001	005001	0	ST	Start operation
		1	DIR	Movement direction
		2	STP	Stop operation
		3	RSTP	Rapid stop
		4	${ }^{\text {RSTP}}$	Reserved
		5	ORST	Operation alarm reset
		6		
		7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3 \square			
1002	005002	0	AUT	Automatic operation mode
		1	ZRN	Home position return mode
		2	JOG	JOG operation mode
		3	S	Incremental feed mode
		4	${ }^{\text {S }}$	Reserved
		5	LIP	Linear interpolation mode MC200 Interpolation operation mode MC300
		6	DST	Home position reset mode
		7	，	Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	MR－ MC3口ロ			
1003	005003	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array}$	MR－ MC3 \square			
1004	005004	0	ITL	Interlock
		1	RMONR	High speed monitor latch command
		2	－	Reserved
		3		Reserved
		4	LSPC	＋side limit switch input
		5	LSNC	－side limit switch input
		6	DOGC	Proximity dog input
		7	，	Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3口ロ			
1005	005005	0	SCHG	Change speed
		1	TACHG	Change acceleration time constant
		2	TDCHG	Change deceleration time constant
		3	PCHG	Position change
		4		
		5		
		6		Reserved
		7		

Address		Bit	Symbol	Signal name
MR－ MC2	$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC3 } \square \square \\ \hline \end{array}$			
1006	005006	0	FST	Fast start operation
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3口ロ			
1007	005007	0	PPISTP	Pass position interrupt cancel
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \\ \hline \end{array}$	MR－ MC3 \square			
1008	005008	0		Reserved
		1		
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
1009	005009	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
100A	00500A	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
100B	00500B	$\begin{aligned} & \hline 0 \\ & \hline 1 \\ & \hline 2 \\ & \hline 3 \\ & \hline 4 \\ & \hline \frac{5}{5} \\ & \hline 6 \\ & \hline 7 \end{aligned}$		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
100C	00500C	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
100D	00500D	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{array}{r} \text { MR- } \\ \text { MC3 } \end{array}$			
100E	00500E	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
100F	00500F	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1010	005010	0	MON	Monitor command
		1	MONR	Monitor latch command
		2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{array}{r} \text { MR- } \\ \text { MC3 } \end{array}$			
1011	005011	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1012	005012	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1013	005013	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \\ \hline \end{gathered}$			
1014	005014	0	PWRT	Parameter write command
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7	PSF	Servo parameter read complete

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	MRMC3			
1015	005015	0	PRD	Parameter read command
		1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1016	005016	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \end{array}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1017	005017	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$			
1018	005018	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1019	005019	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
101A	00501A	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
101B	00501B	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
101C	00501C	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
101D	00501D	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$			
101E	00501E	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
101F	00501F	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	MR- MC3			
	$\begin{aligned} & 005020 \\ & \text { to } \\ & 00502 \mathrm{~F} \end{aligned}$	0 1 2 3 4 5 6 7		Reserved

10．8．2 Axis data status table

The addresses in the table are the addresses for the first axis．For the second axis and after，add the following value for each axis．
－Using MR－MC2 $\square \square$ ：＋C0h
－Using MR－MC3 $\square \square$ ：＋140h

Address		Content	Address		Content
MR－ MC2口	MR－ MC3口		MR－ MC2ロロ	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$	
1060	0050A0	Status bit		0050CA	Status bit
1061	0050A1			0050CB	
1062	0050A2			0050CC	
1063	0050A3			0050CD	
1064	0050A4			0050CE	
1065	0050A5			0050CF	
1066	0050A6		1080	0050D0	Operation alarm number
1067	0050A7		1081	0050D1	
1068	0050A8		1082	0050D2	Specific operation alarm number
1069	0050A9		1083	0050D3	
106A	0050AA		1084	0050D4	Servo alarm number
106B	0050AB		1085	0050D5	
106C	0050AC		1086	0050D6	Specific servo alarm number
106D	0050AD		1087	0050D7	
106E	0050AE		1088	0050D8	Reserved
106F	0050AF		1089	0050D9	
1070	0050B0		108A	0050DA	
1071	0050B1		108B	0050DB	
1072	0050B2		108C	0050DC	Operation point No．
1073	0050B3		108D	0050DD	
1074	0050B4		108E	0050DE	Maximum position command buffer number
1075	0050B5		108F	0050DF	
1076	0050B6		1090	0050E0	Transmit position command buffer number
1077	0050B7		1091	0050E1	
1078	0050B8		1092	0050E2	Reserved
1079	0050B9		1093	0050E3	
107A	0050BA		1094	0050E4	Executing pass position condition number
107B	0050BB		1095	0050E5	
107C	0050BC		1096	0050E6	Reserved
107D	0050BD		1097	0050E7	
107E	0050BE		1098	0050E8	
107F	0050BF		1099	0050E9	
	0050C0		109A	0050EA	
	0050C1		109B	0050EB	
	0050C2		109C	0050EC	
\backslash	0050C3		109D	0050ED	
	0050C4		109E	0050EE	
	0050C5		109F	0050EF	
	0050C6		10A0	0050F0	Monitor number 1
	0050C7		10A1	0050F1	
	0050C8		10A2	0050F2	Monitor number 2
	0050C9		10A3	0050F3	

Address		Content
$\begin{array}{r} \text { MR- } \\ \text { MC2 } \end{array}$	MR- MC3	
10A4	0050F4	Monitor number 3
10A5	0050F5	
10A6	0050F6	Monitor number 4
10A7	0050F7	
10A8	0050F8	Monitor data 1
10A9	0050F9	
10AA	0050FA	Monitor data 2
10AB	0050FB	
10AC	0050FC	Monitor data 3
10AD	0050FD	
10AE	0050FE	Monitor data 4
10AF	0050FF	
10B0	005100	Parameter write number 1
10B1	005101	
10B2	005102	Parameter write data 1
10B3	005103	

Address		Content
MR- MC2	MR- MC3	
10B4	005104	Parameter write number 2
10B5	005105	
10B6	005106	Parameter write data 2
10B7	005107	
10B8	005108	Parameter read number 1
10B9	005109	
10BA	00510A	Parameter read data 1
10BB	00510B	
10BC	00510C	Parameter read number 2
10BD	00510D	
10BE	00510E	Parameter read data 2
10BF	00510F	
	005110	Reserved
	:	
	00513F	

(1) Status bit

The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square$: +C0h
- Using MR-MC3 $\square \square$: +140h

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array}$	MR- MC3			
1060	0050A0	0	RDY	Servo ready
		1	INP	In-position
		2	${ }^{\text {PPAS}}$	Reserved
		3	ZPAS	Passed Z-phase
		4	TLC	Torque limit effective
		5	SALM	Servo alarm
		6	SWRN	Servo warning
		7	-	Reserved

Address		Bit	Symbol	Signal name
MR- MC2	MR- MC3口			
1061	0050A1	0	OP	During operation
		1	CPO	Rough match
		2	PF	Positioning complete
		3	ZP	Home position return complete
		4	SMZ	During smoothing of stopping
		5	OALM	Operation alarm
		6	OPF	Completion of operation
		7	PSW	Position switch

Address		Bit	Symbol	Signal name
MRMC2 \square	MRMC3 \square			
1062	0050A2	0	AUTO	In automatic operation mode
		1	ZRNO	In home position return mode
		2	JO	In JOG operation mode
		3	SO	In incremental feed mode
		4	-	Reserved
		5	LIPO	In linear interpolation mode $\sqrt{\text { MC200 }}$ In interpolation operation mode MC300
		6	DSTO	In home position reset mode
		7	S^{-}	Reserved

Address		Bit	Symbol	Signal name
MRMC2口	MRMC3 \square			
1063	0050A3	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3 \square			
1064	0050A4	0	ISTP	Interlock stop
		1	RMRCH	High speed monitor is latched
		2	POV	Stop position over－round
		3	STO	Start up acceptance complete
		4		
		5		Reserved
		6	ZREQ	Home position return request
		7	${ }^{\text {c }}$	Reserved

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \end{array}$	$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC3 } \square \square \\ \hline \end{array}$			
1065	0050A5	0	SCF	Completion of preparation for changing speed
		1	TACF	Completion of preparation for changing acceleration time constant
		2	TDCF	Completion of preparation for changing deceleration time constant
		3	PCF	Completion of preparation for changing position
		4	SCE	Speed change error
		5	TACE	Acceleration time constant change error
		6	TDCE	Deceleration time constant change error
		7	PCE	Position change error

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
1066	0050A6	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	$\begin{gathered} \text { MR- } \\ \text { MC3口ロ } \end{gathered}$			
1067	0050A7	0	PPIOP	Pass position interrupt
		1	PPIFIN	Pass position interrupt complete
		2	PPIERR	Pass position interrupt incomplete
		3		
		4		
		5		Reserved
		6		
		7	AUTLO	In point table loop

Address		Bit	Symbol	Signal name
MR－ MC2	$\begin{array}{r} \text { MR- } \\ \text { MC3 } \end{array}$			
1068	0050A8	0		Reserved
		1		
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2口ロロ } \\ \hline \end{array}$	MR－ MC3			
1069	0050A9	0	IWT	Interference check standby
		1	SINP	Servo amplifier in－position
		2		Reserved
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3			
106A	0050AA	10 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2口 } \square \end{gathered}$	MR－ MC3口ロ			
106B	0050AB	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
106C	0050AC	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{array}{r} \text { MR- } \\ \text { MC3 } \end{array}$			
106D	0050AD	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
106E	0050AE	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
106F	0050AF	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1070	0050B0	0	MOUT	Monitor output
		1	MRCH	Monitor latch
		2	MER1	Monitor number error 1
		3	MER2	Monitor number error 2
		4	MER3	Monitor number error 3
		5	MER4	Monitor number error 4
		6	MESV	Servo amplifier is not connected
		7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1071	0050B1	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3口 } \end{gathered}$			
1072	0050B2	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR- MC2	MR- MC3			
1073	0050B3	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1074	0050B4	0	PWFIN1	Parameter write complete 1
		1	PWEN1	Parameter number error 1
		2	PWED1	Parameter data out of bounds 1
		3	-	Reserved
		4	PWFIN2	Parameter write complete 2
		5	PWEN2	Parameter number error 2
		6	PWED2	Parameter data out of bounds 2
		7	PSCHG	Changes to servo parameters exist

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1075	0050B5	0	PRFIN1	Parameter read complete 1
		1	PREN1	Parameter number error 1
		2	PRFIN2	Parameter read complete 2
		3	PREN2	Parameter number error 2
		4		
		5		
		6		Reserved
		7		

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1076	0050B6	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MRMC2	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1077	0050B7	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1078	0050B8	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
1079	0050B9	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
107A	0050BA	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
107B	0050BB	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \end{gathered}$			
107C	0050BC	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	MRMC3			
107D	0050BD	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
107E	0050BE	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
107F	0050BF	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR- MC2	MR- MC3			
		0 1 2 3 4 5 6 7		Reserved

10.9 Remote I/O data

10.9.1 RIO data command table

The addresses in the table are the addresses for the first station. For the second station and after, add the following value for each station.

- Using MR-MC2 $\square \square$: +80h
- Using MR-MC3 $\square \square$: +C0h

Address			Content	
MR- MC2	MR- MC3			
3400	00F000	Command bit		
3401	00F001			
3402	00F002			
3403	00F003			
3404	00F004			
3405	00F005			
3406	00F006			
3407	00F007			
3408	00F008			
3409	00F009			
340A	00F00A			
340B	00F00B			
340C	00F00C			
340D	00F00D			
340E	00F00E			
340F	00F00F			
3410	00F010	Reserved		
3411	00F011			
3412	00F012			
3413	00F013			
3414	00F014			
3415	00F015			
3416	00F016			
3417	00F017			
3418	00F018			
3419	00F019			
341A	00F01A			
341B	00F01B			
341C	00F01C			
341D	00F01D			
341E	00F01E			
341F	00F01F			

Address		Content
MR- MC2	$\begin{array}{r} \text { MR- } \\ \text { MC3 } \end{array}$	
3420	00F020	Monitor number 1
3421	00F021	
3422	00F022	Monitor number 2
3423	00F023	
3424	00F024	Monitor number 3
3425	00F025	
3426	00F026	Monitor number 4
3427	00F027	
3428	00F028	Reserved
3429	00F029	
342A	00F02A	
342B	00F02B	
342C	00F02C	
342D	00F02D	
342E	00F02E	
342F	00F02F	
3430	00F030	Parameter write number 1
3431	00F031	
3432	00F032	Parameter write data 1
3433	00F033	
3434	00F034	Parameter write number 2
3435	00F035	
3436	00F036	Parameter write data 2
3437	00F037	
3438	00F038	Parameter read number 1
3439	00F039	
343A	00F03A	Reserved
343B	00F03B	
343C	00F03C	Parameter read number 2
343D	00F03D	
343E	00F03E	Reserved
343F	00F03F	
	00F040	
	:	
	00F05F	

（1）Command bit
For each bit， 0 stands for invalid and 1 stands for valid．
The addresses in the table are the addresses for the first station．For the second station and after，add the following value for each station．
－Using MR－MC2 $\square \square:+80 h$
－Using MR－MC3口ロ：＋C0h

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \\ \hline \end{array}$	MR－ MC3			
3400	00F000	0		Reserved
		1		
		2		
		3		
		4		
		5		RIO module alarm reset
		6		Reserved
		7		

Address		Bit	Symbol	Signal name	
MR－ MC2口	MR－ MC3口				
3401	00F001	0		Reserved	
		1			
		2			
		3			
		4			
		5		RIO control alarm reset	
		6			
		7			

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2口ロ } \\ \hline \end{array}$	MR－ MC3			
3402	00F002	0		Reserved
		1		
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2口ロ	$\begin{array}{r} \text { MR- } \\ \text { MC3 } \square \end{array}$			
3403	00F003	0		Reserved
		1		
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2口 \square	MR－ MC3 \square			
3404	00F004	0	MON	Monitor command
		1	MONR	Monitor latch command
		2		Reserved
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3			
3405	00F005	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{array}{r} \text { MR- } \\ \mathrm{MC} 2 \square \end{array}$	$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC3 } \square \square \end{array}$			
3406	00F006	0	PWRT	Parameter write command
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2口ロ	MR－ MC3 \square			
3407	00F007	0	PRD	Parameter read command
		1		Reserved
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
3408	00F008	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
3409	00F009	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
340A	00F00A	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \end{gathered}$			
340B	00F00B	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
340C	00F00C	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
340D	00F00D	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
340E	00F00E	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
340F	00F00F	0 1 2 3 4 5 6 7		Reserved

10.9.2 RIO data status table

The addresses in the table are the addresses for the first station. For the second station and after, add the following value for each station.

- Using MR-MC2 $\square \square:+80 h$
- Using MR-MC3 $\square \square:+C 0 h$

Address		Content	Address		Content
MR- MC2	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$		MR- MC2	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$	
3440	00F060	Status bit	3460	00F080	Monitor number 1
3441	00F061		3461	00F081	
3442	00F062		3462	00F082	Monitor number 2
3443	00F063		3463	00F083	
3444	00F064		3464	00F084	Monitor number 3
3445	00F065		3465	00F085	
3446	00F066		3466	00F086	Monitor number 4
3447	00F067		3467	00F087	
3448	00F068		3468	00F088	Monitor data 1
3449	00F069		3469	00F089	
344A	00F06A		346A	00F08A	Monitor data 2
344B	00F06B		346B	00F08B	
344C	00F06C		346C	00F08C	Monitor data 3
344D	00F06D		346D	00F08D	
344E	00F06E		346E	00F08E	Monitor data 4
344F	00F06F		346F	00F08F	
3450	00F070	RIO control alarm No.	3470	00F090	Parameter write number 1
3451	00F071		3471	00F091	
3452	00F072	Detail RIO control alarm No.	3472	00F092	Parameter write data 1
3453	00F073		3473	00F093	
3454	00F074	RIO module alarm No.	3474	00F094	Parameter write number 2
3455	00F075		3475	00F095	
3456	00F076	Detail RIO module alarm No.	3476	00F096	Parameter write data 2
3457	00F077		3477	00F097	
3458	00F078	Reserved	3478	00F098	Parameter read number 1
3459	00F079		3479	00F099	
345A	00F07A		347A	00F09A	Parameter read data 1
345B	00F07B		347B	00F09B	
345C	00F07C		347C	00F09C	Parameter read number 2
345D	00F07D		347D	00F09D	
345E	00F07E		347E	00F09E	Parameter read data 2
345F	00F07F		347F	00F09F	
				00FOA0	Reserved
				:	
				00F0BF	

（1）Status bit
For each bit， 0 stands for invalid and 1 stands for valid．
The addresses in the table are the addresses for the first station．For the second station and after，add the following value for each station．
－Using MR－MC2 $\square \square:+80 h$
－Using MR－MC3口ロ：＋C0h

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3			
3440	00F060	0	RURDY	Receiving controller ready on
		1	RUA	Outputting DO
		2		
		3		Reserved
		4		
		5	RUALM	RIO module alarm
		6	RUWRN	RIO module warning
		7	－	Reserved

Address		Bit	Symbol	Signal name	
MR－ MC2	MR－ MC3口				
3441	00F061	0		Reserved	
		1			
		2			
		3			
		4			
		5		RIO control alarm	
		6			
		7			

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \\ \hline \end{array}$	MR－ MC3口			
3442	00F062	0		Reserved
		1		
		2		
		3		
		4		
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3			
3443	00F063	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3 \square			
3444	00F064	0	MOUT	Monitor output
		1	MRCH	Monitor latch
		2	MER1	Monitor number error 1
		3	MER2	Monitor number error 2
		4	MER3	Monitor number error 3
		5	MER4	Monitor number error 4
		6	MERIO	RIO module is not connected
		7	${ }^{\text {r }}$	Reserved

Address		Bit	Symbol	Signal name
MR－ MC2 \square	MR－ MC3			
3445	00F065	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
MR－ MC2	MR－ MC3 $\square \square$			
3446	00F066	0	PWFIN1	Parameter write complete 1
		1	PWEN1	Parameter number error 1
		2	PWED1	Parameter data out of bounds 1
		3	S	Reserved
		4	PWFIN2	Parameter write complete 2
		5	PWEN2	Parameter number error 2
		6	PWED2	Parameter data out of bounds 2
		7	－	Reserved

Address		Bit	Symbol	Signal name
$\begin{array}{\|c\|} \hline \text { MR- } \\ \text { MC2 } \square \square \\ \hline \end{array}$	$\begin{array}{\|r} \text { MR- } \\ \text { MC3 } \end{array}$			
3447	00F067	0	PRFIN1	Parameter read complete 1
		1	PREN1	Parameter number error 1
		2	PRFIN2	Parameter read complete 2
		3	PREN2	Parameter number error 2
		4		Reserved
		5		
		6		
		7		

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
3448	00F068	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
3449	00F069	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
344A	00F06A	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \end{gathered}$			
344B	00F06B	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
344C	00F06C	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
344D	00F06D	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \end{gathered}$	MR- MC3			
344E	00F06E	0 1 2 3 4 5 6 7		Reserved

Address		Bit	Symbol	Signal name
$\begin{gathered} \text { MR- } \\ \text { MC2 } \square \square \end{gathered}$	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$			
344F	00F06F	0 1 2 3 4 5 6 7		Reserved

10．10 Servo parameter change number（SSCNETII／H）

When parameter settings within the servo amplifier are changed using the auto tuning function or parameter changes using MR Configurator2（set up software），the bit corresponding to the servo parameter number that was changed is turned on to notify concerning which parameter number was changed（in units of 16）．To identify the changed parameter，check the servo parameter change number（monitor No． 0590 to 05B7） corresponding to the bit which is turned on．Refer to Section 7.2 for more information．

Address		Content	Address		Content
MR- MC2	MR－ MC3		MR－ MC2	MR－ MC3	
3870	010800	Servo parameter change number 1ロロロ Axis 1	3898	010828	Servo parameter change number 1ロロロ Axis 6
3871	010801		3899	010829	
3872	010802		389A	01082A	
3873	010803		389B	01082B	
3874	010804		389C	01082C	
3875	010805		389D	01082D	
3876	010806		389E	01082E	
3877	010807		389F	01082F	
3878	010808	Servo parameter change number 1 $\square \square \square$ Axis 2	38A0	010830	Servo parameter change number 1 $\square \square \square$ Axis 7
3879	010809		38A1	010831	
387A	01080A		38A2	010832	
387B	01080B		38A3	010833	
387C	01080C		38A4	010834	
387D	01080D		38A5	010835	
387E	01080E		38A6	010836	
387F	01080F		38A7	010837	
3880	010810	Servo parameter change number 1ロロロ Axis 3	38A8	010838	Servo parameter change number 1ロロロ Axis 8
3881	010811		38A9	010839	
3882	010812		38AA	01083A	
3883	010813		38AB	01083B	
3884	010814		38AC	01083C	
3885	010815		38AD	01083D	
3886	010816		38AE	01083E	
3887	010817		38AF	01083F	
3888	010818	Servo parameter change number $1 \square \square \square$ Axis 4	38B0	010840	：
3889	010819		：	：	
388A	01081A				
388B	01081B				
388C	01081C				
388D	01081D				
388E	01081E				
388F	01081F		3967	0108F7	
3890	010820	Servo parameter change number $1 \square \square \square$ Axis 5	3968	0108F8	Servo parameter change number 1ロロロ Axis 32
3891	010821		3969	0108F9	
3892	010822		396A	0108FA	
3893	010823		396B	0108FB	
3894	010824		396C	0108FC	
3895	010825		396D	0108FD	
3896	010826		396E	0108FE	
3897	010827		396F	0108FF	

Address		Content
MR－ MC2	MR－ MC3	
3970	010900	Servo parameter change number \square （Note）
3971	010901	
3972	010902	
3973	010903	
3974	010904	
3975	010905	
3976	010906	
3977	010907	
3978	010908	：
：	：	
39E7	010977	
39E8	010978	Servo parameter change number \square \square \square Axis 48 （Note）
39E9	010979	
39EA	01097A	
39EB	01097B	
39EC	01097C	
39ED	01097D	
39EE	01097E	
39EF	01097F	

Address		Content
MR－ MC2	MR－ MC3	
	010980	Servo parameter change number 1ロロロ Axis 49
	010981	
	010982	
	010983	
	010984	
	010985	
	010986	
	010987	
	010988	：
	：	
	0109F7	
	0109F8	Servo parameter change number 1ロロロ Axis 64
	0109F9	
	0109FA	
	0109FB	
	0109FC	
	0109FD	
	0109FE	
	0109FF	
	010A00	Reserved
	：	
	010BFF	

Note．When using MR－MC2 $\square \square, 3970$ to 39EF is＂Reserved＂．
（1）Details on servo amplifier change number on axis n（SSCNETIII／H）

Address（Note）		Name	Symbol	Remarks
MR－MC2 $\square \square$	MR－MC3 $\square \square$			
3870	010800	Servo parameter change number 11ㅁ	PSN11	bit0：Parameter No． 1100 to 110 F
3871	010801			bit15：Parameter No．11F0 to 11FF
3872	010802	Servo parameter change number 12	PSN12	bit0：Parameter No． 1200 to 120F
3873	010803			bit15：Parameter No．12F0 to 12FF
3874	010804	Servo parameter change number 13	PSN13	bit0：Parameter No． 1300 to 130F to
3875	010805			bit7：Parameter No． 1370 to 137F
3876	010806	Reserved		
3877	010807			

Note．The addresses in the table are the addresses for the first axis．For the second axis and after，increase in units of 8 h for each axis．

10.11 Transient transmit command/status table

10.11.1 Transient transmit command table

Address (Note 1) (Note 2)		Content	
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
D400	0F8B00	Command transmission request	
D401	0F8B01		
D402	0F8B02	Transient command	
D403	0F8B03		
D404	0F8B04	Request data 1	
D405	0F8B05		
D406	0F8B06	Request data 2	
D407	0F8B07		
D408	0F8B08	Request data 3	
D409	0F8B09		
D40A	0F8B0A	Request data 4	
D40B	0F8B0B		
D40C	0F8B0C	Reserved	
D40D	0F8B0D		
D40E	0F8B0E		
D40F	0F8B0F		

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 20 h for each axis.
2. The start address for the first station is as follows. For the second station and after, increase by 20 h for each station.

- Using MR-MC2 $\square \square$: DA00h
- Using MR-MC3 $\square \square$: 0F9B00h

10.11.2 Transient transmit status table

Address (Note 1) (Note 2)		Content	
MR-MC2 $\square \square$	MR-MC3口■		
D410	0F8B10	Transient status	
D411	0F8B11		
D412	0F8B12	Reserved	
D413	0F8B13		
D414	0F8B14	Response data 1	
D415	0F8B15		
D416	0F8B16	Response data 2	
D417	0F8B17		
D418	0F8B18	Response data 3	
D419	0F8B19		
D41A	0F8B1A	Response data 4	
D41B	0F8B1B		
D41C	0F8B1C	Reserved	
D41D	0F8B1D		
D41E	0F8B1E		
D41F	0F8B1F		

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 20h for each axis.
2. The start address for the first station is as follows. For the second station and after, increase by 20h for each station.

- Using MR-MC2 $\square \square$: DA10h
- Using MR-MC3 $\square \square$: 0F9B10h

10.12 Point number offset

The start number in the point table for each axis can be designated using point number offset.
The amount of offset from the start point in the point table is set by the point number for the point number offset. When setting up the point table, use the following equation to derive the 2-point memory address.

- Using MR-MC2■■

The address of the dual port memory $=5000 \mathrm{~h}+20 \mathrm{~h} \times$ point number offset
When the point number offset of the axis 2 is 0020 h , the dual port memory address calculates to.
$5000 \mathrm{~h}+20 \mathrm{~h} \times 0020 \mathrm{~h}=5400 \mathrm{~h}$
Set the point table for the axis 2 from 5400 h .

- Using MR-MC3 $\square \square$

The address of the dual port memory $=020000 \mathrm{~h}+30 \mathrm{~h} \times$ point number offset
When the point number offset of the axis 2 is 0020 h , the dual port memory address calculates to. $020000 \mathrm{~h}+30 \mathrm{~h} \times 0020 \mathrm{~h}=020600 \mathrm{~h}$

Set the point table for the axis 2 from 020600h.

Address		Content	Initial Value	
MR- MC2	MR- MC3		$\begin{array}{\|r} \text { MR- } \\ \text { MC2 } \end{array}$	MR- MC3
4FA0	01FF00	Axis 1 point number offset	0000h	0000h
4FA1	01FF01			
4FA2	01FF02	Axis 2 point number offset	0008h	0020h
4FA3	01FF03			
4FA4	01FF04	Axis 3 point number offset	0010h	0040h
4FA5	01FF05			
4FA6	01FF06	Axis 4 point number offset	0018h	0060h
4FA7	01FF07			
4FA8	01FF08	Axis 5 point number offset	0020h	0080h
4FA9	01FF09			
4FAA	01FF0A	Axis 6 point number offset	0028h	00A0h
4FAB	01FF0B			
4FAC	01FF0C	Axis 7 point number offset	0030h	00C0h
4FAD	01FF0D			
4FAE	01FF0E	Axis 8 point number offset	0038h	00E0h
4FAF	01FF0F			
4FB0	01FF10	Axis 9 point number offset	0040h	0100h
4FB1	01FF11			
4FB2	01FF12	Axis 10 point number offset	0048h	0120h
4FB3	01FF13			
4FB4	01FF14	Axis 11 point number offset	0050h	0140h
4FB5	01FF15			
4FB6	01FF16	Axis 12 point number offset	0058h	0160h
4FB7	01FF17			

Note. When using MR-MC2 $\square \square, 4 F E 0$ to 4FEF is "Reserved".

10.13 Command buffers

10.13.1 Position command buffer

Address (Note)		Content	Address (Note)		Content
MR- MC2	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$		$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	MR- MC3	
5000	101000	Position command buffer 0 (pulse)	502C	10102C	Position command buffer 11 (pulse)
5001	101001		502D	10102D	
5002	101002		502E	10102E	
5003	101003		502F	10102F	
5004	101004	Position command buffer 1 (pulse)	5030	101030	Position command buffer 12 (pulse)
5005	101005		5031	101031	
5006	101006		5032	101032	
5007	101007		5033	101033	
5008	101008	Position command buffer 2 (pulse)	5034	101034	Position command buffer 13 (pulse)
5009	101009		5035	101035	
500A	10100A		5036	101036	
500B	10100B		5037	101037	
500C	10100C	Position command buffer 3 (pulse)	5038	101038	Position command buffer 14 (pulse)
500D	10100D		5039	101039	
500E	10100E		503A	10103A	
500F	10100F		503B	10103B	
5010	101010	Position command buffer 4 (pulse)	503C	10103C	Position command buffer 15 (pulse)
5011	101011		503D	10103D	
5012	101012		503E	10103E	
5013	101013		503F	10103F	
5014	101014	Position command buffer 5 (pulse)	5040	101040	Position command buffer 16 (pulse)
5015	101015		5041	101041	
5016	101016		5042	101042	
5017	101017		5043	101043	
5018	101018	Position command buffer 6 (pulse)	5044	101044	:
5009	101019				
501A	10101A				
501B	10101B		50EF	1010EF	
501C	10101C	Position command buffer 7 (pulse)	50F0	1010F0	Position command buffer 60 (pulse)
501D	10101D		50F1	1010F1	
501E	10101E		50F2	1010F2	
501F	10101F		50F3	1010F3	
5020	101020	Position command buffer 8 (pulse)	50F4	1010F4	Position command buffer 61 (pulse)
5021	101021		50F5	1010F5	
5022	101022		50F6	1010F6	
5023	101023		50F7	1010F7	
5024	101024	Position command buffer 9 (pulse)	50F8	1010F8	Position command buffer 62 (pulse)
5025	101025		50F9	1010F9	
5026	101026		50FA	1010FA	
5027	101027		50FB	1010FB	
5028	101028	Position command buffer 10 (pulse)	50FC	1010FC	Position command buffer 63 (pulse)
5029	101029		50FD	1010FD	
502A	10102A		50FE	1010FE	
502B	10102B		50FF	1010FF	

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, increase the units of 100 h for each axis.
10.13.2 Speed command buffer

Address (Note 1)		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
7800	109000	Speed command buffer 0 (0.01r/min)
7801	109001	
7802	109002	
7803	109003	
7804	109004	Reserved
:	:	
787F	10907F	
	109080	
	:	
	1090FF	

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+80 h$
- Using MR-MC3 $\square \square:+100 \mathrm{~h}$

2. Setting range: $-1000000000(-10000000 \mathrm{r} / \mathrm{min})$ to $1000000000(10000000 \mathrm{r} / \mathrm{min})$

10.13.3 Torque command buffer

Address (Note 1)		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
8C00	111000	Torque command buffer 0 (0.01r/min) (When parameter No.010D is 0, positive: CCW negative: CW)
8C01	111001	
$8 \mathrm{C02}$	111002	
8C03	111003	
8C04	111004	Reserved
:	:	
8C7F	11107F	
	111080	
	:	
	1110FF	

Note 1. The addresses in the table are the addresses for the first axis. For the second axis and after, add the following value for each axis.

- Using MR-MC2 $\square \square:+80 h$
- Using MR-MC3 $\square \square:+100 \mathrm{~h}$

2. Setting range: -32768 (-3276.8\%) to 32767 (3276.7\%)

10.14 Digital I/O table MC200

10.14.1 Digital input table

Address	Digital input area number	Digital input number	Symbol	Remarks
B000	Digital input area 0 (2 bytes)	$\begin{gathered} \text { Digital input } 0 \\ \text { to Digital input } 15 \\ \hline \end{gathered}$	$\begin{gathered} \text { DI_000 } \\ \text { to DI_00F } \\ \hline \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_000 (bit0) to DI_00F (bit15).
B002	Digital input area 1 (2 bytes)	Digital input 16 to Digital input 31	$\begin{gathered} \text { DI_010 } \\ \text { to DI_01F } \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_010(bit0) to DI_01F(bit15).
B004	Digital input area 2 (2 bytes)	Digital input 32 to Digital input 47	$\begin{aligned} & \text { DI_020 } \\ & \text { to DI_02F } \end{aligned}$	Notifies the status of the digital input signal. The bits are DI_020(bit0) to DI_02F(bit15).
B006	Digital input area 3 (2 bytes)	Digital input 48 to Digital input 63	$\begin{gathered} \text { DI_030 } \\ \text { to DI_03F } \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_030(bit0) to DI_03F(bit15).
B008	Digital input area 4 (2 bytes)	Digital input 64 to Digital input 79	$\begin{gathered} \text { DI_040 } \\ \text { to DI_04F } \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_040(bit0) to DI_04F(bit15).
B00A	Digital input area 5 (2 bytes)	Digital input 80 to Digital input 95	$\begin{gathered} \text { DI_050 } \\ \text { to } \mathrm{DI} _05 \mathrm{~F} \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_050(bit0) to DI_05F(bit15).
B00C	Digital input area 6 (2 bytes)	Digital input 96 to Digital input 111	$\begin{gathered} \text { DI_060 } \\ \text { to DI_06F } \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_060(bit0) to DI_06F(bit15).
B00E	Digital input area 7 (2 bytes)	Digital input 112 to Digital input 127	$\begin{gathered} \text { DI_070 } \\ \text { to DI_07F } \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_070(bit0) to DI_07F(bit15).
:	:	:	:	
B07E	Digital input area 63 (2 bytes)	Digital input 1008 to Digital input 1023	$\begin{gathered} \text { DI_3F0 } \\ \text { to DI_3FF } \end{gathered}$	Notifies the status of the digital input signal. The bits are DI_3F0(bit0) to DI_3FF(bit15).

10.14.2 Digital output table

Address	Digital input area number	Digital input number	Symbol	Remarks
B080	Digital output area 0 (2 bytes)	Digital output 0 to Digital output 15	$\begin{gathered} \hline \text { DO_000 } \\ \text { to DO_00F } \end{gathered}$	Turns on/off the digital output signal. The bits are DO_000(bit0) to DO_00F(bit15).
B082	Digital output area 1 (2 bytes)	Digital output 16 to Digital output 31	$\begin{gathered} \hline \text { DO_010 } \\ \text { to DO_01F } \end{gathered}$	Turns on/off the digital output signal. The bits are DO_010(bit0) to DO_01F(bit15).
B084	Digital output area 2 (2 bytes)	Digital output 32 to Digital output 47	$\begin{gathered} \text { DO_020 } \\ \text { to DO_02F } \end{gathered}$	Turns on/off the digital output signal. The bits are DO 020(bit0) to DO 02F(bit15).
B086	Digital output area 3 (2 bytes)	Digital output 48 to Digital output 63	$\begin{gathered} \hline \text { DO_030 } \\ \text { to DO_03F } \end{gathered}$	Turns on/off the digital output signal. The bits are DO_030(bit0) to DO_03F(bit15).
B088	Digital output area 4 (2 bytes)	Digital output 64 to Digital output 79	$\begin{gathered} \hline \text { DO_040 } \\ \text { to DO_04F } \\ \hline \end{gathered}$	Turns on/off the digital output signal. The bits are DO_040(bit0) to DO_04F(bit15).
B08A	Digital output area 5 (2 bytes)	Digital output 80 to Digital output 95	$\begin{gathered} \hline \text { DO_050 } \\ \text { to DO_05F } \end{gathered}$	Turns on/off the digital output signal. The bits are DO_050(bit0) to DO_05F(bit15).
B08C	Digital output area 6 (2 bytes)	Digital output 96 to Digital output 111	$\begin{gathered} \hline \text { DO_060 } \\ \text { to DO_06F } \end{gathered}$	Turns on/off the digital output signal. The bits are DO_060(bit0) to DO_06F(bit15).
B08E	Digital output area 7 (2 bytes)	Digital output 112 to Digital output 127	$\begin{gathered} \text { DO_070 } \\ \text { to DO_07F } \end{gathered}$	Turns on/off the digital output signal. The bits are DO_070(bit0) to DO_07F(bit15).
:		:	:	
BOFE	Digital output area 63 (2 bytes)	Digital output 1008 to Digital output 1023	$\begin{gathered} \text { DO_3F0 } \\ \text { to DO_3FF } \end{gathered}$	Turns on/off the digital output signal. The bits are DO_3FO(bit0) to DO_3FF(bit15).

10.15 I/O device table

10.15.1 Input device table

Address		Input word device number	Input bit device number
MR-MC2■■	MR-MC3 $\square \square$		
DB00	0F9F00	Input word device 00	Input bit device 000 to input bit device 00F
DB01	0F9F01		
DB02	0F9F02	Input word device 01	Input bit device 010 to input bit device 01F
DB03	0F9F03		
DB04	0F9F04	Input word device 02	Input bit device 020 to input bit device 02F
DB05	0F9F05		
DB06	0F9F06	Input word device 03	Input bit device 030 to input bit device 03F
DB07	0F9F07		
DB08	0F9F08	Input word device 04	Input bit device 040 to input bit device 04F
DB09	0F9F09		
DB0A	0F9F0A	Input word device 05	Input bit device 050 to input bit device 05F
DB0B	0F9F0B		
DB0C	0F9F0C	Input word device 06	Input bit device 060 to input bit device 06F
DB0D	0F9F0D		
DB0E	0F9F0E	Input word device 07	Input bit device 070 to input bit device 07F
DB0F	0F9F0F		
DB10	0F9F10	Input word device 08	Input bit device 080 to input bit device 08F
DB11	0F9F11		
DB12	0F9F12	Input word device 09	Input bit device 090 to input bit device 09F
DB13	0F9F13		
DB14	0F9F14	Input word device 0A	Input bit device 0A0 to input bit device 0AF
DB15	0F9F15		
DB16	0F9F16		:
:	:		
DCF9	0FA0F9		
DCFA	0FA0FA	Input word device FD	Input bit device FD to input bit device FDF
DCFB	0FA0FB		
DCFC	0FA0FC	Input word device FE	Input bit device FE0 to input bit device FEF
DCFD	OFA0FD		
DCFE	OFAOFE	Input word device FF	Input bit device FF0 to input bit device FFF
DCFF	0FA0FF		
	0FA100	Input word device 100	Input bit device 1000 to input bit device 100F
	0FA101		
	:	:	:
	0FA37E	Input word device 23F	Input bit device 23F0 to input bit device 23FF
	0FA37F		

10.15.2 Output device table

Address		Output word device number	Output bit device number
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
DD00	0FA380	Output word device 00	Output bit device 000 to output bit device 00F
DD01	0FA381		
DD02	0FA382	Output word device 01	Output bit device 010 to output bit device 01F
DD03	0FA383		
DD04	0FA384	Output word device 02	Output bit device 020 to output bit device 02F
DD05	0FA385		
DD06	0FA386	Output word device 03	Output bit device 030 to output bit device 03F
DD07	0FA387		
DD08	0FA388	Output word device 04	Output bit device 040 to output bit device 04F
DD09	0FA389		
DD0A	0FA38A	Output word device 05	Output bit device 050 to output bit device 05F
DD0B	0FA38B		
DD0C	0FA38C	Output word device 06	Output bit device 060 to output bit device 06F
DD0D	0FA38D		
DD0E	0FA38E	Output word device 07	Output bit device 070 to output bit device 07F
DD0F	0FA38F		
DD10	0FA390	Output word device 08	Output bit device 080 to output bit device 08F
DD11	0FA391		
DD12	0FA392	Output word device 09	Output bit device 090 to output bit device 09F
DD13	0FA393		
DD14	0FA394	Output word device 0A	Output bit device 0A0 to output bit device 0AF
DD15	0FA395		
DD16	0FA396		:
:	:		
DEF9	0FA579		
DEFA	0FA57A	Output word device FD	Output bit device FD0 to output bit device FDF
DEFB	0FA57B		
DEFC	0FA57C	Output word device FE	Output bit device FE0 to output bit device FEF
DEFD	0FA57D		
DEFE	0FA57E	Output word device FF	Output bit device FFO to output bit device FFF
DEFF	0FA57F		
	0FA580	Output word device 100	Output bit device 1000 to output bit device 100F
	0FA581		
	:	:	:
	0FA7FE	Output word device 23F	Output bit device 23F0 to output bit device 23FF
	0FA7FF		

10.16 Mark detection command/status table

10.16.1 Mark detection command table

The when in tandem drive column in the table is for axis data classification for when using tandem drive synchronous mode.
Each axis: The data valid for both the master axis and slave axis (refer to Section 8.3)

Address (Note)		Name	When in tandem drive
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
B4F0	0E2A00	Read complete buffer number 1	Each axis
B4F1	0E2A01	Read complete buffer number 2	Each axis
B4F2	0E2A02	Reserved	
B4F3	0E2A03		
B4F4	0E2A04		
B4F5	0E2A05		
B4F6	0E2A06		
B4F7	0E2A07		
B4F8	0E2A08		
B4F9	0E2A09		
B4FA	0E2A0A		
B4FB	0E2A0B		
B4FC	0E2A0C		
B4FD	0E2A0D		
B4FE	0E2A0E		
B4FF	0E2A0F		

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 20h for each axis.

10.16.2 Mark detection status table

The when in tandem drive column in the table is for axis data classification for when using tandem drive synchronous mode.
Each axis: The data valid for both the master axis and slave axis (refer to Section 8.3)

Address (Note)		Name	When in tandem drive
MR-MC2 $\square \square$	MR-MC3 $\square \square$		
B500	0E2A10	Start data storage area 1	Each axis
B501	0E2A11	Number of continuous latch data storages 1	Each axis
B502	0E2A12	Number of mark detections counter 1	Each axis
B503	0E2A13	Mark detection mode 1	Each axis
B504	0E2A14	Start data storage area 2	Each axis
B505	0E2A15	Number of continuous latch data storages 2	Each axis
B506	0E2A16	Number of mark detections counter 2	Each axis
B507	0E2A17	Mark detection mode 2	Each axis
B508	0E2A18	Reserved	
B509	0E2A19		
B50A	0E2A1A		
B50B	0E2A1B		
B50C	0E2A1C		
B50D	0E2A1D		
B50E	0E2A1E		
B50F	0E2A1F		

[^12]
10.17 Mark detection data tables

10.17.1 Mark detection edge data table

This data shows the detection edges for every positioning data of the mark detection positioning data table. 0 : Not detected 1: OFF edge 2: ON edge

Address		Content	Address		Content
$\begin{gathered} \text { MR- } \\ \text { MC2 } \end{gathered}$	MR- MC3		MR- MC2	$\begin{gathered} \text { MR- } \\ \text { MC3 } \square \square \end{gathered}$	
BAF0	0E3A00	Mark detection edge data 0	BB12	0E3A22	Mark detection edge data 34
BAF1	0E3A01	Mark detection edge data 1	BB13	0E3A23	Mark detection edge data 35
BAF2	0E3A02	Mark detection edge data 2	BB14	0E3A24	Mark detection edge data 36
BAF3	0E3A03	Mark detection edge data 3	BB15	0E3A25	Mark detection edge data 37
BAF4	0E3A04	Mark detection edge data 4	BB16	0E3A26	Mark detection edge data 38
BAF5	0E3A05	Mark detection edge data 5	BB17	0E3A27	Mark detection edge data 39
BAF6	0E3A06	Mark detection edge data 6	BB18	0E3A28	Mark detection edge data 40
BAF7	0E3A07	Mark detection edge data 7	BB19	0E3A29	Mark detection edge data 41
BAF8	0E3A08	Mark detection edge data 8	BB1A	0E3A2A	Mark detection edge data 42
BAF9	0E3A09	Mark detection edge data 9	BB1B	0E3A2B	Mark detection edge data 43
BAFA	0E3A0A	Mark detection edge data 10	BB1C	0E3A2C	Mark detection edge data 44
BAFB	0E3A0B	Mark detection edge data 11	BB1D	0E3A2D	Mark detection edge data 45
BAFC	0E3A0C	Mark detection edge data 12	BB1E	0E3A2E	Mark detection edge data 46
BAFD	0E3A0D	Mark detection edge data 13	BB1F	0E3A2F	Mark detection edge data 47
BAFE	0E3A0E	Mark detection edge data 14	BB20	0E3A30	Mark detection edge data 48
BAFF	0E3A0F	Mark detection edge data 15	BB21	0E3A31	Mark detection edge data 49
BB00	0E3A10	Mark detection edge data 16	BB22	0E3A32	Mark detection edge data 50
BB01	0E3A11	Mark detection edge data 17	BB23	0E3A33	Mark detection edge data 51
BB02	0E3A12	Mark detection edge data 18	BB24	0E3A34	Mark detection edge data 52
BB03	0E3A13	Mark detection edge data 19	BB25	0E3A35	Mark detection edge data 53
BB04	0E3A14	Mark detection edge data 20	BB26	0E3A36	Mark detection edge data 54
BB05	0E3A15	Mark detection edge data 21	BB27	0E3A37	Mark detection edge data 55
BB06	0E3A16	Mark detection edge data 22	BB28	0E3A38	Mark detection edge data 56
BB07	0E3A17	Mark detection edge data 23	BB29	0E3A39	Mark detection edge data 57
BB08	0E3A18	Mark detection edge data 24	BB2A	0E3A3A	Mark detection edge data 58
BB09	0E3A19	Mark detection edge data 25	BB2B	0E3A3B	Mark detection edge data 59
BB0A	0E3A1A	Mark detection edge data 26	BB2C	0E3A3C	Mark detection edge data 60
BB0B	0E3A1B	Mark detection edge data 27	BB2D	0E3A3D	Mark detection edge data 61
BB0C	0E3A1C	Mark detection edge data 28	BB2E	0E3A3E	Mark detection edge data 62
BB0D	0E3A1D	Mark detection edge data 29	BB2F	0E3A3F	Mark detection edge data 63
BB0E	0E3A1E	Mark detection edge data 30		0E3A40	Mark detection edge data 64
BB0F	0E3A1F	Mark detection edge data 31		0E3A41	Mark detection edge data 65
BB10	0E3A20	Mark detection edge data 32		:	:
BB11	0E3A21	Mark detection edge data 33		0E3A7F	Mark detection edge data 127

10.17.2 Mark detection positioning data table

Address		Content
MR- MC2	MR- MC3	
BB30	0E3B00	Mark detection positioning data 0
BB31	0E3B01	
BB32	0E3B02	
BB33	0E3B03	
BB34	0E3B04	Mark detection positioning data 1
BB35	0E3B05	
BB36	0E3B06	
BB37	0E3B07	
BB38	0E3B08	Mark detection positioning data 2
BB39	0E3B09	
BB3A	0E3B0A	
BB3B	0E3B0B	
BB3C	0E3B0C	Mark detection positioning data 3
BB3D	0E3B0D	
BB3E	0E3B0E	
BB3F	0E3B0F	
BB40	0E3B10	Mark detection positioning data 4
BB41	0E3B11	
BB42	0E3B12	
BB43	0E3B13	
BB44	0E3B14	Mark detection positioning data 5
BB45	0E3B15	
BB46	0E3B16	
BB47	0E3B17	
BB48	0E3B18	Mark detection positioning data 6
BB49	0E3B19	
BB4A	0E3B1A	
BB4B	0E3B1B	
BB4C	0E3B1C	Mark detection positioning data 7
BB4D	0E3B1D	
BB4E	0E3B1E	
BB4F	0E3B1F	
BB50	0E3B20	Mark detection positioning data 8
BB51	0E3B21	
BB52	0E3B22	
BB53	0E3B23	
BB54	0E3B24	Mark detection positioning data 9
BB55	0E3B25	
BB56	0E3B26	
BB57	0E3B27	
BB58	0E3B28	Mark detection positioning data 10
BB59	0E3B29	
BB5A	0E3B2A	
BB5B	0E3B2B	

Address		Content
MR- MC2	MR- MC3	
BB5C	0E3B2C	Mark detection positioning data 11
BB5D	0E3B2D	
BB5E	0E3B2E	
BB5F	0E3B2F	
BB60	0E3B30	Mark detection positioning data 12
BB61	0E3B31	
BB62	0E3B32	
BB63	0E3B33	
BB64	0E3B34	Mark detection positioning data 13
BB65	0E3B35	
BB66	0E3B36	
BB67	0E3B37	
BB68	0E3B38	Mark detection positioning data 14
BB69	0E3B39	
BB6A	0E3B3A	
BB6B	0E3B3B	
BB6C	0E3B3C	Mark detection positioning data 15
BB6D	0E3B3D	
BB6E	0E3B3E	
BB6F	0E3B3F	
BB70	0E3B40	Mark detection positioning data 16
BB71	0E3B41	
BB72	0E3B42	
BB73	0E3B43	
BB74	0E3B44	:
:	:	
BC2B	0E3BFB	
BC2C	0E3BFC	Mark detection positioning data 63
BC2D	0E3BFD	
BC2E	0E3BFE	
BC2F	0E3BFF	
	0E3C00	Mark detection positioning data 64
	0E3C01	
	0E3C02	
	0E3C03	
	0E3C04	
	:	
	0E3CFB	
	0E3CFC	Mark detection positioning data 127
	0E3CFD	
	0E3CFE	
	0E3CFF	

10.18 Continuous operation to torque control data table

Address (Note)		Symbol	Name	At manual switch selection
MR-MC2 $\square \square$	MR-MC3 $\square \square$			
A840	0E1800	PRCPS	Continuous operation to torque control switching position (4 bytes)	Invalid
A841	0E1801			
A842	0E1802			
A843	0E1803			
A844	0E1804	PRLMPS	Press limit position (4 bytes)	Valid
A845	0E1805			
A846	0E1806			
A847	0E1807			
A848	0E1808	PRCTSP	Continuous operation to torque control speed limit value (4 bytes)	Valid
A849	0E1809			
A84A	0E180A			
A84B	0E180B			
A84C	0E180C	PRTGTR	Target torque (2 bytes)	Valid
A84D	0E180D			
A84E	0E180E	PRTM	Press time (2 bytes)	Invalid
A84E	0E180F			
A850	0E1810	PRTRW	Torque settle width (2 bytes)	Valid
A851	0E1811			
A852	0E1812	PRWTM	Torque settle waiting time (2 bytes)	Valid
A853	0E1813			
A854	0E1814	PRCA	Continuous operation to torque control acceleration time constant (2 bytes)	Valid
A855	0E1815			
A856	OE1816	PRCD	Continuous operation to torque control deceleration time constant (2 bytes)	Valid
A857	0E1817			
A858	0E1818	PRCOP	Continuous operation to torque control operating conditions (2 bytes)	Valid
A859	0E1819			
A85A	0E181A		Reserved	
A85B	0E181B			
A85C	0E181C			
A85D	0E181D			
A85E	0E181E			
A85F	0E181F			

Note. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 20h for each axis.
10.19 Interpolation group No. being executed table

Address		Content
MR-MC2 $\square \square$	MR-MC3 $\square \square$	
E040	0FB400	Interpolation group No. being executed (Axis 1)
E041	0FB401	Interpolation group No. being executed (Axis 2)
E042	0FB402	Interpolation group No. being executed (Axis 3)
E043	0FB403	Interpolation group No. being executed (Axis 4)
E044	0FB404	Interpolation group No. being executed (Axis 5)
E045	0FB405	Interpolation group No. being executed (Axis 6)
E046	0FB406	Interpolation group No. being executed (Axis 7)
E047	0FB407	Interpolation group No. being executed (Axis 8)
E048	0FB408	Interpolation group No. being executed (Axis 9)
E049	0FB409	Interpolation group No. being executed (Axis 10)
E04A	0FB40A	Interpolation group No. being executed (Axis 11)
E04B	0FB40B	Interpolation group No. being executed (Axis 12)
E04C	0FB40C	Interpolation group No. being executed (Axis 13)
E04D	0FB40D	Interpolation group No. being executed (Axis 14)
E04E	0FB40E	Interpolation group No. being executed (Axis 15)
E04F	0FB40F	Interpolation group No. being executed (Axis 16)
E050	0FB410	Interpolation group No. being executed (Axis 17)
E051	0FB411	Interpolation group No. being executed (Axis 18)
E052	0FB412	Interpolation group No. being executed (Axis 19)
E053	0FB413	Interpolation group No. being executed (Axis 20)
E054	0FB414	Interpolation group No. being executed (Axis 21)
E055	0FB415	Interpolation group No. being executed (Axis 22)
E056	0FB416	Interpolation group No. being executed (Axis 23)
E057	$0 F B 417$	Interpolation group No. being executed (Axis 24)
E058	0FB418	Interpolation group No. being executed (Axis 25)
E059	0FB419	Interpolation group No. being executed (Axis 26)
E05A	0FB41A	Interpolation group No. being executed (Axis 27)
E05B	0FB41B	Interpolation group No. being executed (Axis 28)
E05C	0FB41C	Interpolation group No. being executed (Axis 29)
E05D	0FB41D	Interpolation group No. being executed (Axis 30)
E05E	0FB41E	Interpolation group No. being executed (Axis 31)
E05F	0FB41F	Interpolation group No. being executed (Axis 32)
E060	0FB420	Interpolation group No. being executed (Axis 33) (Note)
:	:	:
E06F	0FB42F	Interpolation group No. being executed (Axis 48) (Note)
	0FB430	Interpolation group No. being executed (Axis 49)
	:	:
	0FB43F	Interpolation group No. being executed (Axis 64)
	0FB440	Reserved
	$:$	
	0FB47F	

Note. When using MR-MC2 $\square \square$, E060 to E06F is "Reserved".
(1) Interpolation group No. being executed

Stores the linear interpolation group No. in axes that are executing linear interpolation.
When linear interpolation operation is completed, the interpolation group No. being executed is cleared and changes to 0 .

MEMO

11. PARAMETERS

Concerning the parameters for which the parameter name shows that it is set by manufacturer, do not use other than the default values. If erroneous values are set, unexpected movement can occur. The parameters are classified as is shown below.

Classification		Parameter No. (Note)	Remarks
System parameters	No. 0001 to 007F		
Servo amplifier	Servo parameters	No. 1100 to 137 F	Each axis
	Control parameters	No. 0200 to 02FF	Each axis
Sensing module (axis mode)	Servo parameters	No. 1100 to 11 BF	Each axis
	Control parameters	No.0200 to 02FF	Each axis
SSCNETII/H head module	RIO module parameters		Each station
	RIO control parameters	No. 0200 to 023F	Each station
Sensing module (station mode)	RIO module parameters	No. 1100 to 13 FF	Each station
	RIO control parameters	No. 0200 to 023F	Each station

Note. Parameter numbers are given in hexadecimal.

11.1 System parameters

POINT

- The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.

Note 1. When all the system parameters of the log acquiring selection (parameters No. 0040 to $0044,004 \mathrm{~B}$) are set to 0000 h (initial value), log for all axes, stations and systems will be acquired.
2. When using MR-MC2 \square, "for manufacturer setting".

11.2 Servo parameters

11.2.1 Servo amplifier MR-J4(Wロ)-■B

The parameters described in this section are for using the servo amplifier MR-J4(Wロ)-םB. For details, refer to the Servo Amplifier Instruction Manual on your servo amplifier.

POINT

- The parameters with a * mark at the front of the symbol are validated according to the following conditions.
*: The setting value for the system startup or the SSCNET reconnection is valid. The parameter change after the system startup is invalid.
**: The setting value for the system startup or the SSCNET reconnection is valid. However, after the system startup, turn off the power supply of the servo amplifier once, and it is necessary to turn on it again. The parameter change after the system startup is invalid.
(1) Menu A) Basic settings

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Initial Value	Units
1100	PA01	**STY	Operation mode	1000h	
1101	PA02	**REG	Regenerative option	0000h	
1102	PA03	*ABS	Absolute position detection system	0000h	
1103	PA04	*AOP1	Function selection A-1	2000h	
1104	PA05		For manufacturer setting	10000	
1105	PA06			1	
1106	PA07			1	
1107	PA08	ATU	Auto tuning mode	0001h	
1108	PA09	RSP	Auto tuning response	16	
1109	PA10	INP	In-position range	1600	pulse
110A	PA11		For manufacturer setting	10000	
110B	PA12			10000	
110C	PA13			0000h	
110D	PA14	*POL	Rotation direction selection/travel direction selection	0	
110E	PA15	*ENR	Encoder output pulses	4000	pulse/rev
110F	PA16	*ENR2	Encoder output pulses 2	1	
1110	PA17	**MSR	Servo motor series setting	0000h	
1111	PA18	**MTY	Servo motor type setting	0000h	
1112	PA19	*BLK	Parameter writing inhibit	00ABh	
1113	PA20	*TDS	Tough drive setting	0000h	
1114	PA21	*AOP3	Function selection A-3	0001h	
1115	PA22	**PCS	Position control composition selection	0000h	
1116	PA23	DRAT	Drive recorder arbitrary alarm trigger setting	0000h	
1117	PA24	AOP4	Function selection A-4	0000h	
1118	PA25	OTHOV	One-touch tuning - Overshoot permissible level	0000h	\%
1119	PA26	*AOP5	Function selection A-5 (Note)	0000h	
111A	PA27		For manufacturer setting	0000h	
111B	PA28			0000h	
111C	PA29			0000h	
111D	PA30			0000h	
111E	PA31			0000h	
111F	PA32			0000h	
1120	PA33			0000h	
:	:			:	
113F	PA64			0000h	

Note. MR-J4- $\square \mathrm{B}$ use.
(2) Menu B) Gain filter settings

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Initial Value	Units
1140	PB01	FILT	Adaptive tuning mode (adaptive filter II)	0000h	
1141	PB02	VRFT	Vibration suppression control tuning mode (advanced vibration suppression control II)	0000h	\checkmark
1142	PB03	TFBGN	Torque feedback loop gain	18000	rad/s
1143	PB04	FFC	Feed forward gain	0	\%
1144	PB05		For manufacturer setting	500	
1145	PB06	GD2	Load to motor inertia ratio/load to motor mass ratio	700	0.01 times
1146	PB07	PG1	Model loop gain	150	$0.1 \mathrm{rad} / \mathrm{s}$
1147	PB08	PG2	Position loop gain	370	$0.1 \mathrm{rad} / \mathrm{s}$
1148	PB09	VG2	Speed loop gain	823	$\mathrm{rad} / \mathrm{s}$
1149	PB10	VIC	Speed integral compensation	337	0.1 ms
114A	PB11	VDC	Speed differential compensation	980	
114B	PB12	OVA	Overshoot amount compensation	0	\%
114C	PB13	NH1	Machine resonance suppression filter 1	4500	Hz
114D	PB14	NHQ1	Notch shape selection 1	0000h	
114E	PB15	NH2	Machine resonance suppression filter 2	4500	Hz
114F	PB16	NHQ2	Notch shape selection 2	0000h	
1150	PB17	NHF	Shaft resonance suppression filter	0000h	
1151	PB18	LPF	Low-pass filter setting	3141	rad/s
1152	PB19	VRF11	Vibration suppression control 1 - Vibration frequency	1000	0.1 Hz
1153	PB20	VRF12	Vibration suppression control 1 - Resonance frequency	1000	0.1 Hz
1154	PB21	VRF13	Vibration suppression control 1 - Vibration frequency damping	0	0.1
1155	PB22	VRF14	Vibration suppression control 1 - Resonance frequency damping	0	0.1
1156	PB23	VFBF	Low-pass filter selection	0000h	
1157	PB24	*MVS	Slight vibration suppression control	0000h	
1158	PB25	*BOP1	Function selection B-1	0000h	
1159	PB26	*CDP	Gain switching function	0000h	
115A	PB27	CDL	Gain switching condition	10	kpps, pulse, r/min
115B	PB28	CDT	Gain switching time constant	1	ms
115C	PB29	GD2B	Load to motor inertia ratio/load to motor mass ratio after gain switching	700	0.01 times
115D	PB30	PG2B	Position loop gain after gain switching	0	$0.1 \mathrm{rad} / \mathrm{s}$
115E	PB31	VG2B	Speed loop gain after gain switching	0	$\mathrm{rad} / \mathrm{s}$
115F	PB32	VICB	Speed integral compensation after gain switching	0	0.1 ms
1160	PB33	VRF11B	Vibration suppression control 1 - Vibration frequency after gain switching	0	0.1 Hz
1161	PB34	VRF12B	Vibration suppression control 1 - Resonance frequency after gain switching	0	0.1 Hz
1162	PB35	VRF13B	Vibration suppression control 1- Vibration frequency damping after gain switching	0	0.01
1163	PB36	VRF14B	Vibration suppression control 1- Resonance frequency damping after gain switching	0	0.01
1164	PB37		For manufacturer setting	1600	
1165	PB38			0	
1166	PB39			0	
1167	PB40			0	
1168	PB41			0	
1169	PB42			0	
116A	PB43			0000h	

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Initial Value	Units
116B	PB44		For manufacturer setting	0	
116C	PB45	CNHF	Command notch filter	0000h	
116D	PB46	NH3	Machine resonance suppression filter 3	4500	Hz
116E	PB47	NHQ3	Notch shape selection 3	0000h	
116F	PB48	NH4	Machine resonance suppression filter 4	4500	Hz
1170	PB49	NHQ4	Notch shape selection 4	0000h	
1171	PB50	NH5	Machine resonance suppression filter 5	4500	Hz
1172	PB51	NHQ5	Notch shape selection 5	0000h	
1173	PB52	VRF21	Vibration suppression control 2 - Vibration frequency	1000	0.1 Hz
1174	PB53	VRF22	Vibration suppression control 2 - Resonance frequency	1000	0.1 Hz
1175	PB54	VRF23	Vibration suppression control 2 - Vibration frequency damping	0	0.01
1176	PB55	VRF24	Vibration suppression control 2 - Resonance frequency damping	0	0.01
1177	PB56	VRF21B	Vibration suppression control 2 - Vibration frequency after gain switching	0	0.1 Hz
1178	PB57	VRF22B	Vibration suppression control 2 - Resonance frequency after gain switching	0	0.1 Hz
1179	PB58	VRF23B	Vibration suppression control 2 - Vibration frequency damping after gain switching	0	0.01
117A	PB59	VRF24B	Vibration suppression control 2 - Resonance frequency damping after gain switching	0	0.01
117B	PB60	PG1B	Model loop gain after gain switching	0	0.1rad/s
117C	PB61		For manufacturer setting	0	
117D	PB62			0000h	
117E	PB63			0000h	
117F	PB64			0000h	

(3) Menu C) Expansion settings 1

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Initial Value	Units
1180	PC01	ERZ	Error excessive alarm level	0	rev or mm
1181	PC02	MBR	Electromagnetic brake sequence output	0	ms
1182	PC03	*ENRS	Encoder output pulse selection	0000h	${ }^{2}$
1183	PC04	**COP1	Function selection C-1	0000h	-
1184	PC05	**COP2	Function selection C-2	0000h	${ }^{-}$
1185	PC06	*COP3	Function selection C-3	0000h	S
1186	PC07	ZSP	Zero speed	50	$\mathrm{r} / \mathrm{min}$ or mm / s
1187	PC08	OSL	Overspeed alarm detection level	0	$\mathrm{r} / \mathrm{min}$ or mm / s
1188	PC09	MOD1	Analog monitor 1 output	0000h	
1189	PC10	MOD2	Analog monitor 2 output	0001h	-
118A	PC11	MO1	Analog monitor 1 offset	0	mV
118B	PC12	MO2	Analog monitor 2 offset	0	mV
118C	PC13	MOSDL	Analog monitor - Feedback position output standard data - Low	0	pulse
118D	PC14	MOSDH	Analog monitor - Feedback position output standard data - High	0	10000pulses
118E	PC15		For manufacturer setting	0	
118F	PC16			0000h	
1190	PC17		Function selection C-4	0000h	
1191	PC18	*COP5	Function selection C-5	$\begin{gathered} 0000 \mathrm{~h} \\ \text { (Note 1) } \\ \hline \end{gathered}$	-
1192	PC19	-	For manufacturer setting	0000h	
1193	PC20	*COP7	Function selection C-7	0000h	
1194	PC21	*BPS	Alarm history clear	0000h	
1195	PC22		For manufacturer setting	0	
1196	PC23			0000h	
1197	PC24	RSBR	Forced stop deceleration time constant	100	ms
1198	PC25	Cors	For manufacturer setting	0	
1199	PC26	**COP8	Function selection C-8 (Note 2)	0000h	
119A	PC27	**COP9	Function selection C-9	0000h	
119B	PC28	-	For manufacturer setting	0000h	
119C	PC29	*COPB	Function selection C-B	0000h	
119D	PC30	S	For manufacturer setting	0	-
119E	PC31	RSUP1	Vertical axis freefall prevention compensation amount	0	0.0001rev or 0.01 mm
119F	PC32		For manufacturer setting	0000h	
11A0	PC33			0	
11A1	PC34			100	
11A2	PC35			0000h	
11A3	PC36			0000h	
11A4	PC37			0000h	
11A5	PC38	ERW	Error excessive warning level	0	rev or mm
11A6	PC39		For manufacturer setting	0000h	
11A7	PC40			0000h	
11A8	PC41			0000h	
:	:			:	
11BF	PC64			0000h	

Note 1. For position board, the initial value is "1000h".
2. MR-J4-■B use.
(4) Menu D) I/O settings

(5) Menu E) Expansion settings 2

| Parameter No. | MR-J4-B
 Parameter No. | Symbol | | Name | Initial Value |
| :---: | :---: | :---: | :--- | :---: | :---: | Units

Note. MR-J4- \square B use.
(6) Menu F) Expansion settings 3

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Initial Value	Units
1240	PF01		For manufacturer setting	0000h	
1241	PF02	*FOP2	Function selection F-2 (Note)	0000h	
1242	PF03		For manufacturer setting	0000h	
1243	PF04			0	
1244	PF05			0000h	
1245	PF06	*FOP5	Function selection F-5	0000h	
1246	PF07		For manufacturer setting	0000h	
1247	PF08			0000h	
1248	PF09			0	
1249	PF10			0	
124A	PF11			0	
124B	PF12	DBT	Electronic dynamic brake operating time	2000	ms
124C	PF13		For manufacturer setting	0000h	
124D	PF14			10	
124E	PF15			0000h	
124F	PF16			0000h	
1250	PF17			0000h	
1251	PF18	**STOD	STO diagnosis error detection time	0	S
1252	PF19		For manufacturer setting	0000h	
1253	PF20			0000h	
1254	PF21	DRT	Drive recorder switching time setting	0	S
1255	PF22		For manufacturer setting	200	
1256	PF23	OSCL1	Vibration tough drive - Oscillation detection level	50	\%
1257	PF24	*OSCL2	Vibration tough drive function selection	0000h	
1258	PF25	CVAT	SEMI-F47 function instantaneous power failure detection time (instantaneous power failure tough drive - detection time)	200	ms
1259	PF26		For manufacturer setting	0	
125A	PF27			0	${ }^{\circ} \mathrm{C}$
125B	PF28			0	
125C	PF29			0000h	
125D	PF30			0	
125E	PF31	FRIC	Machine diagnosis function - Friction judgment speed	0	/min o mm / s
125F	PF32		For manufacturer setting	50	
1260	PF33			0000h	
1261	PF34			0000h	
1262	PF35			0000h	
1263	PF36			0000h	
1264	PF37			0000h	
1265	PF38			0000h	
1266	PF39			0000h	
1267	PF40			0000h	
1268	PF41			0000h	
1269	PF42			0000h	
126A	PF43			0000h	
126B	PF44			0000h	
126C	PF45			0000h	
:	:			:	
127F	PF64			0000h	

Note. MR-J4W $\square-\square B$ use.
(7) Menu O) Option setting

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Initial Value	Units
1280	Po01		For manufacturer setting	0000h	
1281	Po02			0000h	
1282	Po03			0000h	
1283	Po04			0000h	
1284	Po05			0000h	
1285	Po06			0	
1286	Po07			0	
1287	Po08			0	
1288	Po09			0	
1289	Po10			0000h	
128A	Po11			0000h	
128B	Po12			0000h	
128 C	Po13			0000h	
128D	Po14			0000h	
128 E	Po15			0000h	
128F	Po16			0000h	
1290	Po17			0000h	
1291	Po18			0000h	
1292	Po19			0000h	
1293	Po20			0000h	
1294	Po21			0000h	
1295	Po22			0000h	
1296	Po23			0000h	
1297	Po24			0000h	
1298	Po25			0000h	
1299	Po26			0000h	
129A	Po27			0000h	
129B	Po28			0000h	
129C	Po29			0000h	
129D	Po30			0000h	
129 E	Po31			0000h	
129F	Po32			0000h	
12A0	Po33			0000h	
:	:			:	
12BF	Po64			0000h	

11. PARAMETERS
(8) Menu S) Special settings

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Initial Value
12C0	PS01		For manufacturer setting	0000h
12C1	PS02			0000h
12C2	PS03			0000h
12C3	PS04			0000h
12C4	PS05			0000h
12C5	PS06			0000h
12C6	PS07			0000h
12 C 7	PS08			0000h
12C8	PS09			0000h
12C9	PS10			0000h
12CA	PS11			0000h
12CB	PS12			0000h
12CC	PS13			0000h
12CD	PS14			0000h
12CE	PS15			0000h
12CF	PS16			0000h
12D0	PS17			0000h
12D1	PS18			0000h
12D2	PS19			0000h
12D3	PS20			0000h
12D4	PS21			0000h
12D5	PS22			0000h
12D6	PS23			0000h
12D7	PS24			0000h
12D8	PS25			0000h
12D9	PS26			0000h
12DA	PS27			0000h
12DB	PS28			0000h
12DC	PS29			0000h
12DD	PS30			0000h
12DE	PS31			0000h
12DF	PS32			0000h
12E0	PS33			0000h
:	:			:
12FF	PS64			0000h

(9) Menu L) Linear servo motor/DD motor settings

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Initial Value	Units
1300	PL01	**LIT1	Linear servo motor/DD motor function selection 1	0301h	
1301	PL02	**LIM	Linear encoder resolution - Numerator	1000	$\mu \mathrm{m}$
1302	PL03	**LID	Linear encoder resolution - Denominator	1000	$\mu \mathrm{m}$
1303	PL04	*LIT2	Linear servo motor/DD motor function selection 2	0003h	
1304	PL05	LB1	Position deviation error detection level	0	mm, 0.01rev
1305	PL06	LB2	Speed deviation error detection level	0	$\mathrm{r} / \mathrm{min}, \mathrm{mm} / \mathrm{s}$
1306	PL07	LB3	Torque/thrust deviation error detection level	100	\%
1307	PL08	*LIT3	Linear servo motor/DD motor function selection 3	0010h	
1308	PL09	LPWM	Magnetic pole detection voltage level	30	\%
1309	PL10		For manufacturer setting	5	
130A	PL11			100	
130B	PL12			500	
130C	PL13			0000h	
130D	PL14			0	
130E	PL15			20	
130F	PL16			0	
1310	PL17	LTSTS	Magnetic pole detection - Minute position detection method Function selection	0000h	\checkmark
1311	PL18	IDLV	Magnetic pole detection - Minute position detection method Identification signal amplitude	0	\%
1312	PL19		For manufacturer setting	0	
1313	PL20			0	
1314	PL21			0	
1315	PL22			0	
1316	PL23			0000h	
1317	PL24			0	
1318	PL25			0000h	
1319	PL26			0000h	
131A	PL27			0000h	
131B	PL28			0000h	
131C	PL29			0000h	
131D	PL30			0000h	
131E	PL31			0000h	
131F	PL32			0000h	
1320	PL33			0000h	
1321	PL34			0000h	
1322	PL35			0000h	
1323	PL36			0000h	
1324	PL37			0000h	
1325	PL38			0000h	
1326	PL39			0000h	
1327	PL40			0000h	
1328	PL41			0000h	
1329	PL42			0000h	
132A	PL43			0000h	
132B	PL44			0000h	
132C	PL45			0000h	
132D	PL46			0000h	
:	:			:	
133F	PL64			0000h	

(10) Menu T) Parameter for manufacturer setting

Parameter No.	MR-J4-B Parameter No.	Symbol	Name	Initial Value	Units
1340	PT01		For manufacturer setting	0000h	
1341	PT02			0000h	
1342	PT03			0001h	
1343	PT04			500	
1344	PT05			10	
1345	PT06			100	
1346	PT07			100	
1347	PT08			0000h	
1348	PT09			0000h	
1349	PT10			0000h	
134A	PT11			0000h	
134B	PT12			0400h	
134C	PT13			0000h	
134D	PT14			0000h	
134E	PT15			100	
134F	PT16			100	
1350	PT17			100	
1351	PT18			0	
1352	PT19			0	
1353	PT20			0000h	
1354	PT21			0000h	
1355	PT22			0000h	
1356	PT23			100	
1357	PT24			150	
1358	PT25			20	
1359	PT26			0000h	
135A	PT27			0000h	
135B	PT28			0000h	
135C	PT29			0000h	
135D	PT30			0000h	
135E	PT31			0000h	
135F	PT32			0000h	
1360	PT33			0000h	
1361	PT34			0000h	
1362	PT35			0000h	
1363	PT36			0000h	
1364	PT37			0000h	
1365	PT38			0000h	
1366	PT39			0000h	
1367	PT40			0000h	
1368	PT41			0000h	
1369	PT42			0000h	
136A	PT43			0000h	
136B	PT44			0000h	
136C	PT45			0000h	
136D	PT46			0000h	
136E	PT47			0000h	
136F	PT48			0000h	
:	:			:	
137F	PT64			0000h	

11.2.2 Sensing module (axis mode)

The parameters described in this section are for using the sensing module (axis mode). For details, refer to the Sensing Module Instruction Manual.

POINT

- The parameters with a * mark in front of the symbol are validated according to the following conditions.
*: The setting value for the system startup or the SSCNET reconnection is valid. The parameter change after the system startup is invalid.
**: The setting value for the system startup or the SSCNET reconnection is valid. However, after the system startup, turn off the power supply of the servo amplifier once, and it is necessary to turn on it again. The parameter change after the system startup is invalid.
(1) Menu A) Basic setting

Parameter No.	Sensing pulse I/O module Parameter No.	Symbol	Name	Initial Value	Units
1100	PA01		For manufacturer setting	0000h	
1101	PA02			0000h	
1102	PA03			0000h	
1103	PA04			0000h	
1104	PA05			0000h	
1105	PA06	*EGM	Output-side electronic gear multiplication	1	
1106	PA07	*EGS	Input-side electronic gear multiplication	1	
1107	PA08		For manufacturer setting	0	
1108	PA09			0	
1109	PA10			0	
110A	PA11			0	
110B	PA12			0	
110C	PA13			0000h	
110D	PA14	*POL	Rotation direction selection	0	
110E	PA15	*PRL	Number of pulses per revolution setting Lower	4000	pulse/rev
110F	PA16	*PRH	Number of pulses per revolution setting Upper	0	10000pulse /rev
1110	PA17	*DIL	Input signal logic selection	0000h	
1111	PA18	*DOL	Output signal logic selection	0000h	
1112	PA19		For manufacturer setting	000Bh	
1113	PA20			0000h	
1114	PA21			0000h	
1115	PA22			0000h	
1116	PA23			0000h	
1117	PA24			0000h	
1118	PA25			0000h	
1119	PA26			0000h	
111A	PA27			0000h	
111B	PA28			0000h	
111C	PA29			0000h	
111D	PA30			0000h	
:	:			:	
113F	PA64			0000h	

(2) Menu B) Gain filter settings

Parameter No.	Sensing pulse I/O module Parameter No.	Symbol	Name	Initial Value	Units
1140	PB01	*DEL	[AL. 35 I/O pulse frequency error] alarm level selection	0000h	
1141	PB02		For manufacturer setting	0000h	
1142	PB03			0	
1143	PB04			0	
1144	PB05			0	
1145	PB06			0	
1146	PB07			0	
1147	PB08			0	
1148	PB09	*TOP	Motor maximum speed	6000	r/min
1149	PB10	${ }^{\text {T}}$	For manufacturer setting	0	
114A	PB11	RDT	Virtual RD signal delay time	0	ms
114B	PB12	CRT	Clear signal output pulse width time	10	ms
114C	PB13	${ }^{\text {r }}$	For manufacturer setting	0	
114D	PB14	*PLSO	Command pulse output form	0000h	
114E	PB15	\bigcirc	For manufacturer setting	0	
114F	PB16	*IOP	Input function selection	0000h	
1150	PB17	*FPI	Feedback pulse input form	0000h	
1151	PB18	*BAS	Motor rated speed	3000	r/min
1152	PB19		For manufacturer setting	0	
1153	PB20			0	
1154	PB21			0	
1155	PB22			0	
1156	PB23			0000h	
1157	PB24			0000h	
1158	PB25			0000h	
1159	PB26	*LIS	Home position return input setting	0000h	
115A	PB27		For manufacturer setting	0	
115B	PB28			0	
115C	PB29			0	
115D	PB30			0	
115E	PB31			0	
115F	PB32			0	
1160	PB33			0	
1161	PB34			0	
1162	PB35			0	
1163	PB36			0	
1164	PB37			0	
1165	PB38			0	
1166	PB39			0	
1167	PB40			0	
1168	PB41			0	
1169	PB42			0	
116A	PB43			0004h	
116B	PB44			0	
116C	PB45			0000h	
:	:			:	
117F	PB64			0000h	

(3) Menu C) Expansion settings 1

Parameter No.	Sensing pulse I/O module Parameter No.	Symbol		Name	Initial Value

11. PARAMETERS

Note 1. The setting of parameter No.11A0 and after is only required for axes whose type code (parameter No.021E) is set to 3015h. Set the initial value for axes whose type code is to be set to 3025 h .

11.3 Control parameters

11.3.1 Servo amplifier MR-J4(W $\square)$ - $\square B$

POINT

- The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.
- The when in tandem drive column in the table is for control parameter setting classification of the axis for which the tandem drive is performed. Master shows where only the master value are valid, Same value shows both the master/slave axes is set to the same value, and Each axis shows where master/slave axis can be set separately. Refer to "Chapter 8" concerning details for the classification.

Parameter No.	Symbol	Name	Initial Value	Units	Setting range			Function	When in tandem drive
0201	OPC2	Control option 2	0000h		$\begin{aligned} & \hline \text { 0000h to } \\ & \text { 0121h } \end{aligned}$	0		—Position switch judgment conditions Set the position switch judgment conditions 0: Current command position 1: Current feedback position Continuous operation position overbound processing Defines processing for when the stop position exceeds the command position during operation. 0 : Alarm 1: Return to command position 2: Stop firmly at command position Note. Operates through "2: Stop firmly at command position" when using circular interpolation. Change of position over-bound processing Set processing for when the stop position exceeds the command position during position change. 0 : Alarm 1: Return to command position	Master
0202	*OPC3	Control option 3	0001h		$\begin{array}{\|l\|} \hline \text { 0000h to } \\ 0001 \mathrm{~h} \end{array}$	0		Interlock signal polarity Set the polarity of the Interlock signal. 0: B-contact 1: A-contact	Master
0203	*AXALC	Axis No. assignment	0000h		0000h to 011Fh MC200 0000h to 012Fh	0		-Servo amplifier axis No. Set the servo amplifier axis No. to be assigned to the axis Nos. on the position board. 00h: No axis No. assignment 01 h to 14 h : Axis No. MG200 01h to 20h: Axis No. MC300 Example: OAh: Axis No. 10 Servo amplifier line No. Set the servo amplifier line No. to be assigned to the axis Nos. on the position board. 0 to 1: Line No.-1	Each axis
0204	ITM1	Interrupt condition 1	0000h		0000h to FFFFh	Set interr	t co	ition 1.	Each axis
0205	ITM2	$\begin{aligned} & \text { Interrupt condition } \\ & 2 \end{aligned}$	0000h		0000h to FFFFh	Set interr	t co	ition 2.	Each axis

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function	When in tandem drive
0206	*OPC4	Control option 4	0000h		$\left.\begin{gathered} 0000 \mathrm{~h} \text { to } \\ 1001 \mathrm{~h} \\ \text { WC200 } \\ 0000 \mathrm{~h} \text { to } \\ 1101 \mathrm{~h} \\ \text { Mc300 } \end{gathered} \right\rvert\,$		Master
0207	λ	For manufacturer setting	0	λ			-
0208	*BKC	Backlash compensation amount	0000h	pulse	$\begin{gathered} \hline 0 \text { to } \\ 65535 \end{gathered}$	Setting for performing compensation of machine backlash.	Same value
0209	λ	For manufacturer setting	0				
020A	*CMXL	Electronic gear numerator (lower) Electronic gear numerator (upper)	0001h 0000 h			Set the numerator for electronic gears.	Master
020C	*CDVL	Electronic gear denominator (lower) Electronic gear denominator (upper)	0001h		1 to 589823 (32 bit)	Set the denominator for electronic gears.	Master
020E 020 F	SUML	Speed units multiplication factor (lower) Speed units multiplication factor (upper)	2000h		$\begin{gathered} \hline 1 \text { to } \\ 32768 \\ (32 \text { bit) } \end{gathered}$	Set the multiplication factor for the speed command.	Master
0210	TLP	Forward rotation torque limit value	3000	0.1\%	$\begin{gathered} 0 \text { to } \\ 32767 \end{gathered}$	Set for limiting torque generated in the CW direction when the servo motor is exerting in the CCW direction.	Master
0211	TLN	Reverse rotation torque limit value	3000	0.1\%	$\begin{gathered} 0 \text { to } \\ 32767 \\ \hline \end{gathered}$	Set for limiting torque generated in the CCW direction when the servo motor is exerting in the CW direction.	Master
0212	Σ	For manufacturer setting	0				\bigcirc

Parameter No.	Symbol	Name	Initial Value	Units	Setting range		Function	When in tandem drive
0213	*GIOO	General I/O option	0000h		$\begin{gathered} \hline 0000 \mathrm{~h} \text { to } \\ 0011 \mathrm{~h} \end{gathered}$	$\begin{array}{\|l\|l\|} \hline 0 & 0 \\ \hline \end{array}$	Servo amplifier general input setting Set whether to use the general input of the servo amplifier. 0 : Not used 1: Used Note. When the general input is used, the limit switch signal and the dog signal cannot be input from the servo amplifier. Set other than "Driver input" to the sensor input method (parameter No.0219). Servo amplifier general output setting Set whether to use the general output of the servo amplifier. 0 : Not used 1: Used	Each axis

Parameter No.	Symbol	Name	Initial Value	Units	Setting range		Function	When in tandem drive
0215	*GDINA	General input No. assignment	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 023Fh } \end{aligned}$	Onl setti met 0 \qquad	valid when the I/O table (parameter No.004A) is "Use I/O device table (expanded points)". General input assignment Specify the first input word device number that corresponds with the input bit device number to assign the general input. 000h to 23Fh: Input word device number 000 to 23F Example: When the input word device number 001 is specified, 16 points are assigned from DVI_0010 to DVI_001F. However, DVI_0013 to DVI_001F are unavailable.	Each axis
0216	*GDONA	General output No. assignment MC300	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 023Fh } \end{aligned}$	$\begin{gathered} \hline \text { Only } \\ \text { settir } \\ \text { meth } \\ \hline 0 \end{gathered}$	valid when the I/O table (parameter No.004A) is "Use I/O device table (expanded points d)". General output assignment Specify the first output word device number that corresponds with the output bit device number to assign the general input. 000h to 23Fh: Output word device number 000 to 23 F Example: When the output word device number 002 is specified, 16 points are assigned from DVO_0020 to DVO_002F. However, DVO_0023 to DVI_002F are unavailable.	
0217		For manufacturer setting	0000h					\bigcirc
0218	*SSIA	Sensor signal input assignment MC300	0000h		$\begin{gathered} \text { 0000h to } \\ \text { 0111h } \end{gathered}$	Onl sett	valid when the I/O table (parameter No.004A) is I/O device table (expanded points method).	Each axis

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function	When in tandem drive
0219	*SOP	Sensor input options	0000h		$\begin{array}{\|l\|} \hline \text { 0000h to } \\ \text { 0304h } \end{array}$		Each axis
021A	*SLSP	Sensor signal (LSP) connection specification	0000h		0000 to FFF1h MC200 0000h to FFFFh MC300	The setting target differs depending on the I/O table (parameter No.004A) setting. [When using a digital I/O table] [When using a I/O device table (MR-MC2ם method)] [When using a l/O device table (expanded points method)] MC300 Set the input device assignment connecting LSP to valid/invalid in sensor signal input assignment (parameter No.0218). Input device number assignment Set the input device number where LSP is connected. 0000h to 23FFh: DVI_0000 to DVI 23FF	Each axis

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function	When in tandem drive
021B	*SLSN	$\begin{aligned} & \hline \text { Sensor signal } \\ & \text { (LSN) connection } \\ & \text { specification } \end{aligned}$	0000h		$\begin{array}{\|c\|} \hline 0000 \text { to } \\ \text { FFF1h } \\ \text { MC200 } \\ \\ 0000 \mathrm{~h} \text { to } \\ \text { FFFFh } \\ \text { MC300 } \end{array}$	The setting target differs depending on the I/O table (parameter No.004A) setting. [When using a digital I/O table] [When using a I/O device table (MR-MC2■ロ method)] — Input device assignment Set valid/invalid for the input device assignment where LSN is connected. 0 : Not assigned 1: Assigned -Input device number assignment Set the input device number where LSN is connected. 000h to FFFh: DVI_000 to DVI_3FF [When using a I/O device table (expanded points method)] MC300 Set the input device assignment connecting LSN to valid/invalid in sensor signal input assignment (parameter No.0218).	Each axis

Parameter No.	Symbol	Name	Initial Value	Units	Setting range		Function	When in tandem drive
021C	*SDOG	Sensor signal (DOG) connection specification	0000h		0000 to FFF1h WC200 $0000 h$ to FFFFh WC300	The setting (parameter [When usin [When using method)] \square [When usin method)] Set the inp valid/invalid (parameter \square	target differs depending on the I/O table No.004A) setting. ing a digital I/O table] $\square_{\text {Digital input assignment }}$ Set valid/invalid for the digital input assignment where DOG is connected. 0 : Not assigned 1: Assigned Digital input number assignment Set the digital input number where DOG is connected. 000h to 3FFh: DI_000 to DI_3FF ing a I/O device table (MR-MC2 -Input device assignment Set valid/invalid for the input device assignment where DOG is connected. 0 : Not assigned 1: Assigned Input device number assignment Set the input device number where DOG is connected. 000h to FFFh: DVI_000 to DVI_3FF ing a I/O device table (expanded points MC300 ut device assignment connecting DOG to d in sensor signal input assignment No.0218). —_Input device number assignment Set the input device number where DOG is connected. 0000h to 23FFh: DVI_0000 to DVI_23FF	Each axis
021D	*VEND	Vendor ID	0000h	$>$	0000h to FFFFh	Set the ven 0000h:	ndor ID. (SSCNETII/H communication) Mitsubishi Electric	Same value
021E	*CODE	Type code	1000h		0000h to FFFFh	$\begin{array}{r} \text { Sets the typ } \\ 1000 \mathrm{~h}: \mathrm{N} \\ 1200 \mathrm{~h}: \mathrm{N} \\ \hline \end{array}$	pe code. MR-J4(W■)- $\square B$ MR-JE- $\square \mathrm{B}$ (F)	Same value
021F		For manufacturer setting	0	Z				
0220	OPS	Speed options	0000h		0000h to 0002h	$\begin{array}{l\|l} \hline 0 & 0 \\ \hline \end{array}$	\square Acceleration/deceleration method Set the type of acceleration/ deceleration. 0: Linear acceleration/deceleration 1: Smoothing filter 2: Start up speed enable	Master

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function	When in tandem drive
0221	SRATE	S-curve ratio	0	\%	0 to 100	Set the S-curve ratio of the S-curve acceleration/ deceleration (Sine acceleration/deceleration). 0 : S-curve acceleration/deceleration invalid 1 to 100: S-curve acceleration/deceleration Note 1. S-curve acceleration/deceleration is performed for the acceleration/deceleration selected in speed options (parameter No.0220). 2. The S-curve ratio set by this parameter is used in JOG operation, incremental feed operation and home position return. For automatic operation and linear interpolation operation WC200/interpolation operation MC300 , set the S-curve ratio in the point table.	Master
0222	SPLL	Speed limit value (lower)	OBB8h	Speed units	0000h to FFFFh	Set the value for the moving speed limit.	Master
0223	SPLH	Speed limit value (upper)	0000h		0000h to 7FFFh		
0224	LSPL	Start up speed (lower)	0000h	Speed units	0000h to FFFFh	Set the start up speed	Master
0225	LSPH	Start up speed (upper)	0000h		0000h to 7FFFh		
0226	STC	Smoothing time constant	0	ms	0 to 100	Sets the time constant of the smoothing filter.	Master
0227	STE	Rapid stop time constant	20	ms	$\begin{gathered} \hline 0 \text { to } \\ 20000 \\ \hline \end{gathered}$	Set the deceleration time constant for when operation rapid stop or limit switch is input.	Master
0228	SLPL	Software limit Upper limit (lower)	0000h	Command units	0000h to FFFFh	Set the + side of the software limit.	Master
0229	SLPH	Software limit Upper limit (upper)	0000h		0000h to FFFFh		
022A	SLNL	Software limit Lower limit (lower)	0000h	Command units	0000h to FFFFh	Set the - side of the software limit.	Master
022B	SLNH	Software limit Lower limit (upper)	0000h		0000h to FFFFh		
022C	PSPL	Position switch Upper limit (lower)	0000h	Command units	0000h to FFFFh	Set the + end position for turning on the position switch.	Master
022D	PSPH	Position switch Upper limit (upper)	0000h		0000h to FFFFh		
022E	PSNL	Position switch Lower limit (lower)	0000h	Command units	0000h to FFFFh	Set the - end position for turning on the position switch.	Master
022F	PSNH	Position switch Lower limit (upper)	0000h		0000h to FFFFh		

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function	When in tandem drive
0230	CRPL	Rough match output limits (lower)	0000h	Command units	0000h to FFFFh	Set the remaining distance limits for outputting a command for rough matching.	Master
0231	CRPH	Rough match output limits (upper)	0000h		0000h to 7FFFh		
0232 0233 : 023E		For manufacturer setting	0 0 $:$ 0				
023F	*IFBN	Interface mode maximum buffer number	0		0 to 63	Set the maximum value for buffer number used during interface mode. Set value +1 is the number of buffers. Note. When controlling with interrupt output invalid in interface mode, maximum value of 1 or more must be set.	
0240	*OPZ1	Home position return option 1	0000h		$\begin{array}{\|c\|} \hline 0000 \mathrm{~h} \\ \text { to } 112 \mathrm{Dh} \end{array}$	 Note 1. Shortcut direction is available only by Zphase detection method. 2. Can be changed while system is running. (When using MR-MC2 $\square \square$, compatible with software version A5 or later)	Master

Parameter No.	Symbol	Name	Initial Value	Units	Setting range		Function		When in tandem drive
024D	*LS0	Home position multiple revolution data	0000h	rev	0000h to FFFFh	Set the home position multiple revolution data. (Only using with the absolute position detection system.)			Each axis
024E	*CYOL	Home position within 1 revolution position (lower)	0000h	pulse	0000h to FFFFh	Set the within 1 revolution home position. (Only using with the absolute position detection system.)			Each axis
024F	*CYOH	Home position within 1 revolution position (upper)	0000h		$0000 \mathrm{~h} \text { to }$ FFFFh				
0250	ZPML	Z-phase mask amount (lower)	0000h	Command units	0000h to FFFFh	Set the reference encoder Z-phase mask amount when the home position return method is set to the Z phase detection method.			Master
0251	ZPMH	Z-phase mask amount (upper)	0000h		$\begin{array}{\|c} \hline 0000 \mathrm{~h} \text { to } \\ \text { 7FFFh } \end{array}$				
0252		For manufacturer setting	0						
0253			0						
0254			0						
0255			0						
0256			0						
0257			0						
0258			0						
0259			0						
025A			0						
025B			0						
025C	FREQ	Vibration suppression command filter 1 frequency	0	0.1 Hz	$\begin{gathered} 0 \text { to } \\ 22500 \end{gathered}$	Set the vibration suppression command filter 1 frequency in increments of 0.1 Hz . The setting range for each control cycle is shown below. When a frequency outside of the range is set, vibration suppression command filter 1 becomes invalid.			Master
						Control cycle [ms]	Minimum value $[\mathrm{Hz}]$	Maximum value [Hz]	
						0.88	2.2	562.5	
						0.44	4.4	1125.0	
						0.22	8.8	2250.0	
025D	ATT	Vibration suppression command filter 1 attenuation MC300	0		0 to 32	Set the attenuation 0 : Maximum filt	of the vibration r attenuation	mponent.	Master
025E	EDRP	Vibration suppression command filter 1 operation ending droop MC300	0	pulse	$\begin{gathered} \hline 0 \text { to } \\ 10000 \end{gathered}$	Set the operation finishes. When the suppression comm the set value, all re operation ends. 0: 5[pulse]	ending droop for amount of droop mand filter 1 is equ maining pulses	hen operation by vibration to or less than output and	Master
025F		For manufacturer setting	0		-				

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function	When in tandem drive
0265	TOP	Tandem drive options	0000h		$\begin{gathered} \hline \text { 0000h to } \\ 1011 \mathrm{~h} \end{gathered}$		Master
0266	*TEV	Tandem drive synchronous alignment valid width	10000	Command units	$\begin{gathered} 0 \text { to } \\ 32767 \end{gathered}$	Set the valid width for performing compensation of the deviation between the master axis and slave axis when the servo is turned on. (0 : The check with the synchronous alignment valid width is invalid.)	Master
0267	*TES	Tandem drive synchronous alignment speed	10000	Speed units	$\begin{gathered} 1 \text { to } \\ 32767 \end{gathered}$	Set the speed for performing compensation of the deviation between the master axis and slave axis when the servo is turned on.	Master
0268	*TEO	Tandem drive excessive deviation width	10000	Command units	$\begin{gathered} 0 \text { to } \\ 32767 \end{gathered}$	Set the detection level for the excessive deviation alarm for deviation between the master axis and the slave axis. (0: The check with the excessive deviation width is invalid.)	Master
0269	*TMAG	Tandem drive unit multiplication factor	1		$\begin{gathered} 1 \text { to } \\ 32767 \end{gathered}$	Set the multiplication factor for excessive deviation width, synchronization speed, and synchronization valid width for tandem drive axes.	Master
026A	*TED	Late starting of tandem drive excessive deviation detection	50	ms	0 to 500	Set the delay time for from completion of synchronization for turning servo on until detection of excessive deviation is started.	Master
026B	*TOFL	Valid width of tandem drive deviation compensation	10000	Command units	$\begin{gathered} 0 \text { to } \\ 32767 \end{gathered}$	Set the permissible width for performing compensation of the deviation between the master axis and slave axis when home position return is performed while in tandem drive axes mode. (0: The check with the valid width of deviation compensation is invalid.)	Master
026C	TZOFL	Tandem drive home position signal offset (lower)	0000h	Command units	0000h to FFFFh	Set the amount of offset for the home position signal position while in tandem drive axes mode. (Used when performing home position return using the scale home position signal detection method.)	Master
026D	TZOFH	Tandem drive home position signal offset (upper)	0000h		0000h to FFFFh		

Parameter No．	Symbol	Name	Initial Value	Units	Setting range		Function	When in tandem drive
02B2	＊MKOP2	Mark detection option 2	0000h		0000h to 3F23h MC200 0000h to 7F23h MC300		Mark detection signal number specification 2 Set the mark detection signal number to be used． 0 ：Invalid 1 to 3：Mark detection signal number （DI1 to DI3） Mark detection mode Set the mark detection mode． 0 ：Continuous detection 1：Specified number of detection 2：Ring buffer Number of continuous latch data storages（Note） Set the number of data that can be latched continuously． 00h to 3Fh：Number of continuous latch data storages－ 1 MC200 00h to 7Fh：Number of continuous latch data storages－ 1 MC300 Note．The following number of continuous latch data storages can be set in the whole system． Using MR－MC2ロロ： 64 Using MR－MC3口ロ： 128	Each axis
02B3	MKDS2	Mark detection data setting 2	0000h		$\begin{aligned} & \hline \text { 0000h to } \\ & \text { 0111h } \end{aligned}$	0		Each axis
02B4	MKNL1	Latch data range lower limit 1 （lower）	0000h		0000h to FFFFh	Specify the range（lower limit）of data to be latched at detection of the mark detection signal of mark detection signal number specification 1. （Note1），（Note 2）		Each axis
02B5	MKNH1	Latch data range lower limit 1 （upper）	0000h		0000h to FFFFh			Each axis
02B6	MKXL1	Latch data range upper limit 1 （lower）	0000h		0000h to FFFFh	Specify the range（upper limit）of data to be latched at detection of the mark detection signal of mark detection signal number specification 1. （Note1），（Note 2）		Each axis
02B7	MKXH1	Latch data range upper limit 1 （upper）	0000h		0000h to FFFFh			Each axis

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function	When in tandem drive
02B8	MKNL2	Latch data range lower limit 2 (lower)	0000h		0000h to FFFFh	Specify the range (lower limit) of data to be latched at detection of the mark detection signal of mark detection signal number specification 2.	Each axis
02B9	MKNH2	Latch data range lower limit 2 (upper)	0000h		0000h to FFFFh	(Note1), (Note 2)	Each axis
02BA	MKXL2	Latch data range upper limit 2 (lower)	0000h		0000h to FFFFh	Specify the range (upper limit) of data to be latched at detection of the mark detection signal of mark detection signal number specification 2.	Each axis
02BB	MKXH2	Latch data range upper limit 2 (upper)	0000h		0000h to FFFFh	(Note1), (Note 2)	Each axis
02BC		For manufacturer setting	0				
02BD			0				
02BE			0				
02BF			0				
02C0			0				
02C1							
02CB			0				
02CC	CIERL	Allowable error range for circular interpolation (lower) WC300	0000h	Command units		Sets the allowable range for the calculated arc trajectory and the end point coordinate. (Note) When the error between the calculated arc trajectory and end coordinate is within the set range, both circular interpolation to the set end point coordinate and error compensation are executed simultaneously by means of spiral interpolation. For allowable error range for circular interpolation, the primary axis settings are valid. Note. For central point-specified 2-axis circular interpolation control, the trajectory of the arc calculated from the start and central point coordinates may not coincide with the end point coordinate.	Master
02CD	CIERH	Allowable error range for circular interpolation (upper) WC300	0000h				
02CE		For manufacturer setting	0				
02CF			0				
:							
02FF			0				

Note 1. When changed while system is running, changes are enabled when a mark detection settings enable command is input.
2. The set units are regarded as command units, or pulse units (the unit set in mark detection data type (parameter No.02B1)).
11.3.2 Sensing module (axis mode)

POINT
• The settings for the parameters with a * mark at the front of the symbol are
validated when the system is started.

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function	
0200	*OPC1	Control option 1	0000h		$\begin{aligned} & \text { 0000h to } \\ & 2101 \mathrm{~h} \end{aligned}$		
0201	OPC2	Control option 2	0000h		0000h to 0121h	0	

Parameter No.	Symbol	Name	Initial Value	Units	Setting range			Function
0202	*OPC3	Control option 3	0001h		0000h to 1001h		$\begin{array}{l\|l} \hline 0 & 0 \\ \hline \end{array}$	Interlock signal polarity Set the polarity of the Interlock signal. 0: B-contact 1: A-contact Incompletion of home position return after servo OFF Set 1 to make the home position return incomplete after servo OFF 0 : Do not make home position return incomplete 1: Make home position return incomplete
0203	*AXALC	Axis No. assignment	0000h		0000h to 011Fh MC200 0000h to 012Fh MC300		$[$	Servo amplifier axis No. Set the servo amplifier axis No. to be assigned to the axis Nos. on the position board. 00h: No axis No. assignment 01h to 14h: Axis No. Mcr200 01h to 20h: Axis No. Mcsoos Example: OAh: Axis No. 10 Servo amplifier line No. Set the servo amplifier line No. to be assigned to the axis Nos. on the position board. 0 to 1: Line No.-1
0204	ITM1	Interrupt condition 1	0000h		0000h to FFFFh	Set interrupt condition 1.		
0205	ITM2	Interrupt condition 2	0000h		0000h to FFFFh	Set interrupt condition 2.		
0206	*OPC4	Control option 4	0000h		$\begin{aligned} & \text { 0000h to } \\ & 1001 \mathrm{~h} \\ & \text { WC2000 } \\ & 0000 \mathrm{~h} \text { to } \\ & 1101 \mathrm{~h} \\ & \text { WC300? } \end{aligned}$			Predwell setting range Set the setting range of predwell. 0 : 0 to 3000 ms 1: 0 to 65535 ms High-speed update of monitor data mcseo Set to enabled for high-speed update of monitor data 1 to 4 . 0 : Disabled 1: Enabled Re-acceleration setting for position change during deceleration Set the re-acceleration setting for position change during deceleration to enabled/disabled. 0 : Disabled 1: Enabled
0207	\bigcirc	For manufacturer setting	0	,	\bigcirc			
0208	*BKC	Backlash compensation amount	0000h	pulse	0 to 65535	Setting for performing compensation of machine backlash.		
0209	-	For manufacturer setting	0	-	(\qquad		
020A	*CMXL	Electronic gear numerator (lower)	0001h		1 to 5242879 (32 bit)	Set the numerator for electronic gears.		
020B	*CMXH	Electronic gear numerator (upper)	0000h					

Parameter No.	Symbol	Name	Initial Value	Units	Setting range		Function
020C	*CDVL	Electronic gear denominator (lower)	0001h		$\begin{gathered} 1 \text { to } \\ 589823 \end{gathered}$	Set the denominator for electronic gears.	
020D	*CDVH	Electronic gear denominator (upper)	0000h		(32 bit)		
020E	SUML	Speed units multiplication factor (lower)	2000h		$\begin{array}{\|c} 1 \text { to } 32768 \\ (32 \text { bit) } \end{array}$	Set the multiplication factor for the speed command.	
020F	SUMH	Speed units multiplication factor (upper)	0000h				
0210		For manufacturer setting	3000				
0211			3000				
0212			0				
0213	*GIOO	General I/O option	0000h		0000h to 0011h	$\begin{array}{\|l\|l\|} \hline 0 & 0 \\ \hline \end{array}$	

Parameter No.	Symbol	Name	Initial Value	Units	Setting range		Function
0215	*GDINA	General input No. assignment MC300	0000h		0000h to 023Fh	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Only } \\ \text { setting } \\ \text { methc } \end{array} \\ \hline 0 \\ \hline \end{array}$	I/O table (parameter No.004A) device table (expanded points General input assignment Specify the first input word device number that corresponds with the input bit device number to assign the general input. 000h to 23Fh: Input word device number 000 to 23F Example: When the input word device number 001 is specified, 16 points are assigned from DVI_0010 to DVI_001F. However, DVI_0013 to DVI_001F are unavailable.
0216	*GDONA	General output No. assignment MC300	0000h		0000h to 023Fh	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Only } \\ \text { setting } \\ \text { metho } \end{array} \\ \hline \begin{array}{\|l\|} \hline 0 \end{array} \end{array}$	I/O table (parameter No.004A) device table (expanded points -General output assignment Specify the first output word device number that corresponds with the output bit device number to assign the general input. 000 h to 23 Fh : Output word device number 000 to 23 F Example: When the output word device number 002 is specified, 16 points are assigned from DVO_0020 to DVO_002F. However, DVO_0023 to DVI_002F are unavailable.
0217	-	For manufacturer setting	0000h				
0218	*SSIA	Sensor signal input assignment MC300	0000h		0000h to 0111h	Only setting 0	I/O table (parameter No.004A) Input device assignment (LSP) Set the input device assignment connecting LSP to valid/invalid. 0: Assignment not set 1: Assignment valid Input device assignment (LSN) Set the input device assignment connecting LSN to valid/linvalid. 0: Assignment not set 1: Assignment valid Input device assignment (DOG) Set the input device assignment connecting DoG to valid/invalid. 0: Assignment not set 1: Assignment valid

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function
0221	SRATE	S-curve ratio	0	\%	0 to 100	Set the S-curve ratio of the S-curve acceleration/ deceleration (Sine acceleration/deceleration). 0 : S-curve acceleration/deceleration invalid 1 to 100: S-curve acceleration/deceleration Note 1. S-curve acceleration/deceleration is performed for the acceleration/deceleration selected in speed options (parameter No.0220). 2. The S-curve ratio set by this parameter is used in JOG operation, incremental feed operation and home position return. For automatic operation and linear interpolation operation $M C 200$ /interpolation operation MC300 , set the S-curve ratio in the point table.
0222	SPLL	Speed limit value (lower)	0BB8h	Speed units	0000h to FFFFh	Set the value for the moving speed limit.
0223	SPLH	Speed limit value (upper)	0000h		0000h to 7FFFh	
0224	LSPL	Start up speed (lower)	0000h	Speed units	0000h to FFFFh	Set the start up speed
0225	LSPH	Start up speed (upper)	0000h		0000h to 7FFFh	
0226	STC	Smoothing time constant	0	ms	0 to 100	Sets the time constant of the smoothing filter.
0227	STE	Rapid stop time constant	20	ms	0 to 20000	Set the deceleration time constant for when operation rapid stop or limit switch is input.
0228	SLPL	Software limit Upper limit (lower)	0000h	Command units	0000h to FFFFh	Set the + side of the software limit.
0229	SLPH	Software limit Upper limit (upper)	0000h		0000h to FFFFh	
022A	SLNL	Software limit Lower limit (lower)	0000h	Command units	0000h to FFFFh	Set the - side of the software limit.
022B	SLNH	Software limit Lower limit (upper)	0000h		0000h to FFFFh	
022C	PSPL	Position switch Upper limit (lower)	0000h	Command units	0000h to FFFFh	Set the + end position for turning on the position switch.
022D	PSPH	Position switch Upper limit (upper)	0000h		0000h to FFFFh	
022E	PSNL	Position switch Lower limit (lower)	0000h	Command units	0000h to FFFFh	Set the - end position for turning on the position switch.
022F	PSNH	Position switch Lower limit (upper)	0000h		0000h to FFFFh	
0230	CRPL	Rough match output limits (lower)	0000h	Command units	0000h to FFFFh	Set the remaining distance limits for outputting a command for rough matching.
0231	CRPH	Rough match output limits (upper)	0000h		0000h to 7FFFh	
0232	INPC	In-position range (controller)	0	pulse	0 to 65535	Set the in-position range to be determined by the position board.
0233		For manufacturer setting	0			
0234			0			
:			:			
023E			0			

Parameter No.	Symbol	Name	Initial Value	Units	Setting range		Function
023F	*IFBN	Interface mode maximum buffer number	0		0 to 63	Set inter Set Note N	value for buffer number used during he number of buffers. rolling with interrupt output invalid in ode, maximum value of 1 or more
0240	*OPZ1	Home position return option 1	0000h		$\begin{aligned} & \text { 0000h to } \\ & 011 \mathrm{Ch} \end{aligned}$	0	-Home position return method Set the method for home position return. 0 : Dog method 2: Data set method 4: Dog cradle method 5: Limit switch combined method 7: Limit switch front end method 8: Dog front end method C: Z-phase detection method -Home position return direction Set the home position return direction with respect to the proximity dog. Or the movement direction for creep speed movement. 0 : - direction 1: + direction -Proximity dog input polarity Set the input polarity for the proximity dog 0 : Normally closed contact 1: Normally open contact
0241	S^{2}	For manufacturer setting	0000h		S^{2}		
0242	ZSPL	Home position return speed (lower)	00C8h	Speed units	$0000 \mathrm{~h} \text { to }$ FFFFh	Set the moving speed for home position return.	
0243	ZSPH	Home position return speed (upper)	0000h		0000h to 7FFFh		
0244	ZTCA	Home position return acceleration time constant	100	ms	0 to 20000	Set the acceleration time constant for home position return.	
0245	ZTCD	Home position return deceleration time constant	100	ms	0 to 20000	Set the deceleration time constant for home position return.	
0246	ZPSL	Home position coordinates (lower)	0000h	Command units	0000h to FFFFh	Set the home position coordinates (position after completing home position return).	
0247	ZPSH	Home position coordinates (upper)	0000h		0000h to FFFFh		
0248	ZSTL	Amount of home position shift (lower)	0000h	Command units	0000h to FFFFh	Set the amount of shift from the Z-phase pulse detection position of the detector.	
0249	ZSTH	Amount of home position shift (upper)	0000h		0000h to FFFFh		
024A	ZLL	Home position search limit (lower)	0000h	Command units	0000h to FFFFh	Set a limit on the movement amount when searching for the home position.	
024B	ZLH	Home position search limit (upper)	0000h		0000h to 7FFFh		
024C	CRF	Creep speed	0014h	Speed units	$\begin{aligned} & \hline \text { 0000h to } \\ & \text { 7FFFh } \\ & \hline \end{aligned}$	Set the creep speed after detecting the proximity dog.	
 024 D 024 E 024 F 0250 0251		For manufacturer setting	0000 h 0000 h 0000 h 0000 h 0000 h				

11.4 RIO module parameters

11.4.1 SSCNETII/H head module

Refer to "MELSEC-L SSCNETIII/H Head Module User's Manual" for the RIO module parameters of the SSCNETIII/H head module.

11.4.2 Sensing module (station mode)

The RIO module parameters of the sensing module are shown below. Refer to Sensing Module Instruction Manual for details of the sensing module.

POINT

- The parameters with a * mark at the front of the symbol are validated according to the following conditions.
*: The setting value for the system startup or the SSCNET reconnection is valid. The parameter change after the system startup is invalid.
**: The setting value for the system startup or the SSCNET reconnection is valid. However, after the system startup, turn off the power supply of the servo amplifier once, and it is necessary to turn on it again. The parameter change after the system startup is invalid.
(1) Sensing SSCNETIII/H head module parameters

Parameter No.	Sensing module Parameter No.	Symbol	Name	Initial Value	Units
1100	PTA001	*HDI11	DI1 (CN2-13) setting 1	0000h	
1101	PTA002	*HDI12	DI1 (CN2-13) setting 2	0000h	
1102	PTA003	*HDI21	DI2 (CN2-1) setting 1	0000h	
1103	PTA004	*HDI22	DI2 (CN2-1) setting 2	0000h	
1104	PTA005	*HDI31	DI3 (CN2-14) setting 1	0000h	
1105	PTA006	*HDI32	DI3 (CN2-14) setting 2	0000h	
1106	PTA007	*HDI41	DI4 (CN2-2) setting 1	0000h	
1107	PTA008	*HDI42	DI4 (CN2-2) setting 2	0000h	
1108	PTA009	*HDI51	DI5 (CN2-15) setting 1	0000h	
1109	PTA010	*HDI52	DI5 (CN2-15) setting 2	0000h	
110A	PTA011	*HDI61	DI6 (CN2-3) setting 1	0000h	
110B	PTA012	*HDI62	DI6 (CN2-3) setting 2	0000h	
110C	PTA013	*HDI71	DI7 (CN2-16) setting 1	0000h	
110D	PTA014	*HDI72	DI7 (CN2-16) setting 2	0000h	
110E	PTA015	*HDI81	DI8 (CN2-4) setting 1	0000h	
110F	PTA016	*HDI82	DI8 (CN2-4) setting 2	0000h	
1110	PTA017	*HDI91	D19 (CN2-17) setting 1	0000h	
1111	PTA018	*HDI92	DI9 (CN2-17) setting 2	0000h	
1112	PTA019	*HDIA1	DI10 (CN2-5) setting 1	0000h	
1113	PTA020	*HDIA2	DI10 (CN2-5) setting 2	0000h	
1114	PTA021	*HDIB1	DI11 (CN2-18) setting 1	0000h	
1115	PTA022	*HDIB2	DI11 (CN2-18) setting 2	0000h	
1116	PTA023	*HDIC1	DI12 (CN2-6) setting 1	0000h	
1117	PTA024	*HDIC2	DI12 (CN2-6) setting 2	0000h	
1118	PTA025		For manufacturer setting	0000h	
1119	PTA026			0003h	
111A	PTA027	*HDO11	DO1 (CN2-20) setting 1	0000h	
111B	PTA028	*HDO12	DO1 (CN2-20) setting 2	0000h	
111C	PTA029	*HDO21	DO2 (CN2-8) setting 1	0000h	
111D	PTA030	*HDO22	DO2 (CN2-8) setting 2	0000h	
111E	PTA031		For manufacturer setting	0000h	
111F	PTA032	*AOP1	Function selection A-1	0000h	
1120	PTA033	*LO1	Level output function - Setting group 1 - Detailed setting 1	0000h	
1121	PTA034	LONL1	Level output function - Setting group 1 - Lower limit setting - Lower	0000h	
1122	PTA035	LONH1	Level output function - Setting group 1 - Lower limit setting - Upper	0000h	
1123	PTA036	LOFL1	Level output function - Setting group 1 - Upper limit setting - Lower	0000h	
1124	PTA037	LOFH1	Level output function - Setting group 1 - Upper limit setting - Upper	0000h	
1125	PTA038	*LO2	Level output function - Setting group 2 - Detailed setting 1	0000h	
1126	PTA039	LONL2	Level output function - Setting group 2 - Lower limit setting - Lower	0000h	
1127	PTA040	LONH2	Level output function - Setting group 2 - Lower limit setting - Upper	0000h	
1128	PTA041	LOFL2	Level output function - Setting group 2 - Upper limit setting - Lower	0000h	
1129	PTA042	LOFH2	Level output function - Setting group 2 - Upper limit setting - Upper	0000h	
112A	PTA043		For manufacturer setting	0000h	
112B	PTA044			0000h	
:	:			:	
117F	PTA128			0000h	

(2) Sensing I/O module parameters

Parameter No.	Sensing module Parameter No.	Symbol	Name	Initial Value	Units
1180	PTB001	*IDI11	DI1 (CN1-10) setting 1	0000h	
1181	PTB002	*IDI12	DI1 (CN1-10) setting 2	0000h	
1182	PTB003	*IDI21	DI2 (CN1-1) setting 1	0000h	
1183	PTB004	*IDI22	DI2 (CN1-1) setting 2	0000h	
1184	PTB005	*IDI31	DI3 (CN1-11) setting 1	0000h	
1185	PTB006	*IDI32	DI3 (CN1-11) setting 2	0000h	
1186	PTB007	*IDI41	DI4 (CN1-2) setting 1	0000h	
1187	PTB008	*IDI42	DI4 (CN1-2) setting 2	0000h	
1188	PTB009	*IDI51	DI5 (CN1-12) setting 1	0000h	
1189	PTB010	*IDI52	DI5 (CN1-12) setting 2	0000h	
118A	PTB011	*IDI61	DI6 (CN1-3) setting 1	0000h	
118B	PTB012	*IDI62	DI6 (CN1-3) setting 2	0000h	
118C	PTB013	*IDI71	DI7 (CN1-13) setting 1	0000h	
118D	PTB014	*IDI72	DI7 (CN1-13) setting 2	0000h	
118E	PTB015	*IDI81	DI8 (CN1-4) setting 1	0000h	
118F	PTB016	*IDI82	DI8 (CN1-4) setting 2	0000h	
1190	PTB017	*IDI91	DI9 (CN1-14) setting 1	0000h	
1191	PTB018	*IDI92	DI9 (CN1-14) setting 2	0000h	
1192	PTB019	*IDIA1	DI10 (CN1-5) setting 1	0000h	
1193	PTB020	*IDIA2	DI10 (CN1-5) setting 2	0000h	
1194	PTB021	*IDIB1	D111 (CN1-15) setting 1	0000h	
1195	PTB022	*IDIB2	DI11 (CN1-15) setting 2	0000h	
1196	PTB023	*IDIC1	DI12 (CN1-6) setting 1	0000h	
1197	PTB024	*IDIC2	DI12 (CN1-6) setting 2	0000h	
1198	PTB025	*IDID1	D113 (CN1-16) setting 1	0000h	
1199	PTB026	*IDID2	DI13 (CN1-16) setting 2	0000h	
119A	PTB027	*IDIE1	DI14 (CN1-7) setting 1	0000h	
119B	PTB028	*IDIE2	DI14 (CN1-7) setting 2	0000h	
119C	PTB029	*IDIF1	D115 (CN1-17) setting 1	0000h	
119D	PTB030	*IDIF2	D115 (CN1-17) setting 2	0000h	
119E	PTB031	*IDIG1	DI16 (CN1-8) setting 1	0000h	
119F	PTB032	*IDIG2	DI16 (CN1-8) setting 2	0000h	
11A0	PTB033		For manufacturer setting	0000h	
11A1	PTB034			0003h	
11A2	PTB035			0000h	
11A3	PTB036			0000h	
11A4	PTB037	*IDO11	DO1 (CN2-11) setting 1	0000h	
11A5	PTB038	*IDO12	DO1 (CN2-11) setting 2	0000h	
11A6	PTB039	*IDO21	DO2 (CN2-1) setting 1	0000h	
11A7	PTB040	*IDO22	DO2 (CN2-1) setting 2	0000h	
11A8	PTB041	*IDO31	DO3 (CN2-12) setting 1	0000h	
11A9	PTB042	*IDO32	DO3 (CN2-12) setting 2	0000h	
11AA	PTB043	*IDO41	DO4 (CN2-2) setting 1	0000h	
11AB	PTB044	*IDO42	DO4 (CN2-2) setting 2	0000h	
11AC	PTB045	*IDO51	DO5 (CN2-13) setting 1	0000h	
11AD	PTB046	*IDO52	DO5 (CN2-13) setting 2	0000h	
11AE	PTB047	*IDO61	DO6 (CN2-3) setting 1	0000h	
11AF	PTB048	*IDO62	DO6 (CN2-3) setting 2	0000h	

Parameter No.	Sensing module Parameter No.	Symbol	Name	Initial Value	Units
11B0	PTB049	*IDO71	DO7 (CN2-14) setting 1	0000h	
11B1	PTB050	*IDO72	DO7 (CN2-14) setting 2	0000h	
11B2	PTB051	*IDO81	DO8 (CN2-4) setting 1	0000h	
11B3	PTB052	*IDO82	DO8 (CN2-4) setting 2	0000h	
11B4	PTB053	*IDO91	DO9 (CN2-15) setting 1	0000h	
11B5	PTB054	*IDO92	DO9 (CN2-15) setting 2	0000h	
11B6	PTB055	*IDOA1	DO10 (CN2-5) setting 1	0000h	
11B7	PTB056	*IDOA2	DO10 (CN2-5) setting 2	0000h	
11B8	PTB057	*IDOB1	DO11 (CN2-16) setting 1	0000h	
11B9	PTB058	*IDOB2	DO11 (CN2-16) setting 2	0000h	
11BA	PTB059	*IDOC1	DO12 (CN2-6) setting 1	0000h	
11BB	PTB060	*IDOC2	DO12 (CN2-6) setting 2	0000h	
11BC	PTB061	*IDOD1	DO13 (CN2-17) setting 1	0000h	
11BD	PTB062	*IDOD2	DO13 (CN2-17) setting 2	0000h	
11BE	PTB063	*IDOE1	DO14 (CN2-7) setting 1	0000h	
11BF	PTB064	*IDOE2	DO14 (CN2-7) setting 2	0000h	
11C0	PTB065	*IDOF1	DO15 (CN2-18) setting 1	0000h	
11 C 1	PTB066	*IDOF2	DO15 (CN2-18) setting 2	0000h	
11C2	PTB067	*IDOG1	DO16 (CN2-8) setting 1	0000h	
11C3	PTB068	*IDOG2	DO16 (CN2-8) setting 2	0000h	
11C4	PTB069	*IDO	Digital output connection setting	0000h	
11C5	PTB070			0000h	
11C6	PTB071		For manufacturer setting	0000h	
$11 \mathrm{C7}$	PTB072			0000h	
$11 \mathrm{C8}$	PTB073	*ILO1	Level output function - Setting group 1 - Detailed setting 1	0000h	
11C9	PTB074	ILONL1	Level output function - Setting group 1 - Lower limit setting - Lower	0000h	
11CA	PTB075	ILONH1	Level output function - Setting group 1 - Lower limit setting - Upper	0000h	
11CB	PTB076	ILOFL1	Level output function - Setting group 1 - Upper limit setting - Lower	0000h	
11CC	PTB077	ILOFH1	Level output function - Setting group 1 - Upper limit setting - Upper	0000h	
11CD	PTB078	*ILO2	Level output function - Setting group 2 - Detailed setting 1	0000h	
11CE	PTB079	ILONL2	Level output function - Setting group 2 - Lower limit setting - Lower	0000h	
11CF	PTB080	ILONH2	Level output function - Setting group 2 - Lower limit setting - Upper	0000h	
11D0	PTB081	ILOFL2	Level output function - Setting group 2 - Upper limit setting - Lower	0000h	
11D1	PTB082	ILOFH2	Level output function - Setting group 2 - Upper limit setting - Upper	0000h	
11D2	PTB083	*ILO3	Level output function - Setting group 3 - Detailed setting 1	0000h	
11D3	PTB084	ILONL3	Level output function - Setting group 3 - Lower limit setting - Lower	0000h	
11D4	PTB085	ILONH3	Level output function - Setting group 3 - Lower limit setting - Upper	0000h	
11D5	PTB086	ILOFL3	Level output function - Setting group 3 - Upper limit setting - Lower	0000h	
11D6	PTB087	ILOFH3	Level output function - Setting group 3 - Upper limit setting - Upper	0000h	
11D7	PTB088	*ILO4	Level output function - Setting group 4 - Detailed setting 1	0000h	
11D8	PTB089	ILONL4	Level output function - Setting group 4 - Lower limit setting - Lower	0000h	
11D9	PTB090	ILONH4	Level output function - Setting group 4 - Lower limit setting - Upper	0000h	
11DA	PTB091	ILOFL4	Level output function - Setting group 4 - Upper limit setting - Lower	0000h	
11DB	PTB092	ILOFH4	Level output function - Setting group 4 - Upper limit setting - Upper	0000h	
11DC	PTB093	*ILO5	Level output function - Setting group 5 - Detailed setting 1	0000h	
11DD	PTB094	ILONL5	Level output function - Setting group 5 - Lower limit setting - Lower	0000h	
11DE	PTB095	ILONH5	Level output function - Setting group 5 - Lower limit setting - Upper	0000h	
11DF	PTB096	ILOFL5	Level output function - Setting group 5 - Upper limit setting - Lower	0000h	
11E0	PTB097	ILOFH5	Level output function - Setting group 5 - Upper limit setting - Upper	0000h	

| Parameter
 No. | Sensing module
 Parameter No. | Symbol | | Name | Initial Value |
| :---: | :---: | :---: | :--- | :--- | :--- | Units

(3) Sensing pulse I/O module parameters

Parameter No.	Sensing module Parameter No.	Symbol	Name	Initial Value	Units
1280	PTC001	*PSFA	A-axis setting	0000h	
1281	PTC002	*PIFA1	A-axis input function setting 1	0000h	
1282	PTC003	*PIFA2	A-axis input function setting 2	0000h	
1283	PTC004	*POFA1	A-axis output function selection 1	0000h	
1284	PTC005	*POFA2	A-axis output function selection 2	0000h	
1285	PTC006		For manufacturer setting	0000h	
1286	PTC007	*CMXA	A-axis input-side electronic gear setting	0000h	
1287	PTC008	*CDVA	A-axis output-side electronic gear setting	0000h	
1288	PTC009		For manufacturer setting	0000h	
1289	PTC010			0000h	
128A	PTC011			0000h	
128B	PTC012			0000h	
128C	PTC013			0000h	
128D	PTC014			0000h	
128E	PTC015			0000h	
128F	PTC016			0000h	
1290	PTC017	*PFSB	B-axis setting	0000h	
1291	PTC018	*PIFB1	B-axis input function setting 1	0000h	
1292	PTC019	*PIFB2	B-axis input function setting 2	0000h	
1293	PTC020	*POFB1	B-axis output function selection 1	0000h	
1294	PTC021	*POFB2	B-axis output function selection 2	0000h	
1295	PTC022		For manufacturer setting	0000h	
1296	PTC023	*CMXB	B-axis input-side electronic gear setting	0000h	
1297	PTC024	*CDVB	B-axis output-side electronic gear setting	0000h	
1298	PTC025		For manufacturer setting	0000h	
1299	PTC026			0000h	
129A	PTC027			0000h	
129B	PTC028			0000h	
129C	PTC029			0000h	
129D	PTC030			0000h	
129E	PTC031			0000h	
129F	PTC032			0000h	
12A0	PTC033	*IDI1A1	DI1A (CN1-8) setting 1	0000h	
12A1	PTC034		For manufacturer setting	0000h	
12A2	PTC035	*IDI2A1	DI2A (CN1-10) setting 1	0000h	
12A3	PTC036		For manufacturer setting	0000h	
12A4	PTC037	*IDI3A1	DI3A (CN1-7) setting 1	0000h	
12 A 5	PTC038		For manufacturer setting	0000h	
12A6	PTC039	*IDI4A1	DI4A (CN1-9) setting 1	0000h	
12A7	PTC040		For manufacturer setting	0000h	
12 A 8	PTC041	*IDI5A1	DI5A (CN1-19) setting 1	0000h	
12A9	PTC042		For manufacturer setting	0000h	
12AA	PTC043	*IDI6A1	DI6A (CN1-20) setting 1	0000h	
12AB	PTC044		For manufacturer setting	0000h	
12AC	PTC045	*IDI7A1	DI7A (CN1-21) setting 1	0000h	
12AD	PTC046		For manufacturer setting	0000h	
12AE	PTC047	*IDI1B1	DI1B (CN2-8) setting 1	0000h	
12AF	PTC048		For manufacturer setting	0000h	

Parameter No.	Sensing module Parameter No.	Symbol	Name	Initial Value	Units
12B0	PTC049	*IDI2B1	DI2B (CN2-10) setting 1	0000h	
12B1	PTC050		For manufacturer setting	0000h	
12B2	PTC051	*IDI3B1	DI3B (CN2-7) setting 1	0000h	
12B3	PTC052		For manufacturer setting	0000h	
12B4	PTC053	*IDI4B1	DI4B (CN2-9) setting 1	0000h	
12B5	PTC054		For manufacturer setting	0000h	
12B6	PTC055	*IDI5B1	DI5B (CN2-19) setting 1	0000h	
12B7	PTC056		For manufacturer setting	0000h	
12B8	PTC057	*IDI6B1	DI6B (CN2-20) setting 1	0000h	
12B9	PTC058		For manufacturer setting	0000h	
12BA	PTC059	*IDI7B1	DI7B (CN2-21) setting 1	0000h	
12BB	PTC060		For manufacturer setting	0000h	
12BC	PTC061			0000h	
12BD	PTC062			0003h	
12BE	PTC063			0000h	
12BF	PTC064			0000h	\bigcirc
12C0	PTC065	*IDO1A1	DO1A (CN1-11) setting 1	0000h	
12C1	PTC066	*IDO1A2	DO1A (CN1-11) setting 2	0000h	
12C2	PTC067	*IDO2A1	DO2A (CN1-12) setting 1	0000h	
12C3	PTC068	*IDO2A2	DO2A (CN1-12) setting 2	0000h	
12C4	PTC069	*IDO3A1	DO3A (CN1-23) setting 1	0000h	
12C5	PTC070	*IDO3A2	DO3A (CN1-23) setting 2	0000h	
12C6	PTC071	*IDO4A1	DO4A (CN1-1) setting 1	0000h	
12 C 7	PTC072	*IDO4A2	DO4A (CN1-1) setting 2	0000h	
12C8	PTC073	*ID05A1	DO5A (CN1-13) setting 1	0000h	
12C9	PTC074	*ID05A2	DO5A (CN1-13) setting 2	0000h	
12CA	PTC075	*IDO1B1	DO1B (CN2-11) setting 1	0000h	
12CB	PTC076	*IDO1B2	DO1B (CN2-11) setting 2	0000h	
12CC	PTC077	*IDO2B1	DO2B (CN2-12) setting 1	0000h	
12CD	PTC078	*IDO2B2	DO2B (CN2-12) setting 2	0000h	
12CE	PTC079	*IDO3B1	DO3B (CN2-23) setting 1	0000h	
12CF	PTC080	*IDO3B2	DO3B (CN2-23) setting 2	0000h	
12D0	PTC081	*IDO4B1	DO4B (CN2-1) setting 1	0000h	
12D1	PTC082	*IDO4B2	DO4B (CN2-1) setting 2	0000h	
12D2	PTC083	*IDO5B1	DO5B (CN2-13) setting 1	0000h	
12D3	PTC084	*IDO5B2	DO5B (CN2-13) setting 2	0000h	
12D4	PTC085		For manufacturer setting	0000h	
12D5	PTC086			0000h	
:	:			:	
12FF	PTC128			0000h	

(4) Sensing analog I/O module parameters

Parameter No.	Sensing module Parameter No.	Symbol	Name	Initial Value	Units
1300	PTD001	*AIF1	Analog input function selection 1	0000h	
1301	PTD002	*AI1F2	Analog input ch. 1 - Function selection 2	0000h	
1302	PTD003	*AI1FT	Analog input ch. 1 - Primary delay filter time constant	0	ms
1303	PTD004	Al1OF	Analog input ch. 1 - Offset voltage setting	0	mV
1304	PTD005	*AI1SH	Analog input ch. 1 - Scaling function - Upper limit setting	20000	
1305	PTD006	*AI1SL	Analog input ch. 1 - Scaling function - Lower limit setting	-20000	
1306	PTD007	*AI1SF	Analog input ch. 1 - Scaling function - Shift amount setting	0	
1307	PTD008		For manufacturer setting	0000h	
1308	PTD009			0000h	
1309	PTD010	*AI2F2	Analog input ch. 2 - Function selection 2	0000h	
130A	PTD011	*AI2FT	Analog input ch. 2 - Primary delay filter time constant	0	ms
130B	PTD012	Al2OF	Analog input ch. 2 - Offset voltage setting	0	mV
130C	PTD013	*Al2SH	Analog input ch. 2 - Scaling function - Upper limit setting	20000	
130D	PTD014	*AI2SL	Analog input ch. 2 - Scaling function - Lower limit setting	-20000	
130E	PTD015	*AI2SF	Analog input ch. 2 - Scaling function - Shift amount setting	0	
130F	PTD016		For manufacturer setting	0000h	
1310	PTD017			0000h	
1311	PTD018	*AI3F2	Analog input ch. 3 - Function selection 2	0000h	
1312	PTD019	*AI3FT	Analog input ch. 3 - Primary delay filter time constant	0	ms
1313	PTD020	Al3OF	Analog input ch. 3-Offset voltage setting	0	mV
1314	PTD021	*AI3SH	Analog input ch. 3 - Scaling function - Upper limit setting	20000	
1315	PTD022	*AI3SL	Analog input ch. 3 - Scaling function - Lower limit setting	-20000	
1316	PTD023	*AI3SF	Analog input ch. 3-Scaling function - Shift amount setting	0	
1317	PTD024		For manufacturer setting	0000h	
1318	PTD025			0000h	
1319	PTD026	*AI4F2	Analog input ch. 4 - Function selection 2	0000h	
131A	PTD027	*AI4FT	Analog input ch. 4 - Primary delay filter time constant	0	ms
131B	PTD028	Al4OF	Analog input ch. 4-Offset voltage setting	0	mV
131C	PTD029	*Al4SH	Analog input ch. 4 - Scaling function - Upper limit setting	20000	
131D	PTD030	*AI4SL	Analog input ch. 4 - Scaling function - Lower limit setting	-20000	
131E	PTD031	*AI4SF	Analog input ch. 4 - Scaling function - Shift amount setting	0	
131F	PTD032		For manufacturer setting	0000h	
1320	PTD033			0000h	
1321	PTD034	A010F	Analog output ch. 1-Offset	0	mV
1322	PTD035	*AO1SH	Analog output ch. 1 - Scaling function - Upper limit setting	20000	
1323	PTD036	*AO1SL	Analog output ch. 1 - Scaling function - Lower limit setting	-20000	
1324	PTD037	*AO1SF	Analog output ch. 1-Scaling function - Shift amount setting	0	
1325	PTD038		For manufacturer setting	0000h	
1326	PTD039			0000h	
1327	PTD040			0000h	
1328	PTD041			0000h	
1329	PTD042	AO2OF	Analog output ch. 2 - Offset	0	mV
132A	PTD043	*AO2SH	Analog output ch. 2 - Scaling function - Upper limit setting	20000	
132B	PTD044	*AO2SL	Analog output ch. 2 - Scaling function - Lower limit setting	-20000	
132C	PTD045	*AO2SF	Analog output ch. 2 - Scaling function - Shift amount setting	0	
132D	PTD046		For manufacturer setting	0000h	
132E	PTD047			0000h	
132F	PTD048			0000h	
1330	PTD049			0000h	

| Parameter
 No. | Sensing module
 Parameter No. | Symbol | | Name | Initial Value |
| :---: | :---: | :--- | :--- | :---: | :---: | Units

(5) Sensing encoder I/F module parameters

Parameter No.	Sensing module Parameter No.	Symbol	Name	Initial Value	Units
1380	PTE001		For manufacturer setting	0003h	
1381	PTE002			0000h	
1382	PTE003			0000h	
1383	PTE004			0000h	
1384	PTE005			0000h	
1385	PTE006			0000h	
1386	PTE007			0000h	
1387	PTE008			0000h	
1388	PTE009	**ENCA	Ch. A function selection	0000h	
1389	PTE010		For manufacturer setting	0000h	
138A	PTE011			0000h	
138B	PTE012			0000h	
138C	PTE013			0000h	
138D	PTE014			0000h	
138E	PTE015			0000h	
138F	PTE016			0000h	
1390	PTE017			0000h	
1391	PTE018			0000h	
1392	PTE019			0000h	
1393	PTE020			0000h	
1394	PTE021			0000h	
1395	PTE022			0000h	
1396	PTE023			0000h	
1397	PTE024			0000h	
1398	PTE025			0000h	
1399	PTE026			0000h	
139A	PTE027			0000h	
139B	PTE028			0000h	
139C	PTE029			0000h	
139D	PTE030			0000h	
139E	PTE031			0000h	
139F	PTE032			0000h	
13A0	PTE033			0000h	
13A1	PTE034			0000h	
13A2	PTE035			0000h	
13A3	PTE036			0000h	
13A4	PTE037	**SECA1	SSI - Ch. A function setting 1	2000h	
13A5	PTE038	**SECA2	SSI - Ch. A function setting 2	0000h	
13A6	PTE039	**SECA3	SSI - Ch. A function setting 3	0000h	
13A7	PTE040	**SECA4	SSI - Ch. A function setting 4	0000h	
13A8	PTE041	**SECA5	SSI-Ch. A function setting 5	0000h	
13A9	PTE042	**SECA6	SSI - Ch. A function setting 6	0000h	
13AA	PTE043	**SDPLA	Ch. A position variation error threshold - Lower	0000h	
13AB	PTE044	**SDPHA	Ch. A position variation error threshold - Upper	0000h	
13AC	PTE045		For manufacturer setting	0000h	
13AD	PTE046			0000h	
13AE	PTE047			0000h	
13AF	PTE048			0000h	
13B0	PTE049			0000h	

Parameter No.	Sensing module Parameter No.	Symbol	Name	Initial Value	Units
13B1	PTE050		For manufacturer setting	0000h	
13B2	PTE051			0000h	
13B3	PTE052			0000h	
13B4	PTE053			0000h	
13B5	PTE054			0000h	
13B6	PTE055			0000h	
13B7	PTE056			0000h	
13B8	PTE057			0000h	
13B9	PTE058			0000h	
13BA	PTE059			0000h	
13BB	PTE060			0000h	
13BC	PTE061	\mid		0000h	
13BD	PTE062			0000h	
13BE	PTE063			0000h	
13BF	PTE064			0000h	
13C0	PTE065	**ENCB	Ch. B function selection	0000h	
13C1	PTE066		For manufacturer setting	0000h	
13 C 2	PTE067			0000h	
13 C 3	PTE068			0000h	
13 C 4	PTE069			0000h	
13 C 5	PTE070			0000h	
13C6	PTE071			0000h	
13 C 7	PTE072			0000h	
13 C 8	PTE073			0000h	
13 C 9	PTE074			0000h	
13CA	PTE075			0000h	
13CB	PTE076			0000h	
13CC	PTE077			0000h	
13CD	PTE078			0000h	
13CE	PTE079			0000h	
13CF	PTE080			0000h	
13D0	PTE081			0000h	
13D1	PTE082			0000h	
13D2	PTE083			0000h	
13D3	PTE084			0000h	
13D4	PTE085			0000h	
13D5	PTE086			0000h	
13D6	PTE087			0000h	
13D7	PTE088			0000h	
13D8	PTE089			0000h	
13 D 9	PTE090			0000h	
13DA	PTE091			0000h	
13DB	PTE092			0000h	
13DC	PTE093	**SECB1	SSI-Ch. B function setting 1	2000h	
13DD	PTE094	**SECB2	SSI-Ch. B function setting 2	0000h	
13DE	PTE095	**SECB3	SSI-Ch. B function setting 3	0000h	
13DF	PTE096	**SECB4	SSI-Ch. B function setting 4	0000h	
13E0	PTE097	**SECB5	SSI-Ch. B function setting 5	0000h	\bigcirc
13E1	PTE098	**SECB6	SSI - Ch. B function setting 6	0000h	\bigcirc
13E2	PTE099	**SDPLB	Ch. B position variation error threshold - Lower	0000h	\bigcirc
13E3	PTE100	**SDPHB	Ch. B position variation error threshold - Upper	0000h	\bigcirc

| Parameter
 No. | Sensing module
 Parameter No. | Symbol | Name | Initial Value |
| :---: | :---: | :---: | :---: | :---: | Units

11.5 RIO control parameters

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
0210	*BDIO	Input bit device points	0000h		0000h to 0200h	Set the points used for input bit device. 0000h to 0200h: 0 to 512 Note. Only a multiple of 16 can be selected.
0211	*BDINA	Input bit device start number	0000h		0000h to OFFOh MC200 0000h to 2FFOh MC300	Set the start of the input bit device number assigned to RX. The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2םロ method) is set] 0000h to OFFOh: DVI_000 to DVI_FF0 [When use I/O device table (expanded points method) is set] MC300 0000h to 23F0h: DVI_000 to DVI_23F0 Note. Only a multiple of 16 can be selected. Example: When the input points are 64, and input bit device 020 is specified as the start, assign the 64 points of DVI_020 to DVI_05F.
0212	*WDIO	Input word device points	0000h		0000h to 0020h	Set the points used for input word device. 0000h to 0020h: 0 to 32 Note. The size used is 1 word \times set value.
0213	*WDINA	Input word device start number	0000h		0000h to 00FFh MC200 0000h to 02FFh [MC300	Set the start of the input word device number assigned to RWr. The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2ar method) is set] 0000h to 0FFOh: Input word device 00 to input word device FF [When use I/O device table (expanded points method) is set] MC300 0000h to 023Fh: Input word device 00 to input word device 23F Example: When the input points are 2, and input word device 06 is specified as the start, assign input word devices 06 to 07 .
0214	*BDOO	Output bit device points	0000h		0000h to 0200h	Set the points used for output bit device. 0000h to 0200h: 0 to 512 Note. Only a multiple of 16 can be selected.
0215	*BDONA	Output bit device start number	0000h		0000h to 0FFOh MC200 0000h to 2FFOh MC300	Set the start of the output bit device number assigned to RY. The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2םa method) is set] 0000h to 0FFOh: DVO_000 to DVO_FF0 [When use I/O device table (expanded points method) is set] MC300 0000h to 23F0h: DVO_000 to DVO_23F0 Note. Only a multiple of 16 can be selected. Example: When the output points are 64, and output bit device 040 is specified as the start, assign the 64 points of DV0_040 to DVO_07F.

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
0216	*WDOO	Output word device points	0000h		0000h to 0020h	Set the points used for output word device. 0000h to 0020h: 0 to 32 Note. The size used is 1 word \times set value.
0217	*WDONA	Output word device start number	0000h		0000h to 00FFh MC200 0000h to 02FFh MC300	Set the start of the output word device number assigned to RWw . The setting varies according to the I/O table (parameter No.004A) setting. [When use I/O device table (MR-MC2םa method) is set] 0000h to OFFOh: Output word device 00 to output word device FF [When use I/O device table (expanded points method) is set] WC300 0000h to 023Fh: Output word device 00 to output word device 23F Example: When the output points are 2, and output word device 08 is specified as the start, assign output word devices 08 to 09 .
0218 0219 021 A 021B 021C		For manufacturer setting	0 0 0 0 0			
021D	*VEND	Vendor ID	0000h		0000h to FFFFh	Set the vendor ID. 0000h: Mitsubishi Electric
021E	*CODE	Type code	3000h		0000h to FFFFh	Set the type code. 3000h: SSCNETII/H head module 3010h: Sensing SSCNETIII/H head module 3011h: Sensing SSCNETII/H head module + Sensing I/O module 3012h: Sensing SSCNETII/H head module + Sensing pulse I/O module 3013h: Sensing SSCNETIII/H head module + Sensing analog I/O module 3014h: Sensing SSCNETIII/H head module + Sensing encoder I/F module 3021h: Sensing I/O module 3022h: Sensing pulse I/O module 3023h: Sensing analog I/O module 3024h: Sensing encoder I/F module
021F		For manufacturer setting	0			
0220			0			
0221			0			
0222			0			
0223			0			
0224			0			
0225			0			
0226			0			
:			:			
023F			0			

Note. When a value other than a multiple of 16 is set to parameters where only a multiple of 16 can be set, a parameter error (RIO control alarm 37, detail 01) occurs at system startup.

12. MONITOR NUMBER

12.1 Servo information (1)

Monitor No.	Content	Units	Remarks
0100	Unit type name		Hexadecimal ASCII character string (2 Characters per monitor number)
0101			
0102			
0103			
0104			
0105			
0106			
0107			
0108	Software number		Hexadecimal ASCII character string (2 Characters per monitor number)
0109			
010A			
010B			
010C			
010D			
010E			
010F			
0110	Type code		```1000h: MR-J4(W\square)-\squareB 1200h: MR-JE-\squareB(F) 3015h: Sensing SSCNETII/H head module + Sensing pulse I/O module (axis mode) 3025h: Sensing pulse I/O module (axis mode)```
0111	Vendor ID		0000h: Mitsubishi Electric
0112	Motor rated revolution speed	r/min	
0113	Motor rated current	0.1\%	
0114	Motor maximum revolution speed	r/min	
0115	Motor maximum torque	0.1\%	
0116	Number of encoder pulses per revolution (lower)	pulse	
0117	Number of encoder pulses per revolution (upper)		
0118	Reserved		
0119	Initial within 1 revolution position (lower)	pulse	
011A	Initial within 1 revolution position (upper)		
011B	Initial multiple revolution data	rev	
011C	Reserved		
011D			
011E			
011F			
0120	Motor permissible pulse rate (lower)	kpps	Pulse rate of operation at the motor maximum revolution speed.
0121	Motor permissible pulse rate (upper)		
0122	Maximum output pulse rate (lower)	kpps	Maximum pulse rate that can be output by the position board.
0123	Maximum output pulse rate (upper)		
0124	Reserved		
0125			
0126			

Monitor No.	Content	Units	Remarks
0127	Station No. in order of connection		
0128	Reserved		
0129			
012A			
012B			
012C			
012D			
012E			
012F			

12.2 Servo information (2)

Monitor No.	Content	Units	Remarks
0248	Load side encoder information data 2 (lower)	pulse	When using the linear servo/fully closed loop control
0249	Load side encoder information data 2 (upper)		
024A	Speed feedback (lower)	$0.01 \mathrm{~mm} / \mathrm{s}$	When using a linear servo
024B	Speed feedback (upper)		
024C	Voltage of generating line	V	
024D	Regenerative load factor	\%	
024E	Effective load factor	\%	
024F	Peak load factor	\%	
0250	Estimated load inertial ratio	0.1 times	
0251	Position gain (model position gain)	$\mathrm{rad} / \mathrm{s}$	
0252	Motor thermistor temperature	${ }^{\circ} \mathrm{C}$	When using a motor with thermistor attached.
0253	Reserved		
0254			
0255			
0256			
0257			
0258			
0259			
025A			
025B			
025C			
025D			
025E			
025F			
0260			
0261	Alarm/warning number		
0262	Alarm detailed bits		
0263	Reserved		
0264	Alarm status AL-1 \square		is 0 (bit 0) to F (bit 15) Bit corresponding to alarm number is turned on. Review the alarms when multiple alarms occurs simultaneously etc.
0265	Alarm status AL-2 \square		
0266	Alarm status AL-3 \square		
0267	Alarm status AL-4 \square		
0268	Alarm status AL-5 \square		
0269	Alarm status AL-6 \square		
026A	Alarm status AL-7 \square		
026B	Alarm status AL-8 \square		
026C	Alarm status AL-9 \square		
026D	Alarm status AL-E \square		
026E	Alarm status AL-F \square		
026F	Alarm status AL-A \square		
0270	Reserved		
:			
029F			
02A0	Module power consumption	W	
02A1	Reserved		
02A2	Module cumulative power consumption (lower)	Wh	
02A3	Module cumulative power consumption (upper)		

Monitor No.	Content	Units	Remarks
02A4	Reserved		
02A5			
02A6			
02A7	Internal temperature of encoder	${ }^{\circ} \mathrm{C}$	
02A8	Torques corresponding to disturbance	0.1\%	Thrust corresponding to disturbance when using the linear
02A9	Instantaneous torque	0.1\%	Instantaneous thrust when using the linear
02AA	Overload alarm margin	0.1\%	
02AB	Error excessive alarm margin	16pulse	
02AC	Settle time	ms	
02AD	Overshoot amount	pulse	
02AE	Motor side/load side position deviation (lower)	pulse	When using the fully closed loop control
02AF	Motor side/load side position deviation (upper)		
02B0	Motor side/load side speed deviation (lower)	0.01r/min	When using the fully closed loop control
02B1	Motor side/load side speed deviation (upper)		
02B2	Module power consumption (double word) (lower)	W	
02B3	Module power consumption (double word) (upper)		
02B4	Reserved		
02B5			
02B6			
02B7			
02B8			
02B9			
02BA			
02BB			
02BC			
02BD			
02BE			
02BF			
02C0			
02CF			
02CF			

12.3 RIO information

Monitor No.	Content	Units	Remarks
0128	Reserved		
0129			
012A			
012B			
012C			
012D			
012E			
012F			
0130			
:			
013F			
0140			
0141			
0142			
0143			
0144	Number of pulses per revolution CH 1 (lower)	pulse	
0145	Number of pulses per revolution CH 1 (upper)		
0146	Multiple revolution counter maximum value CH 1 (lower)	rev	
0147	Multiple revolution counter maximum value CH 1 (upper)		
0148	Reserved		
0149			
014A			
014B			
014C	Number of pulses per revolution CH2 (lower)	pulse	
014D	Number of pulses per revolution CH 2 (upper)		
014E	Multiple revolution counter maximum value CH2 (lower)	rev	
014F	Multiple revolution counter maximum value CH 2 (upper)		
0150	Cycle counter at power supply ON CH1	rev	
0151	Reserved		
0152			
0153	Multiple revolution counter at power supply ON CH1	rev	
0154	Reserved	Se^{2}	
0155	Cycle counter at power supply ON CH2	rev	
0156	Reserved	-	
0157			
0158	Multiple revolution counter at power supply ON CH2	rev	
0159	Reserved		
015A			
015B			
015C			
015D			
015E			
015F			

12-7

12.4 Operation information

Monitor No.	Content	Units	Remarks
0300	Current command position (lower)	Command	
0301	Current command position (upper)	units	
0302	Current feedback position (lower)	Command	Current feedback position prior to electronic gear processing
0303	Current feedback position (upper)		
0304	Moving speed (lower)	Speed units	Current speed output to servo amplifier
0305	Moving speed (upper)	Speed units	Current speed output to servo amprifier
0306	Remaining distance to move (lower)	Command	Distance from current command position to end point when in
0307	Remaining distance to move (upper)		automatic operation
0308	Grid size (lower)		Distance from standard position of return to home position (end
0309	Grid size (upper)	pulse	of dog etc.) to the Z-phase For the home position return method which does not use the Zphase, 0 is displayed.
030A	Operation point No.		Value equal to operation point number +1 is displayed. 0 is displayed while stopped.
030B	Remaining dwell time	ms	
030C	Reserved		
030D			
030E			
030F			
0310	Current command position (lower)	pulse	Current command position after electronic gear processing
0311	Current command position (upper)		
0312	Current feedback position (lower)	pulse	Current feedback position after electronic gear processing
0313	Current feedback position (upper)		
0314	F Δ T (lower)	pulse	Movement amount per control cycle
0315	F \triangle T (upper)		
0316	Feedback moving speed (lower)	Speed units	The feedback speed converted from the difference of the current feedback position (after electronic gear processing)
0317	Feedback moving speed (upper)		
0318	Reserved		
0319			
031A			
031B			
031C			
031D			
031E			
031F			
0320	External signal status		bit0: LSP - bit1: LSN - bit2: DOG (Note)
0321	Reserved		
0322			
0323			
0324	Speed command (lower)	0.01r/min	Notifies the speed command during speed control.
0325	Speed command (upper)	0.01r/min	
0326	Torque command	0.1\%	
0327	Reserved		
0328			
0329			
032A			
032B			
032C			
032D			
032E			
032F			

Note. 0: I/O input signal OFF, 1: I/O input signal ON is indicated.

Monitor No.	Content	Units	Remarks
0390	Reserved		
:			
039F			
03A0	Axis data status bit 1		Use these when sampling the axis data status bit. For details, refer to Section 7.12.7.
03A1	Axis data status bit 2		
03A2	Axis data status bit 3		
03A3	Axis data status bit 4		
03A4	Axis data status bit 5		
03A5	Axis data status bit 6		
03A6	Axis data status bit 7		
03A7	Axis data status bit 8		
03A8	Reserved		
03A9			
03AA			
03AB			
03AC			
03AD			
03AE			
03AF			
03B0			
:			
03BF			

12.5 Operation information (double word)

Monitor No.	Content	Units	Remarks
1300	Current command position	Command units	Command position prior to electronic gear processing
1302	Current feedback position	Command units	Current feedback position prior to electronic gear processing
1304	Moving speed	Speed units	Command speed output to servo amplifier
1306	Remaining distance to move	Command units	Distance from current command position to end point when in automatic operation
1308	Grid size	pulse	Distance from standard position of return to home position (end of dog etc.) to the Z-phase. For the home position return method which does not use the Z-phase, 0 is displayed.
130A	Reserved		
130C			
130E			
1310	Current command position	pulse	Command position after electronic gear processing
1312	Current feedback position	pulse	Current feedback position after electronic gear processing
1314	F Δ T	pulse	Movement amount per control cycle
1316	Feedback moving speed	Speed units	The feedback speed converted from the difference of the current feedback position (after electronic gear processing)
1318	Reserved		
131A			
131C			
131E			
1320			
1322			
1324	Speed command	0.01r/min	Notifies the speed command during speed control.
1326	Reserved		
1328			
132A			
132C			
132E			
1330			
1332			
1334			
1336			
1338			
133A			
133C			
133E			
1340			
1342			
1344			
1346			
1348			
134A			
134C			
134E			

12.6 RIO control information

Monitor No.	Content	Units	Remarks
0300	Reserved		
:			
032F			
0330	RIO control parameter error number No. 0200 to 020F		Bit corresponding to parameter error number is turned on. bit is No. 0200 (bit 0) to 020F (bit 15).
0331	RIO control parameter error number No. 0210 to 021F		Bit corresponding to parameter error number is turned on. bit is No. 0210 (bit 0) to 021F (bit 15).
0332	RIO control parameter error number No. 0220 to 022F		Bit corresponding to parameter error number is turned on. bit is No. 0220 (bit 0) to 022F (bit 15).
0333	RIO control parameter error number No. 0230 to 023F		Bit corresponding to parameter error number is turned on. bit is No. 0230 (bit 0) to 023F (bit 15).
0334	Reserved		
0335			
0336			
0337			
0338			
0339			
033A			
033B			
033C			
033D			
033E			
033F			

Note. Information concerning parameter error (RIO control alarm 37, detail 01) that has occurred at system startup can be monitored.

12.7 System information

Monitor No.	Content	Units	Remarks
0400	Reserved		
0401	Cause of forced stop (Note)		bit 0: External forced stop bit 1: Software forced stop bit 2: User watchdog bit 3: Communication error bit 4: An axis that has not been mounted exists bit 5: During reboot preparation bit 6: System error E5 $\square \square$ occurrence
0402	Reserved		
0403			
0404			
0405			
0406			
0407			
0408			
0409			
040A	Parameter backup times	Times	Displays the times of write accesses to flash ROM by the parameter backups after system preparation is completed.
040B	Reserved		
040C			
040D			
040E			
040F			
0410	System parameter error number No. 0001 to 000F		Bit corresponding to parameter number is turned on. bit is No. 0001 (bit 1) to 000F (bit 15).
0411	System parameter error number No. 0010 to 001F		Bit corresponding to parameter number is turned on. bit is No. 0010 (bit 0) to 001 F (bit 15).
0412	System parameter error number No. 0020 to 002F		Bit corresponding to parameter number is turned on. bit is No. 0020 (bit 0) to 002F (bit 15).
0413	System parameter error number No. 0030 to 003F		Bit corresponding to parameter number is turned on. bit is No. 0030 (bit 0) to 003F (bit 15).
0414	System parameter error number No. 0040 to 004F		Bit corresponding to parameter number is turned on. bit is No. 0040 (bit 0) to 004F (bit 15).
0415	System parameter error number No. 0050 to 005F	-	Bit corresponding to parameter number is turned on. bit is No. 0050 (bit 0) to 005F (bit 15).
0416	System parameter error number No. 0060 to 006F		Bit corresponding to parameter number is turned on. bit is No. 0060 (bit 0) to 006F (bit 15).
0417	System parameter error number No. 0070 to 007F		Bit corresponding to parameter number is turned on. bit is No. 0070 (bit 0) to 007F (bit 15).
0418	Reserved		
:			-
047F			

Note. The bit for the corresponding forced stop factor is turned on.

12.8 Servo parameter information

Note. Information concerning parameter error (servo alarm 37) that has occurred at system startup can be monitored. If a parameter warning (servo alarm E4) occurs while system is running, it is not reflected in this information.

Monitor No.	Content	Units	Remarks
0520	Servo parameter error number (Note) No. 1200 to 120F		Bit corresponding to parameter number is turned on. bit is No. 1200 (bit 0) to 120F (bit 15).
0521	Servo parameter error number (Note) No. 1210 to 121F		Bit corresponding to parameter number is turned on. bit is No. 1210 (bit 0) to 121F (bit 15).
0522	Servo parameter error number (Note) No. 1220 to 122F		Bit corresponding to parameter number is turned on. bit is No. 1220 (bit 0) to 122F (bit 15).
0523	Servo parameter error number (Note) No. 1230 to 123F		Bit corresponding to parameter number is turned on. bit is No. 1230 (bit 0) to 123F (bit 15).
0524	Servo parameter error number (Note) No. 1240 to 124F		Bit corresponding to parameter number is turned on. bit is No. 1240 (bit 0) to 124F (bit 15).
0525	Servo parameter error number (Note) No. 1250 to 125F		Bit corresponding to parameter number is turned on. bit is No. 1250 (bit 0) to 125F (bit 15).
0526	Servo parameter error number (Note) No. 1260 to 126F		Bit corresponding to parameter number is turned on. bit is No. 1260 (bit 0) to 126F (bit 15).
0527	Servo parameter error number (Note) No. 1270 to 127F		Bit corresponding to parameter number is turned on. bit is No. 1270 (bit 0) to 127F (bit 15).
0528	Servo parameter error number (Note) No. 1280 to 128F		Bit corresponding to parameter number is turned on. bit is No. 1280 (bit 0) to 128F (bit 15).
0529	Servo parameter error number (Note) No. 1290 to 129F		Bit corresponding to parameter number is turned on. bit is No. 1290 (bit 0) to 129F (bit 15).
052A	Servo parameter error number (Note) No. 12A0 to 12AF		Bit corresponding to parameter number is turned on. bit is No. 12A0 (bit 0) to 12AF (bit 15).
052B	Servo parameter error number (Note) No. 12B0 to 12BF		Bit corresponding to parameter number is turned on. bit is No. 12B0 (bit 0) to 12BF (bit 15).
052C	Servo parameter error number (Note) No. 12C0 to 12CF		Bit corresponding to parameter number is turned on. bit is No. 12C0 (bit 0) to 12CF (bit 15).
052D	Servo parameter error number (Note) No. 12D0 to 12DF		Bit corresponding to parameter number is turned on. bit is No. 12D0 (bit 0) to 12DF (bit 15).
052E	Servo parameter error number (Note) No. 12E0 to 12EF		Bit corresponding to parameter number is turned on. bit is No. 12E0 (bit 0) to 12EF (bit 15).
052F	Servo parameter error number (Note) No. 12F0 to 12FF		Bit corresponding to parameter number is turned on. bit is No. 12F0 (bit 0) to 12FF (bit 15).
0530	Servo parameter error number (Note) No. 1300 to 130F		Bit corresponding to parameter number is turned on. bit is No. 1300 (bit 0) to 130F (bit 15).
0531	Servo parameter error number (Note) No. 1310 to 131F		Bit corresponding to parameter number is turned on. bit is No. 1310 (bit 0) to 131F (bit 15).
0532	Servo parameter error number (Note) No. 1320 to 132F		Bit corresponding to parameter number is turned on. bit is No. 1320 (bit 0) to 132 F (bit 15).
0533	Servo parameter error number (Note) No. 1330 to 133F		Bit corresponding to parameter number is turned on. bit is No. 1330 (bit 0) to 133F (bit 15).
0534	Servo parameter error number (Note) No. 1340 to 134F		Bit corresponding to parameter number is turned on. bit is No. 1340 (bit 0) to 134F (bit 15).
0535	Servo parameter error number (Note) No. 1350 to 135F		Bit corresponding to parameter number is turned on. bit is No. 1350 (bit 0) to 135F (bit 15).
0536	Servo parameter error number (Note) No. 1360 to 136F		Bit corresponding to parameter number is turned on. bit is No. 1360 (bit 0) to 136F (bit 15).
0537	Servo parameter error number (Note) No. 1370 to 137F		Bit corresponding to parameter number is turned on. bit is No. 1370 (bit 0) to 137F (bit 15).
0538	Reserved		
:			
054F			

Note. Information concerning parameter error (servo alarm 37) that has occurred at system startup can be monitored. If a parameter warning (servo alarm E4) occurs while system is running, it is not reflected in this information.

Monitor No.	Content	Units	Remarks
0580	Reserved		
:			
058F			
0590	Servo parameter change number No. 1100 to 110F		Bit corresponding to parameter number is turned on. bit is No. 1100 (bit 0) to 110F (bit 15).
0591	Servo parameter change number No. 1110 to 111F		Bit corresponding to parameter number is turned on. bit is No. 1110 (bit 0) to 111F (bit 15).
0592	Servo parameter change number No. 1120 to 112F		Bit corresponding to parameter number is turned on. bit is No. 1120 (bit 0) to 112F (bit 15).
0593	Servo parameter change number No. 1130 to 113F		Bit corresponding to parameter number is turned on. bit is No. 1130 (bit 0) to 113F (bit 15).
0594	Servo parameter change number No. 1140 to 114F		Bit corresponding to parameter number is turned on. bit is No. 1140 (bit 0) to 114F (bit 15).
0595	Servo parameter change number No. 1150 to 115F		Bit corresponding to parameter number is turned on. bit is No. 1150 (bit 0) to 115F (bit 15).
0596	Servo parameter change number No. 1160 to 116F		Bit corresponding to parameter number is turned on. bit is No. 1160 (bit 0) to 116F (bit 15).
0597	Servo parameter change number No. 1170 to 117F		Bit corresponding to parameter number is turned on. bit is No. 1170 (bit 0) to 117F (bit 15).
0598	Servo parameter change number No. 1180 to 118F		Bit corresponding to parameter number is turned on. bit is No. 1180 (bit 0) to 118F (bit 15).
0599	Servo parameter change number No. 1190 to 119F		Bit corresponding to parameter number is turned on. bit is No. 1190 (bit 0) to 119F (bit 15).
059A	Servo parameter change number No. 11A0 to 11AF		Bit corresponding to parameter number is turned on. bit is No. 11A0 (bit 0) to 11AF (bit 15).
059B	Servo parameter change number No. 11B0 to 11BF		Bit corresponding to parameter number is turned on. bit is No. 11B0 (bit 0) to 11BF (bit 15).
059C	Servo parameter change number No. 11C0 to 11CF		Bit corresponding to parameter number is turned on. bit is No. 11C0 (bit 0) to 11CF (bit 15).
059D	Servo parameter change number No. 11D0 to 11DF		Bit corresponding to parameter number is turned on. bit is No. 11D0 (bit 0) to 11DF (bit 15).
059E	Servo parameter change number No. 11E0 to 11EF		Bit corresponding to parameter number is turned on. bit is No. 11E0 (bit 0) to 11EF (bit 15).
059F	Servo parameter change number No. 11F0 to 11FF		Bit corresponding to parameter number is turned on. bit is No. 11F0 (bit 0) to 11FF (bit 15).

Monitor No.	Content	Units	Remarks
05A0	Servo parameter change number No. 1200 to 120F		Bit corresponding to parameter number is turned on. bit is No. 1200 (bit 0) to 120 F (bit 15).
05A1	Servo parameter change number No. 1210 to 121F		Bit corresponding to parameter number is turned on. bit is No. 1210 (bit 0) to 121 F (bit 15).
05A2	Servo parameter change number No. 1220 to 122F		Bit corresponding to parameter number is turned on. bit is No. 1220 (bit 0) to 122 F (bit 15).
05A3	Servo parameter change number No. 1230 to 123F		Bit corresponding to parameter number is turned on. bit is No. 1230 (bit 0) to 123 F (bit 15).
05A4	Servo parameter change number No. 1240 to 124F		Bit corresponding to parameter number is turned on. bit is No. 1240 (bit 0) to 124F (bit 15).
05A5	Servo parameter change number No. 1250 to 125F		Bit corresponding to parameter number is turned on. bit is No. 1250 (bit 0) to 125F (bit 15).
05A6	Servo parameter change number No. 1260 to 126F		Bit corresponding to parameter number is turned on. bit is No. 1260 (bit 0) to 126F (bit 15).
05A7	Servo parameter change number No. 1270 to 127F		Bit corresponding to parameter number is turned on. bit is No. 1270 (bit 0) to 127F (bit 15).
05A8	Servo parameter change number No. 1280 to $128 F$		Bit corresponding to parameter number is turned on. bit is No. 1280 (bit 0) to 128F (bit 15).
05A9	Servo parameter change number No. 1290 to 129F		Bit corresponding to parameter number is turned on. bit is No. 1290 (bit 0) to 129F (bit 15).
05AA	Servo parameter change number No. 12A0 to 12AF		Bit corresponding to parameter number is turned on. bit is No. 12A0 (bit 0) to 12AF (bit 15).
05AB	Servo parameter change number No. 12B0 to 12BF		Bit corresponding to parameter number is turned on. bit is No. 12B0 (bit 0) to 12BF (bit 15).
05AC	Servo parameter change number No. 12C0 to 12CF		Bit corresponding to parameter number is turned on. bit is No. 12C0 (bit 0) to 12CF (bit 15).
05AD	Servo parameter change number No. 12D0 to 12DF		Bit corresponding to parameter number is turned on. bit is No. 12D0 (bit 0) to 12DF (bit 15).
05AE	Servo parameter change number No. 12E0 to 12EF		Bit corresponding to parameter number is turned on. bit is No. 12E0 (bit 0) to 12EF (bit 15).
05AF	Servo parameter change number No. 12F0 to 12FF		Bit corresponding to parameter number is turned on. bit is No. 12F0 (bit 0) to 12FF (bit 15).
05B0	Servo parameter change number No. 1300 to 130F		Bit corresponding to parameter number is turned on. bit is No. 1300 (bit 0) to 130F (bit 15).
05B1	Servo parameter change number No. 1310 to 131F		Bit corresponding to parameter number is turned on. bit is No. 1310 (bit 0) to 131F (bit 15).
05B2	Servo parameter change number No. 1320 to 132F		Bit corresponding to parameter number is turned on. bit is No. 1320 (bit 0) to 132F (bit 15).
05B3	Servo parameter change number No. 1330 to 133F		Bit corresponding to parameter number is turned on. bit is No. 1330 (bit 0) to 133F (bit 15).
05B4	Servo parameter change number No. 1340 to 134F		Bit corresponding to parameter number is turned on. bit is No. 1340 (bit 0) to 134F (bit 15).
05B5	Servo parameter change number No. 1350 to 135F		Bit corresponding to parameter number is turned on. bit is No. 1350 (bit 0) to 135 F (bit 15).
05B6	Servo parameter change number No. 1360 to 136F		Bit corresponding to parameter number is turned on. bit is No. 1360 (bit 0) to 136F (bit 15).
05B7	Servo parameter change number No. 1370 to 137F		Bit corresponding to parameter number is turned on. bit is No. 1370 (bit 0) to 137F (bit 15).
05B8	Reserved		
:			
05CF			

13. ALARM NUMBER

The position board can raise the following four alarms: system alarm, servo alarm, operation alarm, and system error. The alarm numbers are represented in hexadecimal numbers.

API LIBRARY

- Use the sscGetAlarm/sscResetAlarm functions to get/reset the alarm number. Specify the following in the argument for the alarm type.
- System alarm : SSC_ALARM_SYSTEM
- Servo alarm : SSC_ALARM_SERVO
- RIO module alarm : SSC_ALARM_UNIT
- Operation alarm : SSC_ALARM_OPERATION
- RIO control alarm : SSC_ALARM_UNIT_CTRL
- Use the sscGetSystemStatusCode function to get the system error.

13.1 System alarm

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure

Note. The system alarm cannot be reset.

13.2 Servo alarm

13.2.1 Servo amplifier MR-J4(WD)-ロB

The servo alarms of MR-J4(WD)- $\square \mathrm{B}$ are shown in the following table. For details, refer to the Servo Amplifier Instruction Manual.
(1) Alarm

Alarm No.	Name
10	Undervoltage
11	Switch setting error
12	Memory error 1 (RAM)
13	Clock error
14	Control process error
15	Memory error 2 (EEP-ROM)
16	Encoder initial communication error 1
17	Board error
19	Memory error 3 (FLASH-ROM)
1A	Servo motor combination error
1B	Converter error
1E	Encoder initial communication error 2
1F	Encoder initial communication error 3
20	Encoder normal communication error 1
21	Encoder normal communication error 2
24	Main circuit error
25	Absolute position erased
27	Initial magnetic pole detection error
28	Linear encoder error 2
2A	Linear encoder error 1
2B	Encoder counter error
30	Regenerative error
31	Overspeed
32	Overcurrent
33	Overvoltage
34	SSCNET receive error 1
35	Command frequency error
36	SSCNET receive error 2
37	Parameter error
39	Program error
3A	Inrush current suppression circuit error
3D	Parameter setting error for driver communication
3E	Operation mode error
42	Servo control error
45	Main circuit device overheat
46	Servo motor overheat
47	Cooling fan error
50	Overload 1
51	Overload 2
52	Error excessive
54	Oscillation detection
56	Forced stop error

Alarm No.	Name
61	Operation error
63	STO timing error
64	Functional safety unit setting error
65	Functional safety unit connection error
66	Encoder initial communication error
67	Encoder normal communication error 1
68	STO diagnosis error
69	Command error
70	Load-side encoder initial communication error 1
71	Load-side encoder normal communication error 1
72	Load-side encoder normal communication error 2
74	Option card error 1
75	Option card error 2
79	Functional safety unit diagnosis error
7A	Parameter setting error
7B	Encoder diagnosis error
7 C	Functional safety unit communication diagnosis error
7D	Safety observation error
82	Master-slave operation error 1
84	Network module initialization error
85	Network module error
86	Network communication error
8A	USB communication time-out/ serial communication time-out error/ Modbus-RTU communication time-out error
8D	CC-Link IE communication error
8E	USB communication error/ serial communication error/ Modbus-RTU communication error
88888	Watchdog

(2) Warning

Alarm No.	Name
90	Home position return incomplete warning
91	Servo amplifier overheat warning
92	Battery cable disconnection warning
93	ABS data transfer warning
95	STO warning
96	Home position setting warning
97	Positioning specification warning
98	Software limit warning
99	Stroke limit warning
9A	Optional unit input data error warning
9B	Error excessive warning
9 C	Converter error
9D	CC-Link IE warning 1
9E	CC-Link IE warning 2
9F	Battery warning
E0	Excessive regeneration warning
E1	Overload warning 1
E2	Servo motor overheat warning
E3	Absolute position counter warning
E4	Parameter warning
E6	Servo forced stop warning
E7	Controller forced stop warning
E8	Cooling fan speed reduction warning
E9	Main circuit off warning
EA	ABS servo-on warning
EB	Other axes error warning
EC	Overload warning 2
ED	Output watt excess warning
F0	Tough drive warning
F2	Drive recorder - Miswriting warning
F3	Oscillation detection warning
F4	Positioning warning
F5	Simple cam function - Cam data miswriting warning
F6	Simple cam function - Cam control warning

Note. For the specific servo alarm numbers, refer to the Servo Amplifier Instruction Manual.

13.2.2 Sensing module (axis mode)

The alarms for sensing module (axis mode), are the same as the alarms for sensing module (station mode). Refer to Section 13.3.2.

13.3 RIO module alarm

13.3.1 SSCNETII/H head module

Refer to "MELSEC-L SSCNETII/H Head Module User's Manual" for SSCNETII/H head module RIO module alarms.

13.3.2 Sensing module (station mode)

The RIO module alarms of the sensing module are shown in the following table. For details, refer to the Sensing Module Instruction Manual.
(1) Alarm

Alarm No.	Name
10	Undervoltage
11	Switch setting error
12	Memory error 1 (RAM)
13	Clock error
14	Control process error
15	Memory error 2 (EEP-ROM)
17	Board error
19	Memory error 3 (Flash-ROM)
1A	Incorrect combination of extension modules
1B	Driver error
1E	Encoder I/F module - Initial communication error 2
1F	Encoder I/F module - Initial communication error 3
20	Encoder I/F module - Ch. A Normal communication error 1
21	Encoder I/F module - Ch. A Normal communication error 2
28	Encoder I/F module - Linear encoder error 2
2A	Encoder I/F module - Ch. A Linear encoder error 1
34	SSCNET receive error 1
35	I/O pulse frequency error
36	SSCNET receive error 2
37	Parameter error
71	Encoder I/F module - Ch. B Normal communication error 1
72	Encoder I/F module - Ch. B Normal communication error 2
75	Extension module error
76	Encoder I/F module - Ch. B Linear encoder error 1
8E	Serial communication error
-	Watchdog

(2) Warning

Alarm No.	Name
E4	Parameter warning
E7	Controller forced stop warning

[^13]
13.4 Operation alarm

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure
10	Stop command on	01	The stop operation signal (STP) is on.	Turn off the stop operation signal (STP).
	02	The rapid stop signal (RSTP) is on.	Turn off the rapid stop signal (RSTP).	
12	During forced stop	01	A forced stop is present.	Cancel the forced stop.

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure
25	Point table setting error	01	The position command system setting is erroneous.	Set up the position command system correctly.
		02	The deceleration check system setting is erroneous.	Set up the deceleration check system correctly.
		06	The S-curve ratio setting is erroneous.	Set up the S-curve ratio correctly.
		07	The speed switching point specification setting is erroneous.	Set up the help command correctly.
		08	The point data setting of the next point is erroneous. Note. Only when "1: Before point switching" is set in the speed switching point specification	Reexamine the setting value of the next point in the point table.
		09	The other axes start specification setting is erroneous.	Set up the other axes start specification correctly.
		OA	The predwell setting is erroneous.	Set up the predwell correctly.
		OC	The setting of pass position interrupt specification is erroneous.	Set only the start point for the pass position interrupt specification.
		11	The interpolation method setting is erroneous. MC300	Set the interpolation method correctly.
		12	The setting for acceleration/deceleration method is outside of the setting range.	Set the acceleration/deceleration method correctly.
		13	A value for acceleration/deceleration data 1 to 4 is outside of the setting range.	Set acceleration/deceleration data 1 to 4 correctly.
		14	The total of the values of acceleration/deceleration data 1 and 2 , or acceleration/deceleration data 3 and 4 exceed 1000. MC300	Set acceleration/deceleration data 1 and 2 , or acceleration/deceleration data 3 and 4 correctly.
		15	The acceleration/deceleration method was set to jerk ratio acceleration/deceleration during interpolation operation. MC300	Reexamine the acceleration/deceleration method.
26	Incremental feed movement amount error	01	The setting for incremental feed movement amount is a negative number.	Set the incremental feed movement amount using natural numbers including 0 . Movement direction is designated by the movement direction signal (DIR).
2D	Latest command buffer number setting error	01	A value outside of range is set to the latest buffer number.	Set a value inside the range to the latest buffer number.

| Alarm
 No. | Content | Detail
 No. | Cause of occurrence | Procedure |
| :---: | :--- | :--- | :--- | :--- | :--- |

Note. The operation alarm cannot be reset.

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure
$\begin{gathered} \text { 3B } \\ \text { (Note) } \end{gathered}$	Mark detection setting error	01	Mark detection was enabled in a communication mode that is not compatible.	Use mark detection in a SSCNETII/H system.
		02	Mark detection function is set to enabled for an axis that does not support mark detection function.	(1) Change the servo amplifier being used to an axis with a mark detection signal function. (2) Disable the mark detection settings.
		03	When the mark detection mode is ring buffer, the number of continuous latch storages was set to 0 .	Reexamine the value of number of continuous latch data storages (parameter No.02B0, 02B2).
		04	Mark detection function was set to enabled for an axis that is set to get sensor input from driver.	(1) Reexamine the setting of sensor input option (parameter No.0219). (2) Disable the mark detection settings.
40	Linear interpolation start up error MC200 Interpolation start up error	01	Axes that have been set to something besides linear interpolation mode MC200// interpolation operation mode MC300 (LIP) are included in the same group.	Designate all of the axes in the group as linear interpolation mode ${ }^{W C 200}$ /interpolation operation mode MC300 (LIP).
		02	There are 5 or more axes in the group formation during linear interpolation; alternatively, a group formation consists of either 1 axis or 3 or more axes during circular interpolation. WC300	Reexamine the group formation.
		03	Start operation was performed for linear interpolation $\sqrt{M C 200} /$ interpolation operation MC300 with the invalid linear interpolation group number MC200/ interpolation group number MC300.	Reexamine the linear interpolation group (MC200/ interpolation group MC300 (parameter No.0260). Refer to Section 5.6 (linear interpolation) or Section 5.7 (circular interpolation) for details concerning valid group number.
		04	The number of points defined for axes in the group is different.	Set the same number of points for all axes.
		05	The speed unit for the primary axis (parameter No.0200) is defined to be $\mathrm{r} / \mathrm{min}$.	Change the speed units.
41	Linear interpolation point data error MC200 Interpolation point data error	01	During linear control, the movement amount in the group exceeds the maximum value "999999999".	Set it to the correct data.
		02	With excessive speed processing (parameter No.0261) set to "1: alarm stop", the group formation axis exceeds the speed limit.	Reexamine feed speed and speed limit values.
		03	The axis No. for interpolation axis No. is outside the valid range.	Reexamine the interpolation axis No. setting value.
		04	The number of linear interpolation or circular interpolation MC300 groups operating simultaneously exceeds the valid number of linear interpolation MC200/ interpolation operation MC300 groups.	Reexamine the operation pattern so that the number of linear interpolation or circular interpolation $\sqrt{M C 300}$ groups operating simultaneously does not exceed the valid number of interpolation groups.
		05	The axis No. for the auxiliary axis specified by the point table overlaps with the primary axis or another auxiliary axis.	Reexamine the auxiliary axis No. so that it is not the same as another axis No.

Note. The operation alarm cannot be reset.

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure
41	Linear interpolation point data error MC200 Interpolation point data error MC300	10	When executing central point-specified circular interpolation, the difference between the radius of the start/central points and the radius of the end/central points exceeds the allowable error range for circular interpolation (parameter No.02CC, 02CD). MC300	Reexamine the central point (arc coordinate), the end point (position data), and the allowable error range value.
		11	During auxiliary point-specified circular interpolation, the start point = auxiliary point.	Reexamine the auxiliary point (arc coordinate).
		12	During auxiliary point-specified circular interpolation, the end point = auxiliary point. MC300	Reexamine the auxiliary point (arc coordinate).
		13	During auxiliary point-specified circular interpolation, the start point, end point, and auxiliary point form a straight line. MC300	Reexamine the auxiliary point (arc coordinate).
		14	During auxiliary point-specified circular interpolation, the auxiliary point coordinate is outside the range of -2147483648 to 2147483647. WC300	Reexamine the auxiliary point (arc coordinate).
		15	During auxiliary point-specified circular interpolation, the start point = end point MC300	Reexamine the end point (position data).
		16	During either auxiliary point- or central point-specified circular interpolation, the end point position is outside the range of -2147483648 to 2147483647 . WC300	Reexamine the end point (position data).
		17	During central point-specified circular interpolation, the start point = central point MC300	Reexamine the central point (arc coordinate).
		18	During central point-specified circular interpolation, the end point = central point MC300	Reexamine the central point (arc coordinate).
		19	During central point-specified circular interpolation, the central point position is outside the range of -2147483648 to 2147483647 .	Reexamine the central point (arc coordinate).
		1A	The arc radius exceeds 536870912. Mc300	Reexamine the auxiliary point (arc coordinate), the central point (arc coordinate), and the end point (position data).
42	Can't start linear interpolation auxiliary axis error MC200	01	The auxiliary axis is in operation.	Perform start operation for linear interpolation MC200/interpolation operation ${ }^{[C 300}$ after making sure all axes in the group are stopped.
	Can't start interpolation auxiliary axis error	02	The auxiliary axis has an alarm set.	Remove the cause for the alarm on the auxiliary axis.

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure
43	Interference check axis setting error	01	The axis is set up as the interference check axis.	Set it to the correct data.
		02	The axis in the same linear interpolation group as the axis is set up as the interference check axis.	
		0F	An operation that is not compatible with the interference check was started. MC300	Check again to make sure that you are not using the following operations. - Circular interpolation
44	Command error in interference area	01	Commanded to move into interference area.	Perform a commanded to move out of the interference area.
45	Entering interference area error	01	Entered interference area during operation.	(1) Confirm that the parameter settings related to interference check are correct. (2) Change the operation pattern so that the interference area is not entered.

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure
51	While in tandem drive nonsynchronous mode	01	Home position return, automatic operation, or linear interpolation operation MC200 /interpolation operation MC300 was attempted while in non-synchronous micro adjustment mode of tandem drive axes.	Perform home position return, automatic operation as well as linear interpolation operation /interpolation operation WC300 while in synchronous mode.
52	Tandem drive axis setting error	01	A home position return method other than dog method, dog cradle method, data set method, scale home position signal detection method, or dog front end method was attempted for home position return while in tandem drive axis mode.	Set the home position return option 1 to one of the return to home position methods listed to the left.
		02	A second axis is not set for the tandem drive axis group. Or 3 or more axes are set up with the same tandem drive group number.	Set up the tandem drive axis group number in pairs.
53	Tandem drive excessive deviation	01	The deviation between the master axis and slave axis for tandem drive axes exceeds the tandem drive excessive deviation width of the parameter.	Make adjustments so that the deviation between the master axis and slave axis is reduced. And reexamine excessive deviation width and delay of start detection for excessive deviation, defined in the parameters.
54	Tandem drive synchronous alignment valid width error	01	When deviation exceeds the synchronous alignment valid width during calculation error correction performed for servo on, while in tandem drive synchronous mode.	Reexamine the parameter synchronous alignment valid width. As the home position return is incomplete (home position return request (ZREQ) is ON), execute home position return again.
55	Tandem drive while performing synchronization	01	When start of operation is executed during calculation error correction performed for turning on of the servo, while in tandem drive synchronous mode.	Do not perform start up while the "synchronizing" signal (SYEOD) is on.
56	Tandem drive slave axis error	01	There is a servo alarm for the tandem drive slave axis (including servo warning E6, E7, E9).	Cancel the servo alarm. For details, refer to the Servo Amplifier Instruction Manual on your servo amplifier.
		02	A communication error or a power outage on the servo amplifier occurred.	Confirm that the connection to the servo amplifier is intact. Refer to Section 13.6 for details concerning communication errors.
		03	The tandem drive slave axis entered servo ready off mode.	
57	Exceeding of valid width of tandem drive deviation compensation error	01	The deviation between the master axis and the slave axis exceeded the valid width when home position return was performed while in tandem drive mode.	(1) Adjust the mechanical deviation between the master axis and the slave axis so that it is within the valid width. (2) Set the tandem drive home position signal offset (parameter No.026C, 026D) to a correct value.
58	Tandem drive synchronous alignment error	01	When a stop command is input during calculation error correction performed for turning on the servo, while in tandem drive synchronous mode.	To correct the error between the master axis and the slave axis, turn the servo off and then on to perform synchronization again.
		02	In tandem drive synchronous mode, the start operation is performed without completion of synchronization.	
5B	Using other axes start data	01	Other axes start data is being used (the other axes start notice signal (OSOPD) is on).	Check the other axes start data is not being used (the other axes start notice signal (OSOP口) is off).

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure
5C	Pass position interrupt error	01	The setting to the start number of the pass interrupt condition is out of range.	Check the start number setting of the pass interrupt condition.
		02	The setting to the end number of the pass interrupt condition is out of range.	Check the end number setting of the pass interrupt condition.
		03	The start number of the pass interrupt condition exceeds the end number.	Check the start number setting and the end number setting of the pass interrupt condition.
		04	The setting of the pass interrupt condition is out of range.	Check the pass interrupt condition setting.
		05	The specified pass interrupt condition is used for other axes.	Do not overlap the pass interrupt condition numbers for each axis.
		06	The operation is started during the pass position output interrupt.	Do not start the operation until the pass position output interruption is completed.
		07	During the pass position output interrupt cancel signal (PPISTP) is on, the operation is started with setting valid to the pass position specification for auxiliary command of point table.	Start the operation after turning off the pass position output interrupt cancel signal (PPISTP).
5D	Continuous operation to torque control error	01	Continuous operation to torque control valid was specified to a tandem drive axis.	Specify continuous operation to torque control invalid to the tandem drive axis.
		02	When operating at a continuous operation to torque control point, the operation was completed without conducting a switch to continuous operation to torque control.	(1) For automatic switch, reexamine the setting of the continuous operation to torque control switching position. (2) For manual switch, conduct a switch to continuous operation to torque control mode before position control mode operation is completed.
		03	The press limit position was reached.	Reexamine the positions of the pressing position in continuous operation to torque control and the press limit position.
		04	Interlock command (ITL) turned ON during the operation of a point set to continuous operation to torque control valid.	Do not input an interlock command during the operation of a continuous operation to torque control point.
		05	The travel direction and press limit position were incorrect.	(1) Reexamine the set values of the point table. (2) Travel in the opposite direction, and start operation before the press limit position.
5D	Continuous operation to torque control error	06	A continuous operation to torque control point was specified for a connected module that does not support continuous operation to torque control.	(1) Reexamine the set values of the point table. (2) Use a servo amplifier that supports continuous operation to torque control mode.
		07	The control mode switch command (CTLMC) turned ON during movement in continuous operation to torque control mode (before reaching target torque).	Turn ON control mode switch command after completion of continuous operation to torque control. (Switch to position control mode)
		08	The press limit position was set to a position before the position data of the point table.	Set the press limit position to a position after the position data of the point table.
		09	The software limit was set to a position before the press limit position.	Set the press limit position to a position before the software limit.
		0A	Continuous operation to torque control valid was specified to a linear interpolation axis or circular interpolation axis MC300	Specify continuous operation to torque control invalid to a linear interpolation axis or circular interpolation axis MC300.
		OB	Continuous operation to torque control was specified as valid for a point where travel amount is 0 .	Set the required travel amount in order to conduct continuous operation to torque control.

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure
5E	Continuous operation to torque control setting error	01	Continuous operation to torque control speed limit value is outside of range.	Reexamine the setting of the continuous operation to torque control speed limit value.
		02	Target torque is outside of range.	Reexamine the setting of the target torque.
		03	Continuous operation to torque control acceleration time constant is outside of range.	Reexamine the setting of continuous operation to torque control acceleration time constant.
		04	Continuous operation to torque control deceleration time constant is outside of range.	Reexamine the setting of continuous operation to torque control deceleration time constant.
		05	Continuous operation to torque control operating conditions is out of range.	Reexamine the setting of continuous operation to torque control operating conditions.
5F	Point table loop error	01	The loop start point is specified but the latest command point No. is 0 .	After updating the point table, set the latest command point No.
		02	The loop start point is specified but the number of points used is 1 .	When specifying the point table loop, set more than one point.
		03	A value smaller than the start point No. or a value larger than the end point No. was input to the latest command point No.	Input a number within the range of start point No. and end point No. to the latest command point No .
		04	The next point for a point that specifies continuous operation has not been updated.	(1) Increase the number of points to be used in loop method so that update is complete at the time of operation start for the next point. (2) Increase the updating speed so that update is complete at the time of operation start for the next point. (3) After updating the point table, set the latest command point No.
		05	Loop end point was specified while not in point table loop.	Specify loop end point while using point table loop method.
90	Home position return not complete	01	Automatic operation, linear interpolation operation ${ }^{M C 200}$ /interpolation operation MC300, or home position reset were performed without executing return to home position.	Execute home position return. Or validate no home position (parameter No.0200).
91	Z-phase not passed	01	The Z-phase has not been passed.	Turn the motor more than 1 revolution in the $+/$ direction and then perform home position return.
92	The proximity dog is short	01	When using dog method home position return, after the dog turned on and decelerating to a stop, the position is not above the dog.	Lengthen the proximity dog. Or in order to stop on top of the dog, reduce the home position return speed.
94	Home position return direction error	01	The home position return direction and stopper method direction are opposite when using a stopper method for return to home position.	Set the home position return direction to be the same as the push direction.
95	Not limiting torque	01	"Torque limit effective" has not been turned on when stopper method is being used for return to home position	Perform push, and after torque limitation effective state, perform start operation for home position return.
96	Home position setting error	01	Home position setting was performed prior to motor being stabilized.	Adjust the servo so that it stabilizes quickly upon stopping at the home position.

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure
97	Home position stop error	01	Upon stopping at home position, even after 1800 ms passed, in-position was not achieved.	(1) Reduce home position return speed and creep speed. (2) Lengthen the home position return time constant. (3) Broaden the in-position boundaries. (4) Confirm that it is not contacting the machine when return to home position is being performed.
98	Home position search limit error	01	The movement amount moved to detect the home position signal or dog signal while performing return to home position exceeded the home position search limit (parameter No.024A, 024B)	Confirm the input status of the dog signal etc.
9 C	Z-phase mask amount setting error	01	The value calculated by Z-phase mask amount \times electronic gear numerator (CMX) \div electronic gear denominator (CDV) exceeds 32 bits. The Z-phase mask amount + the travel distance to the Z-phase exceeds 32 bits.	Reexamine the setting value of the Z-phase mask amount.
9 D	Home position return parameter setting error	01	For a home position return method that requires the Z-phase being passed, "Not need to pass motor Z phase after the power supply is switched on" is set.	Reexamine the home position return method (parameter No.0240) or the home position setting condition selection (parameter No.1190).
		02	In the Z-phase detection method home position return, "Search again" is set in the setting of the home position signal research.	Set "Do not search again" to the home position signal re-search (parameter No.0240).
		03	In the home position return using other than a Z-phase detection method, a shortcut direction is set as the home position return direction.	Set the - or + direction to the home position return direction (parameter No.0240).
		04	The setting for home position return method (parameter No.0240) is incorrect.	Reexamine the setting of home position return method (parameter No.0240).
A0	Limit switch	01	The upper limit switch (LSP) turned off while moving in the + direction.	Using JOG operation etc. move in the opposite direction to return to within the limit switch boundaries.
		02	The lower limit switch (LSN) turned off while moving in the - direction.	Using JOG operation etc. move in the opposite direction to return to within the limit switch boundaries.
A1	Out of software limit boundaries	01	Position outside of software limit boundaries is being designated.	Set the movement command to within the software limit boundaries.
A2	Reached software limit	01	The software limit has been reached.	Using JOG operation etc. move in the opposite direction to return to within the software limit boundaries.
A4	Software limit Parameter error	01	The parameter settings for the software limits has the upper limit < lower limit.	Set the parameter settings for the software limits such that the upper limit > lower limit.
A5	Position switch parameter error	01	The parameter settings for the position switch has the upper limit < lower limit.	Set the parameter settings for the position switch such that the upper limit > lower limit.

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure

13.5 RIO control alarm

Alarm No.	Content	Detail No.	Cause of occurrence	Procedure
$\begin{gathered} 37 \\ \text { (Note) } \\ \hline \end{gathered}$	Parameter error	01	Parameter setting is erroneous.	Set the setting to correct value within the parameter limits.
$\begin{gathered} 38 \\ \text { (Note) } \end{gathered}$	System setting error	01	The setting for the control station exceeds the maximum number of control stations.	Reexamine the structure of the system.
		02	When station No. assignment is valid, the remote I/O module station No. (parameter No.0202) is set to 0.	Set the station No. to the remote I/O module station No. (parameter No.0202).
		03	When station No. assignment is valid, the setting value of the remote I/O module station No. (parameter No.0202) is out of range of the valid station No.	Set the station No. within the valid range to remote I/O module station No. (parameter No.0202).
		04	When station No. assignment is valid, the setting value of remote I/O module station No. (parameter No.0202) is the same as other stations.	Reexamine the setting of the remote I/O module station No. (parameter No.0202).
		05	The used points were set to an input table that is not being used.	Review the settings for I/O table selection (parameter No.004A), input bit device points (parameter No.0210) and input word device points (parameter No.0212) for remote I/O module
		06	The used points were set to an output table that is not being used.	Review the settings for I/O table selection (parameter No.004A), output bit device points (parameter No.0214) and output word device points (parameter No.0216) for remote I/O module
$\begin{gathered} 39 \\ \text { (Note) } \end{gathered}$	I/O No. assignment setting error	01	The number assigned to the digital input table or input device table is the same as the setting for other servo amplifiers/remote I/O modules. Or, the assignment exceeds its allowable range.	Reexamine the input bit device start No. (parameter No.0211), and input word device start No. (parameter No.0213) for the remote I/O module.
		02	The number assigned to the digital output table or output device table is the same as the setting for other servo amplifiers/remote I/O modules. Or, the assignment exceeds its allowable range.	Reexamine the output bit device start No. (parameter No.0215), and output word device start No. (parameter No.0217) for the remote I/O module.

Note. The RIO control alarm cannot be reset.

13.6 System error

The error code for system errors can be confirmed using system status codes (address 01D0). When the status code is $\mathrm{E} \square \square \square \mathrm{h}$, this corresponds to a system error.

Error code	Content	Cause of occurrence	Procedure
E001	ROM error	Component failure inside position board.	Replace the position board.
E002	RAM error 1		
E003	Dual port memory error	Component (dual port memory) failure inside position board. (Note 1)	If the conditions described in (Note 1) are not applicable, replace the position board.
E004	RAM error 2	Component error inside position board.	Replace the position board.
E006	SSCNET communication IC error 1		
E007	SSCNET communication IC error 2		
E008	Board error		
E1 $\square \square$	CPU error		
E200	Interrupt error		
E301	Watchdog error (Note 2)		
E302	DC FAIL	The + 5VDC being supplied to the position board was reduced.	Check the +5 VDC of the bus connected to the position board.
E310	PCle bus connection error MC300	PCle communication with the host controller was disconnected.	Check the connection status of the PCle bus connecting the position board.
E400	An axis that has not been mounted exists	The control option 1 (parameter No.0200) control axis (■■■■) setting and the servo amplifier connection status are different.	Check the following details. (1) That the control option 1 setting and the servo amplifier connection status, setting (rotary switch) match. (2) Power supply status to servo amplifier. (3) SSCNETIII cable connection status. (4) For disconnection of SSCNETIII cable.
		Communication was cut off by power outage of servo amplifier etc.	Check the following details. (1) Power supply status to servo amplifier. (2) SSCNETIII cable connection status. (3) For disconnection of SSCNETIII cable. Turn on the control power supplies for the communication route servo amplifiers.
		The disconnection command is sent to the second or later axis in the module of the multi-axis amplifier.	Make sure the all axes in the module of the multi-axis amplifier are simultaneously disconnected.
E401	CRC error	SSCNET communication error	Check the following details. (1) SSCNETIII cable connection status. (2) For disconnection of SSCNETIII cable.
E403	Data ID error		
E405	Driver type code error	Type code (parameter No.021E) is different from actual drivers.	Check the respective parameters.
		The vendor ID (parameter No.021D) is different from the actual driver.	Check the respective parameters.
E407	SSCNET time out	No response from the servo amplifier and a communication time out occurred.	An error occurred in communication processing between the position board and the servo amplifier. Make contact with and explain the failure symptoms to an agency or branch office.

Note 1. There are cases where this occurs when data is written to the dual port memory from the host controller prior to system status code becoming "system preparation completion" after turning on the power for the position board (or after reboot).
2. Not user watchdog. Watchdog error on the position board side.

Error code	Content	Cause of occurrence	Procedure
E40B	Uncontrollable driver	The position board failed to shift to the status where the driver is controllable since an error occurred in initial communication between the position board and the servo amplifier.	Check the following details. (1) The setting value of the control option 1 should correspond to the servo amplifier connection status. (2) The setting of multi-axis amplifier and the control option 1 or axis/station No. assignment should correspond.
E40E	Communication cycle error	A servo amplifier that does not support the set communication cycle is connected.	Check that all servo amplifiers support the set control cycle (communication cycle.)
E500	Electronic gear setting error	A value out of the setting range was input.	Check the following details. (1) The settings of the electronic gear numerator (CMX) and the electronic gear denominator (CDV) are within the setting range. (2) The settings of the electronic gears (CMX/CDV) are within the setting range.
E503	Exclusive control error	The invalid value is set to the exclusive control data area.	Reexamine the setting process for the exclusive control data.
E504	CPU temperature error MC300	The CPU temperature exceeded the error temperature.	Turn off the power supply of the host controller. Check the conditions in the general specifications.
E510	I/O No. assignment error	The digital I/O table or I/O table assignment is erroneous.	Check the axis or station in which the I/O No. assignment setting error (Operation alarm No. 39, RIO control alarm 39) is occurring and reexamine the setting.
E511	I/O table select error	The used points were set to an I/O table that is not being used.	Check the station in which the system setting error (RIO control alarm 38) is occurring and reexamine the setting.
E5E0	SSCNET communication system error	An error occurred in initial communication	An error occurred in initial communication between the position board and the servo amplifier. Make contact
E5E1	SSCNET communication system error 2	with the servo amplifier.	with and explain the failure symptoms to an agency or branch office.
EF01	System command code error	An erroneous system command code was set.	Do not set any values other than those listed in Section 10.3.

MEMO

14. EMC AND LOW VOLTAGE DIRECTIVES

Compliance to the EMC Directive, which is one of the EU Directives, has been a legal obligation for the products sold in European countries since 1996 as well as the Low Voltage Directive since 1997.
Manufacturers who recognize their products are compliant to the EMC and Low Voltage Directives are required to declare that print a "CE mark" on their products.
(1) Authorized representative in Europe

Authorized representative in Europe is shown below.
Name : Mitsubishi Electric Europe B.V.
Address : Gothaer strase 8, 40880 Ratingen, Germany

14.1 Requirements for compliance with the EMC directive

The EMC Directive specifies that products placed on the market must be so constructed that they do not cause excessive electromagnetic interference (emissions) and are not unduly affected by electromagnetic interference (immunity)". Section 14.1.1 through Section 14.1.3 summarize the precautions on compliance with the EMC Directive of the machinery constructed with the position board.
These precautions are based on the requirements and the standards of the regulation, however, it does not guarantee that the entire machinery constructed according to the descriptions will comply with abovementioned directive. The method and judgment for complying with the EMC Directive must be determined by the person who construct the entire machinery.

14.1.1 Standards relevant to the EMC directive

For all test items, the test has been done with a position board installed in a computer that is compatible to CE mark.
The test does not cover USB because only the test tool "MRZJW3-MC2-UTL" (sold separately) uses it. The standards relevant to the EMC Directive are listed below.
(1) Standards relevant to the EMC directive that apply when using MR-MC2 $\square \square$

Certification	Test item	Test details	Standard value
EN61000-6-4:2007+A1:2011	CISPR16-2-3 Radiated emission (Note 1)	Radio waves from the product are measured.	$\begin{array}{\|l} \text { 30M-230MHz QP (Note } 2) \text { : } \\ 40 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \text { (10m (32.81ft.) in } \\ \text { measurement range) } \\ 230 \mathrm{M}-1000 \mathrm{MHz} \text { QP: } \\ 47 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}(10 \mathrm{~m}(32.81 \mathrm{ft} .) \text { in } \\ \text { measurement range) } \\ 1 \mathrm{GHz}-2 \mathrm{GHz} \text { QP: } 76 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}(3 \mathrm{~m}(9.84 \mathrm{ft} .) \\ \text { in measurement range) } \\ \mathrm{AV}: 56 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}(3 \mathrm{~m}(9.84 \mathrm{ft} .) \\ \text { in measurement range) } \\ \hline \end{array}$
	CISPR16-2-1 Conducted emission	Noise from the product to the power line is measured.	$\begin{array}{\|l} \text { AC power line } \\ 0.15 \mathrm{M}-0.5 \mathrm{MHz} \text { QP: } 79 \mathrm{~dB} \mu \mathrm{~V} \\ \text { AV (Note 3) : } 66 \mathrm{~dB} \mu \mathrm{~V} \\ 0.5 \mathrm{M}-30 \mathrm{MHz} \quad \text { QP: } 73 \mathrm{~dB} \mu \mathrm{~V} \\ \text { AV: } 60 \mathrm{~dB} \mu \mathrm{~V} \\ \hline \end{array}$
EN61000-6-2:2005	EN61000-4-2 Electrostatic discharge immunity	Immunity test in which electrostatic discharge is applied to the product.	8 kV : 10 times at 1 second interval, Air discharge 4 kV : 10 times at 1 second interval, Contact discharge
	EN61000-4-3 Radiated immunity (Note 1)	Immunity test in which electric fields are radiated to the product.	80\%AM modulation @1kHz, 80-1000MHz 10V/m, 1400M-2000MHz 3V/m, 2000M-2700MHz 1V/m
	EN61000-4-4 Electrical fast transient/ burst (EFT/B) immunity	Immunity test in which burst noise is applied to the power cable and signal line.	AC power line $: \pm 2 \mathrm{kV} / 5 \mathrm{kHz}$ DC power line $: \pm 2 \mathrm{kV} / 5 \mathrm{kHz}$ I/O, communication line $: \pm 1 \mathrm{kV} / 5 \mathrm{kHz}$
	EN61000-4-5 Surge immunity	Immunity test in which surge is applied to the power line and signal line.	AC power line Common mode: $\pm 2.0 \mathrm{kV}$ Differential mode: $\pm 1.0 \mathrm{kV}$ DC power line Common mode: $\pm 0.5 \mathrm{kV}$ Differential mode: $\pm 0.5 \mathrm{kV}$ I/O, communication line Common mode: $\pm 1 \mathrm{kV}$
	EN61000-4-6 Conducted immunity	Immunity test in which high frequency noise is applied to the power line and signal line.	$0.15-80 \mathrm{MHz}$, 80\%AM modulation @1kHz, 10Vrms
	EN61000-4-11 Voltage dip and short interruptions immunity	Immunity test in which short interruptions are applied to the power supply voltage.	0% of rated voltage, 1cycle 0% of rated voltage, 250/300cycle $(50 \mathrm{~Hz} / 60 \mathrm{~Hz})$ 40% of rated voltage, 10/12cycle ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) 70% of rated voltage, $25 / 30$ cycle ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$)

Note 1. This product is an open type device (a device designed to be housed inside other equipment) and must be installed inside a conductive control panel.
2. QP: Quasi-peak value
3. AV : Average value
(2) Standards relevant to the EMC directive that apply when using MR-MC3 $\square \square$

Certification	Test item	Test details	Standard value
EN61131-2:2007	CISPR16-2-3 Radiated emission (Note 1)	Radio waves from the product are measured.	30M-230MHz QP (Note 2) : $40 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ (10m (32.81ft.) in measurement range) 230M-1000MHz QP: $47 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ (10m (32.81ft.) in measurement range) $1 \mathrm{GHz}-2 \mathrm{GHz}$ QP: $76 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ (3m (9.84ft.) in measurement range) AV: $56 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ (3m (9.84ft.) in measurement range)
	CISPR16-2-1 Conducted emission	Noise from the product to the power line is measured.	AC power line $0.15 \mathrm{M}-0.5 \mathrm{MHz}$ QP: $79 \mathrm{~dB} \mu \mathrm{~V}$ AV (Note 3) : $66 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}$ $0.5 \mathrm{M}-30 \mathrm{MHz}$ QP: $73 \mathrm{~dB} \mu \mathrm{~V}$ $\mathrm{AV}: 60 \mathrm{~dB} \mu \mathrm{~V}$
	EN61000-4-2 Electrostatic discharge immunity	Immunity test in which electrostatic discharge is applied to the product.	8 kV : 10 times at 1 second interval, Air discharge 4 kV : 10 times at 1 second interval, Contact discharge
	EN61000-4-3 Radiated immunity (Note 1)	Immunity test in which electric fields are radiated to the product.	80\%AM modulation @1kHz, 80-1000MHz 10V/m, 1400M-2000MHz 3V/m, 2000M-2700MHz 1V/m
	EN61000-4-4 Electrical fast transient/ burst (EFT/B) immunity	Immunity test in which burst noise is applied to the power cable and signal line.	AC power line $: \pm 2 \mathrm{kV} / 5 \mathrm{kHz}$ DC power line $: \pm 2 \mathrm{kV} / 5 \mathrm{kHz}$ I/O, communication line $: \pm 1 \mathrm{kV} / 5 \mathrm{kHz}$
	EN61000-4-5 Surge immunity	Immunity test in which surge is applied to the power line and signal line.	AC power line Common mode: $\pm 2.0 \mathrm{kV}$ Differential mode: $\pm 1.0 \mathrm{kV}$ DC power line Common mode: $\pm 0.5 \mathrm{kV}$ Differential mode: $\pm 0.5 \mathrm{kV}$ I/O, communication line Common mode: $\pm 1 \mathrm{kV}$
	EN61000-4-6 Conducted immunity	Immunity test in which high frequency noise is applied to the power line and signal line.	$0.15-80 \mathrm{MHz}$, 80\%AM modulation @1kHz, 10Vrms
	EN61000-4-11 Voltage dip and short interruptions immunity	Immunity test in which short interruptions are applied to the power supply voltage.	0% of rated voltage, 0.5 cycle 0% of rated voltage, $250 / 300$ cycle ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) 40% of rated voltage, 10/12cycle ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) 70% of rated voltage, $25 / 30$ cycle $(50 \mathrm{~Hz} / 60 \mathrm{~Hz})$

Note 1. This product is an open type device (a device designed to be housed inside other equipment) and must be installed inside a conductive control panel.
2. QP: Quasi-peak value
3. AV : Average value

14.1.2 Installation instructions for EMC directive

(1) Installation

Installing inside a control panel not only ensures safety but also ensures effective shielding of position board-generated electromagnetic noise.
(a) Control panel

1) Use a conductive control panel.
2) When attaching the control panel's top plate or base plate, expose bare metal surface and weld so that good surface contact can be made between the panel and plate.
3) To ensure good electrical contact with the control panel, mask the paint on the installation bolts of the inner plate in the control panel so that contact between surfaces can be ensured over the widest possible area.
4) Ground the control panel with a thick wire so that a low impedance connection to ground can be ensured even at high frequencies.
5) Holes made in the control panel must be 10 cm (3.94inch) diameter or less. If the holes are 10 cm (3.94 inch) or larger, radio frequency noise may be emitted. In addition, because radio waves leak through a clearance between the control panel door and the main unit, reduce the clearance as much as practicable. The leakage of radio waves can be suppressed by the direct application of an EMI gasket on the paint surface.
(2) Connection of power line and ground wire

Ground wire and power supply cable for the host controller must be connected as described below.
(a) Provide a grounding point near the FG terminal. Ground the FG terminals (Frame Ground) with the thickest and shortest wire possible. (The wire length must be 30 cm (11.81inch) or shorter.) The FG terminals function is to pass the noise generated in the position board to the ground, so the ground wire ensures a low impedance as possible.
Because the wire does the role to transfer the noise, the wire itself carries a large noise content and thus short wiring means that the wire is prevented from acting as an antenna.
(b) Twist the ground wire drawn out from grounding point with the power line. By twisting the power line with ground wire, it can transfer the noise more from power line to the ground. However, if the noise filter is attached to the power line, it might be unnecessary to twist with the ground wire.
(3) Forced stop input cable

The forced stop input cable length must be within 30 m (98.43 ft .).
(4) Cables

The cables extracted from the control panel contain a high frequency noise component. On the outside of the control panel, therefore, they serve as antennas to emit noise. To prevent noise emission, use shielded cables for the cables extracted to the outside of the control panel.
The use of a shielded cable also increases noise resistance.
(a) Grounding of shield section of shield cable

1) When the grounded cables and the not yet grounded cables are bundled in grounding point of shielded cable back, the cables might be induced to electromagnetic and generated high frequency noise outside of the control panel.
2) Ground the exposed shield section to spacious area on the control panel. A clamp can be used as shown in Figure 14.2.
In this case, mask the inner wall surface when coating the control panel, and contact the exposed shield section with the clamp at the exposed bare metal surface.

Figure 14.1 Part to be exposed

Figure 14.2 Shield grounding (Correct example)

Figure 14.3 Shield grounding (Incorrect example)
Note. The method of grounding with a vinyl-coated wire soldered onto the shielded section of the shielded cable as in shown Figure 14.3 is not recommended. Doing so will raise the high frequency impedance, resulting in loss of the shielding effect.
(5) Precautions relevant to the electrostatic discharge

Before touching the position board, always touch grounded metal, etc. to discharge static electricity from human body. Failure to do so may cause the position board to fail or malfunction.
Do not directly touch the conductive parts of position board and electronic components. Touching them could cause an operation failure or damage the position board.

14.1.3 Parts of measure against noise

(1) Ferrite core

A ferrite core has the effect of reducing noise in the 30 MHz to 100 MHz band.
It is not required to fit ferrite cores to cables, but it is recommended to fit ferrite cores if shield cables pulled out of the enclosure do not provide sufficient shielding effects.
Note that the ferrite cores must be fitted to the cables in the position immediately before they are pulled out of the enclosure. If the fitting position is improper, the ferrite core will not produce any effect.

- Ferrite core (Recommended product)

Manufacturer	Model name
TDK	ZCAT3035-1330

(2) Noise filter (power supply line filter)

A noise filter is a component which has an effect on conducted noise.
The attachment of the noise filter to the power supply line of the servo amplifier and system's power supply is effective for the reducing noise.
(The noise filter has the effect of reducing conducted noise of 10 MHz or less.)

- Recommended noise filters

Manufacturer	Model name	Rated current (A)	Rated voltage (V)
SCHAFFNER	FN343-3/01	3	250
	FN660-6/06	6	
TDK	ZHC2203-11	3	

The precautions required when installing a noise filter are described below.
(a) Do not bundle the wires on the input side and output side of the noise filter. When bundled, the output side noise will be induced into the input side wires from which the noise was filtered.

Figure 14.4 Precautions on noise filter
(b) Ground the noise filter grounding terminal to the control panel with the shortest wire possible (approx. 10 cm (3.94 inch)).
14.2 Requirements for compliance with the low voltage directive

This board does not use the power supply of 50VAC to 1000VAC and 75VDC to 1500 VDC , so it is a product outside the object range of Low Voltage Directive.

APPENDIX

App. 1 Supplementary explanation for the use of linear servo system
App. 1.1 Position board
There are no restrictions in the software versions of the position board that can set up the linear servo system.

App. 1.2 Position board utility software
There are no restrictions in the Position Board Utility2 versions supporting position board.

App. 1.3 Servo amplifier
The servo amplifier MR-J4(Wロ)-םB can set linear servo system with the position board.
For detailed specifications of the servo amplifier, refer to the Servo Amplifier Instruction Manual for your servo amplifier.

App. 1.4 Operations and functions of the linear servo system
(1) Startup procedure

Linear servo system startup procedures are as follows.

Refer to the Servo Amplifier Instruction Manual for your servo amplifier.
(2) Magnetic pole detection

For magnetic pole detection methods, refer to the Servo Amplifier Instruction Manual for your servo amplifier.
When an incremental scale is used, magnetic pole detection is performed at every power on. The magnetic pole detection is started when the first servo-on command following power on is received. Completion of the magnetic pole detection turns the servo on.
(a) For a single axis

Timing chart

Axis movement in magnetic pole detection

Position at the time of power on

The axis moves in opposite direction when hitting a limit switch.
(b) For tandem drive axes

For tandem drive axes, perform magnetic pole detection for the master axis, and then for the slave axis in the non-synchronous micro adjustment mode. Make sure the axis where magnetic pole detection is not performed is servo off (free).

Note 1. As shown on the timing chart above, during magnetic pole detection operation, it takes up to 15 s from servo-on (SON) signal turning on to servo ready (RDY) signal turning on. Before using the API library, set 15 s or more to the time-out period in sscWaitStatusBitSignalEx function, and wait until the servo on.
2. Establish the machine configuration using a limit switch. Collision may be caused between components without a limit switch.
3. In initial magnetic pole adjustment, a controlled object may move in the forward direction or reverse direction.
4. For tandem drive axes, do not turn servo on simultaneously for both the master and slave axes.
5. Magnetic pole detection time is the operating time when the stroke limit signal (FLS/RLS) is on.
6. When switching between non-synchronous mode/synchronous mode, check that all of the following conditions are satisfied.

- The in-position signal (INP) is ON for both the master axis and slave axis.
- No operation alarm has occurred for both the master axis and slave axis.
(3) Operation from the position board

Positioning operation using the position board is basically the same as operation for using a rotary servo motor.
However, some parameters, home position return operation, and monitor No. vary from when using a rotary servo motor. Details are as follows.
(a) Parameter

When using the linear servo system, set the parameters shown on the table below.
For other servo parameters, control parameters, and system parameters, set them as equivalent to using standard control mode (operation mode).

1) Servo parameters

For details on each parameter, refer to the Servo Amplifier Instruction Manual for your servo amplifier.
<MR-J4(W口)-口B>

Parameter No.	MR-J4-B Parameter No.	Symbol (Note)	
1100	PA01	${ }^{* *}$ STY	Operation mode
1110	PA17	${ }^{* *}$ MSR	Servo motor series setting
111	PA18	${ }^{* *}$ MTY	Servo motor type setting
1180	PC01	ERZ	Error excessive alarm level
1182	PC03	${ }^{*}$ ENRS	Encoder output pulse selection
119 A	PC27	${ }^{* *}$ COP9	Function selection C-9
1300	PL01	${ }^{* *}$ LIT1	Linear servo motor/DD motor function selection 1
1301	PL02	${ }^{* *}$ LIM	Linear encoder resolution setting Numerator
1302	PL03	${ }^{* *}$ LID	Linear encoder resolution setting Denominator
1303	PL04	${ }^{*}$ LIT2	Linear servo motor/DD motor function selection 2
1304	PL05	LB1	Position deviation error detection level
1305	PL06	LB2	Speed deviation error detection level
1306	PL07	LB3	Torque/thrust deviation error detection level
1307	PL08	${ }^{*}$ LIT3	Linear servo motor/DD motor function selection 3
1308	PL09	LPWM	Magnetic pole detection voltage level
1310	PL17	LTSTS	Magnetic pole detection - Minute position detection method - Function selection
1311	PL18	IDLV	Magnetic pole detection - Minute position detection method - Identification signal amplitude

Note. The parameters with a * mark at the front of the symbol are validated according to the following conditions.
*: After setting, turn off the power supply and then on again, or reset controller.
**: After setting, turn off the power supply and then on again.
2) Control parameters

Parameter No.	Symbol (Note 1)	Name	Initial value	Unit	Setting range	Function
0200	*OPC1	Control option 1	0001h		$\begin{aligned} & \text { 0000h to } \\ & 2111 \mathrm{~h} \end{aligned}$	Note. When using a linear servo amplifier, select [position command unit/min] or [position command unit/s] as the speed command unit. [r/min] cannot be used as the speed command unit.
020A	*CMXL	Electronic gear numerator (lower)	0001h		$\begin{gathered} 1 \text { to } \\ 5242879 \end{gathered}$	Set the numerator of the electronic gear. (For setting methods, refer to 3).)
020B	*CMXH	Electronic gear numerator (upper)	0000h		$\begin{aligned} & \text { (32 bit) } \\ & \text { (Note2) } \end{aligned}$	
020C	*CDVL	Electronic gear denominator (lower)	0001h		$\begin{gathered} 1 \text { to } \\ 589823 \end{gathered}$	Set the denominator of the electronic gear. (For setting methods, refer to 3).)
020D	*CDVH	Electronic gear denominator (upper)	0000h		(32 bit) (Note2)	
021D	*VEND	Vendor ID	0000h	$>$	0000h to FFFFh	Set the vendor ID. 0000h: Mitsubishi Electric
021E	*CODE	Type code	1000h	$>$	0000h to FFFFh	Set the type code. 1000h: MR-J4(WD)- $\square \mathrm{B}$ servo amplifier

Note 1. The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.
2. For details on the setting range, refer to Section 6.1.1.
3) Setting example of electronic gears

Conditions)

Command unit: $\mu \mathrm{m}$
Linear encoder resolution: $0.05 \mu \mathrm{~m}$
$\frac{\text { Number ot pulses (CMX) [pulse] }}{\text { Trabel (CDV) }[\mu \mathrm{m}]}=\frac{1}{0.05}=\frac{20}{1}$
（b）Home position return operation
The home position return operation from the position board is basically the same as operation for using a rotary servo motor．
However，note the following．
1）When using the absolute position type linear scale，the scale home position signal detection method or the scale home position signal detection method 2 cannot be used．
The other home position return methods are available and a home position return is performed to the reference home position created based on stop interval settings for the home position return．
2）When using the incremental linear scale，it is recommended to use the scale home position signal detection method or the scale home position signal detection method 2．In this case，the home position return is performed based on the home position signal（Z－phase）．The reference home position which is created based on stop interval settings for the home position return is not used．
3）When using the incremental scale，the home position return using a Z－phase detection method cannot be used．
4）With the incremental scale，when using a home position return method other than the scale home position signal detection method or the scale home position signal detection method 2，＂1ロロロ＂ （Search again）must be set for the parameter No． 0240 （＊OPZ1）．
In this case，the home position return is performed based on the home position return reference position which is created based on stop interval settings for the home position return and the home position signal（Z－phase）．
＜Control parameter＞

Parameter No．	Symbol （Note）	Name	Initial value	Unit	Setting range	Function
0240	＊OPZ1	Home position return option 1	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 112Dh } \end{aligned}$	

Note．The settings for the parameters with a＊mark at the front of the symbol are validated when the system is started．
<Servo parameter (MR-J4(WD)- $\square \mathrm{B})$ >

Parameter No.	MR-J4-B Parameter No.	Symbol (Note)	Name	Initial value	Unit	Setting range	Function		
1300	PL01	**LIT1	Linear servo motor/direct drive motor function selection 1	0301h		$\begin{aligned} & 0000 \mathrm{~h} \\ & \text { to } \\ & 0605 \mathrm{~h} \end{aligned}$			
								Setting value	Stop interval [pulse]
								0	8192
								1	131072
								2	262144
								3	1048576
								4	4194304
								5	16777216
								6	67108864

Note **: After setting, turn off the power supply and then on again to make the setting valid.
(Example) Home position return reference position for dog method home position return

Note 1. Adjust the position of the proximity dog sensor so that a stop position following the passed proximity dog is not near the reference home position. The reference home position may differ due to dispersion in the proximity dog signal detection, etc., which may prevent normal completion of the home position return.
2. When the reference home position is passed during deceleration after the proximity dog is passed, the reference home position that is the closest to the home position direction is defined as the home position.

For other precautions, refer to the Servo Amplifier Instruction Manual for your servo amplifier.
(c) Home position return process for tandem drive axes

The following shows an example of the home position return for the tandem drive axes. In this example, the scale home position signal detection method is used as a home position method. The scale home position signal detection method has the adjustment mode and the normal mode, which can be selected in the tandem drive options (parameter No.0265).

- Adjustment mode: This mode is used, for example, during adjustment at factory shipment, and is used to calculate the home position signal offset (amount of deviation in the position of the home position signal for the master axis and slave axis) on a linear scale.
- Normal mode : In this mode, the amount of deviation between the master axis and slave axis is detected and tweaking (compensation of deviation between master axis and slave axis) is performed. This movement sets the axis linking the master axis and slave axis mechanically at a right angle to the movement direction.

1) In adjustment mode

STEP1
Set the axes and the joint part mechanically at a right angle.
(It is not guaranteed that the line between both home position signals and the both axes are crossed at a right angle.)

> Master axis home position signal

Slave axis home position signal

2) In normal mode

STEP1

It is not guaranteed that the axes and the joint part are connected at a right angle when the power is turned on.

STEP2-1

By home position return processing, the axis moves to the home position signal position of the master axis.

STEP2-2
By home position return processing, the deviation amount of the slave axis is compensated.

(d) Monitor

The following monitor numbers are added.

1) Servo information (2)

Monitor No.	Description	Unit	Description
0246	Load side encoder information data 1 (lower)		For incremental type linear encoder, displays the counter from power on. For absolute position type linear encoder, displays the absolute position data.
0247	Load side encoder information data 1 (upper)		
0248	Load side encoder information data 2 (lower)		For incremental type linear encoder, displays the distance (No. of pulses) from reference mark (Z-phase). For absolute position type linear encoder, displays "00000000".
0249	Load side encoder information data 2 (upper)		
024A	Speed feedback (lower)	$0.01 \mathrm{~mm} / \mathrm{s}$	Displays motor speed in units of $0.01 \mathrm{~mm} / \mathrm{s}$.
024B	Speed feedback (upper)		

For the following monitor numbers, the monitor data details vary from those of a rotary servo motor.
2) Servo information (1)

Monitor No.	Description	Unit	Description
0112	Motor rated revolution speed	r/min	Displays the value calculated in the equations shown below. Motor rated speed [m/s] $\times 1000 \times 1000 \times 60 /$ Scale resolution [$\mu \mathrm{m} /$ pulse] / Stop interval at home position return [pulse]
0114	Motor maximum revolution speed	r/min	Displays the value calculated in the equations shown below. Motor rated speed [m/s] $\times 1000 \times 1000 \times 60 /$ Scale resolution [$\mu \mathrm{m} /$ pulse] / Stop interval at home position return [pulse]
0116	Number of encoder pulses per revolution (lower)	pulse	Displays the stop interval during home position return set in
0117	Number of encoder pulses per revolution (upper)		parameter No. 1300 (**LIT1).
0119	Initial within 1 revolution position (lower)	pulse	Displays the within one-revolution position (Note 1) at the
011A	Initial within 1 revolution position (upper)		time of power-on.
011B	Initial multiple revolution data	rev	Displays the multi-revolution data (Note 2) at the time of power-on.

3) Servo information (2)

Monitor No.	Description	Unit	Description
0208	Speed feedback (lower)	$0.01 \mathrm{~mm} / \mathrm{s}$	Displays motor speed in units of $0.01 \mathrm{~mm} / \mathrm{s}$.
0209	Speed feedback (upper)		
020E	Detector within 1 revolution position (lower)	pulse	Displays the current position within one-revolution. (Note 1)
020F	Detector within 1 revolution position (upper)		
0210	Home position within 1 revolution position (lower)	pulse	Displays the home position within one-revolution. (Note 1)
0211	Home position within 1 revolution position (upper)		
0214	Multiple revolution counter	rev	Displays the current multiple revolution counter. (Note 2)
0215	Home position multiple revolution data	rev	Displays the home position multi-revolution data. (Note 2)

Note 1. Incremental linear encoder

| Absolute position linear encoder: Setting the linear encoder home position (absolute position data $=0$), the position normalized by |
| ---: | :--- |
| the stop interval during home position. |

2. Incremental linear encoder \quad| : Setting the position at the time of power on as 0 , the counter that counts up or down by the stop |
| ---: |
| interval during home position return. |

Absolute position linear encoder: Setting the linear encoder home position (absolute position data $=0$), the counter that counts up
or down by the stop interval during home position return.
(e) Command units

When using speed control mode in interface mode, the conversion of data in units of $0.01 \mathrm{r} / \mathrm{min}$ is required. The formula for conversion is as follows.

[^14]App. 2 Supplementary explanation for the use of fully closed loop system
App. 2.1 Position board
There are no restrictions in the software versions of the position board that can set up the fully closed loop system.

App. 2.2 Position board utility software
There are no restrictions in the Position Board Utility2 versions supporting position board.

App. 2.3 Servo amplifier
The software versions of the servo amplifier that can set up the fully closed loop system with the position board are as follows.

Servo amplifier	Software version
MR-J4(WD)- $\square \mathrm{B}$	A3 or later

For detailed specifications of the servo amplifier, refer to the Servo Amplifier Instruction Manual for your servo amplifier.

App. 2.4 Operations and functions of the fully closed loop control
(1) Startup procedure

The fully closed loop system startup procedures are as follows.

(2) Operation from the position board

Positioning operation using the position board is basically the same as operation for using a rotary servo motor.
However, some parameters, home position return operation, command/status bit, and monitor No. vary from when using a rotary servo motor. Details are as follows.
(a) Parameters

When using the fully closed loop system, set the parameters shown on the table below.
For other servo parameters, control parameters, and system parameters, set them as equivalent to using a rotary servo motor.

1) Servo parameters

For details on each parameter, refer to the Servo Amplifier Instruction Manual for your servo amplifier.
<MR-J4(Wロ)-■B>

Parameter No.	MR-J4-B Parameter No.	Symbol (Note)	
1100	PA01	${ }^{* *}$ STY	Operation mode
1190	PC17	${ }^{* *}$ COP4	Function selection C-4
$119 A$	PC27	${ }^{* *}$ COP9	Function selection C-9
1200	PE01	${ }^{* *}$ FCT1	Fully closed loop function selection 1
1202	PE03	${ }^{*}$ FCT2	Fully closed loop function selection 2
1203	PE04	${ }^{* *}$ FBN	Fully closed loop control feedback pulse electronic gear numerator 1
1204	PE05	${ }^{* *}$ FBD	Fully closed loop control feedback pulse electronic gear denominator 1
1205	PE06	BC1	Fully closed loop control speed deviation error detection level
1206	PE07	BC2	Fully closed loop control position deviation error detection level
1207	PE08	DUF	Fully closed loop dual feedback filter
1209	PE10	FCT3	Fully closed loop function selection 3
1221	PE34	${ }^{* *}$ FBN2	Fully closed loop control feedback pulse electronic gear numerator 2
1222	PE35	${ }^{* *}$ FBD2	Fully closed loop control feedback pulse electronic gear denominator 2

Note. The parameters with a * mark at the front of the symbol are validated according to the following conditions.
*: After setting, turn off the power supply and then on again, or reset controller.
**: After setting, turn off the power supply and then on again.
2) Control parameters

Parameter No.	Symbol (Note 1)	Name	Initial value	Unit	Setting range	Function
020A	*CMXL	Electronic gear numerator (lower)	0001h		$\begin{gathered} 1 \text { to } \\ 5242879 \end{gathered}$	Set the numerator of the electronic gear. (For setting methods, refer to App. 2.4(2)(a)3.)
020B	*CMXH	Electronic gear numerator (upper)	0000h		$\begin{aligned} & (32 \text { bit }) \\ & (\text { Note } 2) \end{aligned}$	
020C	*CDVL	Electronic gear denominator (lower)	0001h		$\begin{gathered} 1 \text { to } \\ 589823 \end{gathered}$	Set the denominator of the electronic gear. (For setting methods, refer to App. 2.4(2)(a)3).)
020D	*CDVH	Electronic gear denominator (upper)	0000h		$\begin{gathered} (32 \text { bit }) \\ \text { (Note } 2) \\ \hline \end{gathered}$	
021D	*VEND	Vendor ID	0000h		0000h to FFFFh	Set the vendor ID. 0000h: Mitsubishi Electric
021E	*CODE	Type code	1000h		0000h to FFFFh	Set the type code. 1000h: MR-J4(W $\square)-\square B$ servo amplifier

Note 1. The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.
2. The setting range differs depending on the setting of speed units (parameter No.0200). For details on the setting range, refer to Section 6.1.1.
3) Setting example of electronic gears

For the electronic gear numerator (CMX), set the number of linear encoder pulses (= load side resolution unit) per revolution of the servo motor, not the number of pulses per revolution of the servo motor.

Conditions)

Command unit: $\mu \mathrm{m}$
Ball screw lead: 20 mm
Linear encoder resolution: $0.05 \mu \mathrm{~m}$
Ball screw lead $/$ Linear encoder resolution $=20 \mathrm{~mm} / 0.05 \mu \mathrm{~m}=400000$ pulses
$\frac{\text { Number ot pulses per revolution [pulse] (CMX) }}{\text { Trabel distance per revolution [} \mu \mathrm{m}](\mathrm{CDV})}=\frac{400000 \text { pilses }}{20 \mathrm{~mm}}=\frac{400000}{20000}=\frac{20}{1}$
（b）Home position return operation
The home position return operation from the position board is basically the same as operation for using a rotary servo motor．
However，note the following．
1）When using the incremental linear scale，it is recommended to use the scale home position signal detection method or the scale home position signal detection method 2．In this case，the home position return is performed based on the home position signal（Z－phase）．The reference home position which is created based on the number of encoder pulses per revolution of the servo motor is not used．
2）The home position return using a Z－phase detection method cannot be used．
3）When using a home position return method other than the scale home position signal detection method or the scale home position signal detection method 2，＂1ロロロ＂（Search again）must be set for the parameter No． 0240 （＊OPZ1）．
＜Control parameter＞

Parameter No．	Symbol （Note 1）	Name	Initial value	Unit	Setting range	Function
0240	＊OPZ1	Home position return option 1	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 112Dh } \end{aligned}$	

Note 1．＊：Settings for parameters with asterisk（＊）before symbol will be valid at system startup．
For other precautions，refer to the Servo Amplifier Instruction Manual for your servo amplifier．
(c) Bit information

The following bit (in the thick frame) is used to switch between the semi closed loop control and fully closed loop control.
The switching between the semi closed loop control and fully closed loop control is set with the parameter No. 1200 (MR-J4(WD)-םB parameter No.PE01).

1) Command bit

Address		Bit	Symbol	Signal name	When in tandem drive	Description
MR-MC2 $\square \square$	MR-MC3 $\square \square$					
1008	005008	0	GAIN	Gain changing command	Each axis	
		1	CLD	Fully closed loop control change command	Each axis	0: Semi closed loop control 1: Dual feedback control (Fully closed loop control)
		2	-	Reserved	,	
		3	CPC	PID control command	Each axis	
		4 5 6 7		Reserved		

2) Status bit

Address		Bit	Symbol	Signal name	When in tandem drive	Description
MR-MC2口■	MR-MC3-a					
1068	0050A8	0	GAIN	During gain switching	Each axis	
		1	CLDO	Fully closed loop control changing	Each axis	0: During semi closed loop control 1: During dual feedback control (During fully closed loop control)
		2	TLSO	Selecting torque limit	Each axis	
		3	SPC	During PID control	Each axis	
		4 5 6 7		Reserved		

(d) Monitor

The following monitor numbers are added.

1) Servo information (2)

Monitor No.	Description	Unit	Description
0240	Selected droop pulse (lower)	pulse	The data set to the second digit from the upper of the parameter No. 1209 (MR-J4(W \square)- \square B parameter No.PE10) is output.
0241	Selected droop pulse (upper)		
0244	Selected cumulative feed pulses (lower)	pulse	The data set to the first digit from the upper of the parameter No. 1209 (MR-J4(WD)- \square B parameter No.PE10) is output.
0245	Selected cumulative feed pulses (upper)		
0246	Load side encoder information data 1 (lower)		For incremental type linear encoder, displays the counter from power on. For absolute position type linear encoder, displays the absolute position data.
0247	Load side encoder information data 1 (upper)		
0248	Load side encoder information data 2 (lower)		For incremental type linear encoder, displays the distance (No. of pulses) from reference mark (Z-phase). For absolute position type linear encoder, displays "00000000".
0249	Load side encoder information data 2 (upper)		

For the following monitor numbers, the monitor data details vary from those of a rotary servo motor.
2) Servo information (1)

Monitor No.	Description	Unit	Description (upper: data, lower: unit) (Note 1)		
			Semi closed loop system (Note 2)	Fully closed loop system (Note 2)	
				Semi closed loop control (Note 2)	Fully closed loop control (Note 2)
0112	Motor rated revolution speed	$\mathrm{r} / \mathrm{min}$	Motor side Motor unit	Motor side Motor unit	Motor side Motor unit
0114	Motor maximum revolution speed	$\mathrm{r} / \mathrm{min}$	Motor side Motor unit	Motor side Motor unit	Motor side Motor unit
0116	Number of encoder pulses per revolution (lower)	pulse	Motor side Motor unit	Load side Machine unit	Load side Machine unit
0117	Number of encoder pulses per revolution (upper)				
0119	Initial within 1 revolution position (lower)	pulse	Motor side	Motor side	Load side
011A	Initial within 1 revolution position (upper)		Motor unit	Machine unit	Machine unit
011B	Initial multiple revolution data	rev	Motor side Motor unit	Motor side Machine unit	Load side Machine unit

Note 1. Data : Motor side \rightarrow Data from the servo motor encoder
Load side \rightarrow Data from the load side encoder
Unit : Motor unit \rightarrow Motor side encoder resolution unit
Machine unit \rightarrow Load side encoder resolution unit
2. For the definitions of the semi closed loop system, the fully closed loop system, the semi closed loop control, and the fully closed loop control, refer to the Servo Amplifier Instruction Manual for your servo amplifier.
3) Servo information (2)

Monitor No.	Description	Unit	Description (upper: data, lower: unit) (Note 1)		
			Semi closed loop system (Note 2)	Fully closed loop system (Note 2)	
				Semi closed loop control (Note 2)	Fully closed loop control (Note 2)
0200	Position feedback (lower)	pulse	Motor side Motor unit	Motor side Machine unit	Load side Machine unit
0201	Position feedback (upper)				
0204	Position droop (lower)	pulse	Motor side Motor unit	Motor side Machine unit	Load side Machine unit
0205	Position droop (upper)				
0208	Speed feedback (lower)	0.01r/min	Motor side Motor unit	Motor side Motor unit	Motor side Motor unit
0209	Speed feedback (upper)				
020E	Detector within 1 revolution position (lower)	pulse	Motor side Motor unit	Motor side Machine unit	Load side Machine unit
020F	Detector within 1 revolution position (upper)				
0210	Home position within 1 revolution position (lower)	pulse	Motor side Motor unit	Motor side Machine unit	Load side Machine unit
0211	Home position within 1 revolution position (upper)				
0212	ZCT (lower)	pulse	Motor side Motor unit	Motor side Machine unit	Load side Machine unit
0213	ZCT (upper)				
0214	Multiple revolution counter	rev	Motor side Motor unit	Motor side Machine unit	Load side Machine unit
0215	Home position multiple revolution data	rev	Motor side Motor unit	Motor side Machine unit	Load side Machine unit

Note 1. Data : Motor side \rightarrow Data from the servo motor encoder
Load side \rightarrow Data from the load side encoder
Unit : Motor unit \rightarrow Motor side encoder resolution unit
Machine unit \rightarrow Load side encoder resolution unit
2. For the definitions of the semi closed loop system, the fully closed loop system, the semi closed loop control, and the fully closed loop control, refer to the Servo Amplifier Instruction Manual for your servo amplifier.
4) Operation information

The contents of the following table are also applied to the corresponding monitor numbers of operation information (double word).

Monitor No.	Description	Unit	Description (upper: data, lower: unit) (Note 1)		
			Semi closed loop system (Note 2)	Fully closed loop system (Note 2)	
				Semi closed loop control (Note 2)	Fully closed loop control (Note 2)
0308	Grid size (lower)	pulse	Motor side Motor unit	Motor side Machine unit	Load side Machine unit
0309	Grid size (upper)				
0310	Current command position (lower)	pulse	Motor side Motor unit	Motor side Machine unit	Load side Machine unit
0311	Current command position (upper)				
0312	Current feedback position (lower)	pulse	Motor side Motor unit	Motor side Machine unit	Load side Machine unit
0313	Current feedback position (upper)				
0314	$\mathrm{F} \Delta \mathrm{T}$ (lower)	pulse	Motor side Motor unit	Motor side Machine unit	Load side Machine unit
0315	$\mathrm{F} \Delta \mathrm{T}$ (upper)				

Note 1. Data : Motor side \rightarrow Data from the servo motor encoder
Load side \rightarrow Data from the load side encoder
Unit : Motor unit \rightarrow Motor side encoder resolution unit
Machine unit \rightarrow Load side encoder resolution unit
2. For the definitions of the semi closed loop system, the fully closed loop system, the semi closed loop control, and the fully closed loop control, refer to the Servo Amplifier Instruction Manual for your servo amplifier.

App. 3 Supplementary explanation for the use of direct drive servo system
App. 3.1 Position board
There are no restrictions in the software versions of the position board that can set up the direct drive servo system.

App. 3.2 Position board utility software
There are no restrictions in the Position Board Utility2 versions supporting position board.

App. 3.3 Servo amplifier
The servo amplifier MR-J4(WD)- $\square \mathrm{B}$ can set the direct drive servo system with the position board.
For detailed specifications of the servo amplifier, refer to the Servo Amplifier Instruction Manual for your servo amplifier.

App. 3.4 Operations and functions of the direct drive servo system

(1) Startup procedure

The direct drive servo system startup procedures are as follows.

(2) Operation from the position board

Positioning operation using the position board is basically the same as operation for using a rotary servo motor.
However, some parameters, home position return operation, command/status bit, and monitor No. vary from when using a rotary servo motor. Details are as follows.
(a) Parameters

When using the direct drive system, set the parameters shown on the table below.
For other servo parameters, control parameters, and system parameters, set them as equivalent to using a rotary servo motor.

1) Servo parameters

For details on each parameter, refer to the Servo Amplifier Instruction Manual for your servo amplifier.
<MR-J4(Wロ)-■B>

Parameter No.	MR-J4-B Parameter No.	Symbol (Note)	
1100	PA01	${ }^{* *}$ STY	Operation mode
1180	PC01	ERZ	Error excessive alarm level
1182	PC03	${ }^{*}$ ENRS	Encoder output pulse selection
1300	PL01	${ }^{* * \text { LIT1 }}$	Linear servo motor/DD motor function selection 1
1303	PL04	*LIT2	Linear servo motor/DD motor function selection 2
1304	PL05	LB1	Position deviation error detection level
1305	PL06	LB2	Speed deviation error detection level
1306	PL07	LB3	Torque/thrust deviation error detection level
1307	PL08	*LIT3	Linear servo motor/DD motor function selection 3
1308	PL09	LPWM	Magnetic pole detection voltage level
1310	PL17	LTSTS	Magnetic pole detection - Minute position detection method - Function selection
1311	PL18	IDLV	Magnetic pole detection - Minute position detection method - Identification signal amplitude

Note. The parameters with a (*) mark at the front of the symbol are validated according to the following conditions.
*: After setting, turn off the power supply and then on again, or reset controller.
**: After setting, turn off the power supply and then on again.
2) Control parameters

Parameter No.	Symbol (Note1)	Name	Initial value	Unit	Setting range	Function
020A	*CMXL	Electronic gear numerator (lower)	0001h		$\begin{gathered} 1 \text { to } \\ 5242879 \end{gathered}$	Set the numerator of the electronic gear. (For setting methods, refer to App. 3.4(2)(c).)
020B	*CMXH	Electronic gear numerator (upper)	0000h		$\begin{aligned} & \text { (32 bit) } \\ & \text { (Note2) } \end{aligned}$	
020C	*CDVL	Electronic gear denominator (lower)	0001h		$\begin{gathered} 1 \text { to } \\ 589823 \end{gathered}$	Set the denominator of the electronic gear. (For setting methods, refer to App. 3.4(2)(c).)
020D	*CDVH	Electronic gear denominator (upper)	0000h		$\begin{aligned} & \text { (32 bit) } \\ & \text { (Note2) } \end{aligned}$	
021D	*VEND	Vendor ID	0000h	>	0000h to FFFFh	Set the vendor ID. 0000h: Mitsubishi Electric
021E	*CODE	Type code	1000h		0000h to FFFFh	Set the type code. 1000h: MR-J4(W \square)- $\square \mathrm{B}$ servo amplifier

Note1. The settings for the parameters with a (*) mark at the front of the symbol are validated when the system is started.
2. The setting range differs depending on the setting of speed units (parameter No.0200). Refer to Section 6.1.1.
（b）Home position return operation
The home position return operation from the position board is basically the same as operation for using a rotary servo motor．
However，note the following．
1）When the home position return is performed using the position board，it is recommended to use the scale home position signal detection method 2 ．In this case，the home position return is performed based on the first home position signal（Z－phase）following start operation．
2）The home position return using a Z－phase detection method cannot be used．
3）When using a home position return method other than the scale home position signal detection method or the scale home position signal detection method 2，＂1ロロロ＂（Search again）must be set for the parameter No． 0240 （＊OPZ1）．
＜Control parameter＞

Parameter No．	Symbol （Note 1）	Name	Initial value	Unit	Setting range	Function
0240	＊OPZ1	Home position return option 1	0000h		$\begin{aligned} & \text { 0000h to } \\ & \text { 112Dh } \end{aligned}$	

Note 1．＊：Settings for parameters with asterisk（＊）before symbol will be valid at system startup．
For other precautions，refer to the Servo Amplifier Instruction Manual for your servo amplifier．
（c）Position command unit
As＂degree＂cannot be used as a position command unit，note the following when using the axis as a degree axis．

POINT

－For positioning the automatic operation，etc．，set＂Relative position command＂to the auxiliary command of the point table，and set the difference of the travel distance to the target position in the position data．Also，the rotating direction is determined by the code of the position data．Use the user program for shortcut control of a degree axis．
－The function to judge based on the current command position or the current feedback position such as the position switch，software limit，other axes start cannot be used．

1) When the movement range is limited (-2147483648 to 2147483647)

For the electronic gear setting, set values so that conversion from travel distance per motor revolution to the number of encoder pulses per revolution does not produce a round value for electronic gear processing.
In this case, the travel distance per motor revolution can be converted to the number of encoder pulses per revolution by the following formula.

Example: When the position command unit is 0.001° and the travel distance per motor revolution is $360000\left[0.001^{\circ}\right.$]

$\frac{\text { Electronic gear numerator }}{\text { Electronic gear denominator }}=\frac{$| Number of encoder pulses |
| :---: |
| per revolution [pulse] |}{| Travel distance per motor revolution |
| :---: |
| [position command unit] |}$=\frac{$| Number of encoder pulses |
| :---: |
| per revolution [pulse] |}{360000}

$\begin{aligned} & \text { Travel distance per motor revolution } \\ & \text { [position command unit] }\end{aligned} \times \frac{\text { Electronic gear numerator }}{\text { Electronic gear denominator }}=\begin{gathered}\text { Number of encoder pulses } \\ \text { per revolution [pulse] }\end{gathered}$
2) When using the unlimited length feed such as an unidirectional feed

When the travel distance per motor revolution is a power of two, the unlimited length feed can be used. As the monitor of a current command position is 4 bytes in size, unidirectional feed causes the overflow of current command position. Even though overflowed high-byte data is lost, the range of 4 bytes normally continues to be updated. And positioning control is not affected. (Position mismatch does not occur.)
To control the axis as a degree axis, use the user program process to convert the current command position to the ring counter. As necessary, perform the same process for the current feedback position. The conversion process of the ring counter is as follows.

Example: When the command unit of the user program (user program command unit) is 0.001° and the range of the ring counter is 0 to 359999 [0.001°]
In this example, the travel distance per motor revolution is a power of two $\left(2^{20}\right)$, and the unit is the position command unit of the position board (board command unit).
The user program uses the user program electronic gear for converting the user program command unit to the board command unit when the position command (position data, parameter, etc.) is set in the position board (hereinafter: board). Also, when the board current command position is referred, the user program uses the user program electronic gear for converting the board command unit to the user program command unit (ring counter) inversely.
The relationship of each command unit is as follows.

Note. Processed by user program.
(i) Conversion from the user program position command [user program command unit] to the position command to the board (position data) [board command unit]

$$
\begin{aligned}
\text { Position data } & =\text { User program position command } \times \frac{\text { Travel distance per motor revolution }}{\text { Ring counter upper limit }+1} \\
& =\text { User program position command } \times \frac{2^{20}}{360000}
\end{aligned}
$$

(ii) Inverse conversion from current command position [board command unit] to ring counter [user program command unit]

$$
\begin{aligned}
\text { Ring counter } & =\begin{array}{l}
\{\text { Current command position \& } \\
(\text { Travel distance per motor revolution }-1)\}
\end{array} \times \frac{\text { Ring counter upper limit }+1}{\text { Travel distance per motor revolution }} \\
& =(\text { Current command position } \& 0 \times 000 \text { FFFFFF }) \times \frac{360000}{2^{20}}
\end{aligned}
$$

(d) Absolute position detection system

When the travel distance from the home position exceeds the value calculated from $32767 \times$ (number of encoder pulses per revolution) due to a unidirectional feed, etc., the absolute position cannot be restored. To restore the absolute position, when turning off the power supply at a position out of the range where the absolute position is restorable, establish the home position again by the home position reset function or the home position return, and store the home position information (home position multiple revolution data and home position within 1 revolution position) to the user program side.

App． 4 Supplementary explanation for the use of multiple－axis servo amplifier（MR－J4W $\square-\square$ B）
App．4．1 Position board
There are no restrictions in the software versions of the position board that can be connected with a multiple－ axis servo amplifier（MR－J4WD－םB）．

App．4．2 Position board utility software
There are no restrictions in the Position Board Utility2 versions supporting position board．

App．4．3 Servo amplifier
For detailed specifications of a multiple－axis servo amplifier（MR－J4Wロ－ロB），refer to the Servo Amplifier Instruction Manual for your servo amplifier．

POINT

－When the control cycle is 0.22 ms ，MR－J4W3－पB can be used with software version A3 or later．
－The fully closed loop system can be used for the servo amplifier MR－J4（Wロ）－aB whose software version is A3 or later．
（1）SSCNETII／H connection restrictions for multiple－axis servo amplifier（MR－J4W $\square-\square \mathrm{B}$ ）
The multiple－axis servo amplifier（MR－J4W2－$\square \mathrm{B}$ ）cannot allocate axis 16 onwards from the start of the SSCNETIII／H connection．
The multiple－axis servo amplifier（MR－J4W3－$\square \mathrm{B}$ ）cannot allocate axis 15 onwards from the start of the SSCNETII／H connection．
The remote I／O module is also counted as one axis．

App．4．4 Operations and functions of the servo amplifier

（1）Startup procedure
With one multiple－axis servo amplifier（MR－J4WD－$\square \mathrm{B}$ ），a rotary servo motor，linear servo motor，fully closed loop system，and direct drive motor can be used in combination．
For the use of a rotary servo motor，refer to Section 4．1．
For the use of a linear servo motor，refer to App．1．For the use of the fully closed loop system，refer to App． 2．For the use of the direct drive motor，refer to App． 3.

POINT

－For the all axes used with the multiple－axis servo amplifier（MR－J4Wロ－$\square \mathrm{B}$ ）， always set＂Controlled＂to the control option 1 （parameter No．0200）．When＂Not controlled＂is set，the system cannot start properly．
－For a multiple－axis servo amplifier（MR－J4Wロ－ロB），the number of axis used can be changed using the control axis invalid switch（SW2）．Deactivate unused axes．
（2）Operation from the position board
Positioning operation using the position board is basically the same as operation for using a rotary servo motor．For the use of a linear servo motor，refer to App．1．For the use of the direct drive motor，refer to App． 3.
（a）Parameters
For servo parameters，control parameters，and system parameters，set them in the same way as the operation mode to be used（rotary motor，linear，fully closed loop system，and direct drive）．

App. 5 Supplementary explanation for the use of servo amplifier (MR-JE- $\square \mathrm{B}(\mathrm{F})$)
App. 5.1 Position board
The software versions of the position board that can use servo amplifier (MR-JE-DB(F)) are as follows.

Position board	Software version
MR-MC2 $\square \square$	A7 or later
MR-MC3 $\square \square$	No restrictions

App. 5.2 Position board utility software
The Position Board Utility2 versions supporting above position board are as follows.

Position board	Software version (MRZJW3-MC2-UTL)
MR-MC2 $\square \square$	Ver. 1.70 or later
MR-MC3 $\square \square$	Ver. 3.00 or later

App. 5.3 Servo amplifier
For detailed specifications of a servo amplifier (MR-JE- $\square \mathrm{B}(\mathrm{F})$), refer to the Servo Amplifier Instruction Manual for your servo amplifier.

POINT

- Servo amplifier (MR-JE-םB(F)) does not support SSCNETII communication. Use the servo amplifier in a SSCNETM/H system.
- Control cycle 0.22 ms is not supported. When the system is start with the control cycle as 0.22 ms and a servo amplifier (MR-JE-םB(F)) connected, the system is on standby for start and a communication cycle error (system error E40E) occurs.
- Servo amplifier (MR-JE-पB(F)) can connect up to 16 axes on 1 line with SSCNETII/H. When using 17 axes or more, up to 20 axes can be controlled on 1 line by using MR-JE-ロB(F) together with MR-J4(Wロ)-םB.

App. 5.4 System configuration
App. 5.4.1 System configuration diagram
Example: For PCI bus compatible position board MR-MC210
SSCNETII/H-compatible

- Servo amplifier MR-JE-B(F)

POINT

- The input of DI signals (LSP/LSN/DOG) from servo amplifier (MR-JE-■B) is available with servo amplifiers with software version C5 or later, and manufactured from May, 2016 onwards. For servo amplifiers manufactured in China, the input of DI signals is available with servo amplifiers manufactured June, 2016 onwards.
- For servo amplifiers (MR-JE- $\square \mathrm{B}(\mathrm{F})$) manufactured before the dates above, DI signals (LSP/LSN/DOG) cannot be input to servo amplifier (MR-JE-■B(F)). When using sensor input, set a value other than "1: Driver input" to sensor input option (parameter No.0219). When inputting the sensor input from dual port (setting "4: Dual port memory input" to sensor input option), periodically updating the input status is necessary. Also, to take into consideration when the host controller is hangup, use together with the user watchdog function. Refer to Section 6.28 and Section 7.7 for details.

App. 5.5 Axis No. setting
App. 5.5.1 Servo amplifier setting
Axis No. of MR-JE- $\square B(F)$ is set by the axis selection rotary switch (SW1) on the servo amplifier. Servo amplifier axis No. and rotary switch setting are correlated as shown on the table below. Set the axis No. of the servo amplifier so that it will not duplicate in the same line. If it is duplicated, the "An axis that has not been mounted exists" (system error E400) will occur at the time of system startup (system command code: 000Ah).

Servo amplifier axis No.	Axis selection rotary switch	Servo amplifier display (3-digit, 7-segment indicator)
d 1	0	01
d 2	1	02
d 3	2	03
d 4	3	04
d 5	4	05
d 6	5	06
d 7	6	07
d 8	7	08
d 9	8	09
d 10	9	10
d 11	A	11
d 12	B	12
d 13	C	13
d 14	D	14
d15	E	15
d16	F	16

App. 5.6 Parameter setting
App. 5.6.1 System option 1 setting
SSCNET communication method and control cycle is set by System option 1 (parameter No.0001).
SSCNET communication method is used for communication between a position board and connected units such as servo amplifiers and SSCNETII/H method and SSCNETIII method are available. When using MR-JE—B(F) servo amplifiers, make sure to select the SSCNETIII/H method.
Control cycle is a cycle in which the position board conducts command import, position control, status output, and communication with servo amplifier. To set this cycle, use the control cycle (parameter No.0001). Servo amplifier (MR-JE-पB(F)) does not support control cycle 0.22 ms . When using servo amplifier (MR-JE-पB(F)), make sure to select a control cycle other than 0.22 ms .
The following shows the number of controllable axes according to the control cycle.
(1) For MR-MC210/MR-MC220U3/MR-MC220U6/MR-MC240

Control cycle	Maximum No. of axes connected		Maximum No. of axes	Controllable axis No.
	Using MR-JE- $\square \mathrm{B}(\mathrm{F})$ only	Using together with MR-J4(W)- $\square \mathrm{B}$		
0.44 ms	16 axes	20 axes	20 axes (Note)	Axis 1 to 16

Note. When using 17 axes or more for each line, use MR-JE- $\square \mathrm{B}(\mathrm{F})$ together with MR-J4 (W $\square)-\square \mathrm{B}$.
(2) For MR-MC211/MR-MC241

Control cycle	Maximum No. of axes connected		Maximum No. of axes connected for each line	Controllable axis No.
	Using MR-JE- $\square \mathrm{B}(\mathrm{F})$ only	Using together with MR-J4(W)- $\square \mathrm{B}$		
	32 axes	32 axes	20 axes (Note)	Axis 1 to 32
0.44 ms	16 axes	16 axes	16 axes	Axis 1 to 16

Note. When using 17 axes or more for each line, use MR-JE- $\square \mathrm{B}(\mathrm{F})$ together with MR-J4(W $\square)-\square \mathrm{B}$.

Control cycle settings are imported during system startup (system command code: 000Ah), and cannot be changed during system running (system command code: 000Ah).
(a) System parameters

Parameter No.	Symbol	Name	Function
0001	*SYSOP1	System option 1	Note 1. Make sure to set a value other than "2: 0.22 ms ". 2. Make sure to set " 0 : SSCNET II/ H ".

(b) SSCNET communication method

Address	Name	Description
0008	SSCNET communication method	1: SSCNETIII 2: SSCNETIII/H
0009		

App. 5.7 Axis No. assignment

With Axis No. assignment, the axis No. (on the position board) can be assigned by the axis No. on the servo amplifier. When using only servo amplifier (MR-JE- $\square B(F)$) and connecting 17 axes or more, the axis No. assignment function must be used to assign axes to line 2. Refer to Section 4.5.6 for details on axis No. assignment.

POINT

- When using servo amplifier (MR-JE- $\square B(F)$), the 17th servo amplifier axis No. and after cannot be set on 1 line.

App. 5.8 Sensor input option setting
External signal (sensor) is connected by setting sensor input options (parameter No.0219). When using a version of servo amplifier (MR-JE- $\square \mathrm{B}$) that does not support DI signal input, set a value other than "1: Driver input" to sensor input system. Refer to Section 4.5 .7 for details on sensor input options setting.

POINT	
- When "1: Driver input" is set in sensor input system, a parameter error (servo	
alarm 37) occurs for parameter No.11C2 to parameter No.11C4 (servo	
parameter PD03 to PD05).	

App. 5.9 Vendor ID and type code setting
When using servo amplifier (MR-JE- $\square B(F)$) set 1200 h to the type code.
(1) Control parameters

Parameter No.	Symbol	Name	Function
021D	*VEND	Vendor ID	Set the vendor ID. 0000h: Mitsubishi Electric
021E	*CODE	Type code	Set the type code. $1200 h: M R-J E-\square B(F) ~$

App. 5.10 Supported functions

Some functions and operation of the servo amplifier (MR-JE-DB(F)) differ from those of the servo amplifier MR-J4(Wロ)-DB. This section mainly describes functions and operations different from those of the servo amplifier MR-J4(WD)- $\square \mathrm{B}$. For the specification items not described in this section, refer to the specifications of servo amplifier MR-J4(WD)-םB.
(1) Supported function list

Function type	Function		Supported	Remarks
Operational functions	JOG operation		\bigcirc	
	Incremental feed		\bigcirc	
	Automatic operation		\bigcirc	
	Linear interpolation		\bigcirc	
	Home position return		\bigcirc	
	Home position reset function (data set function)		\bigcirc	
Application functions	Command units	Electronic gear	\bigcirc	
	Speed units	Speed units	\bigcirc	
		Speed units multiplication factor	\bigcirc	
		Speed limit	\bigcirc	
	Acceleration/deceleration	Linear acceleration/deceleration	\bigcirc	
		Smoothing filter	\bigcirc	
		Start up speed validity	\bigcirc	
		S-pattern acceleration/deceleration (Sine acceleration/deceleration)	\bigcirc	
	Servo off		\bigcirc	
	Forced stop		\bigcirc	
	Stop operation		\bigcirc	
	Rapid stop		\bigcirc	
	Limit switch (stroke end)		\bigcirc	
	Software limit		\bigcirc	
	Interlock		\bigcirc	
	Rough match output		\bigcirc	
	Torque limit		\bigcirc	
	Command change	Speed change	\bigcirc	
		Change of time constants	\bigcirc	
		Position change	\bigcirc	
	Backlash		\bigcirc	
	Position switch		\bigcirc	
	Completion of operation signal		\bigcirc	
	Interference check function		\bigcirc	
	Home position search limit		\bigcirc	
	Gain changing		\bigcirc	
	PI-PID switching		\bigcirc	
	Absolute position detection system		\bigcirc	
	Home position return request		\bigcirc	
	Other axes start		\bigcirc	
	High response I/F		\bigcirc	
	In-position signal		\bigcirc	
	Digital I/O		\bigcirc	
	I/O device		\bigcirc	
	Servo amplifier general I/O		\triangle	Check the servo amplifier MR-JE- \square B being used to confirm if general input is available or not. One point only can be used for general output.

Function type	Function	Supported	Remarks
Application functions	Dual port memory exclusive control	\bigcirc	
	Pass position interrupt	\bigcirc	
	Mark detection	\times	
	Continuous operation to torque control	\bigcirc	
	SSCNETII/H head module connection	\bigcirc	
	Sensing module connection	\bigcirc	
Auxiliary function	Reading/writing parameters	\bigcirc	
	Changing parameters at the servo	\bigcirc	
	Alarm and system error	\bigcirc	
	Monitor function	\bigcirc	
	High speed monitor function	\bigcirc	
	Interrupt	\bigcirc	
	User watchdog function	\bigcirc	
	Software reboot function	\bigcirc	
	Parameter backup	\bigcirc	
	Test mode	\bigcirc	
	Reconnect/disconnect function	\bigcirc	If MR-JE- $\square B$ is reconnected in a system with a 0.22 ms control cycle, reconnection error (RCE) turns ON, and reconnection/disconnection error code 0006h (communication cycle error) occurs.
	Sampling	\bigcirc	
	Log	\bigcirc	
	Operation cycle monitor function	\bigcirc	
	Servo amplifier disconnect	\bigcirc	Operate with the following motor specifications. Number of encoder pulses per revolution: 131072[pulse] Motor maximum revolution speed: $6000[\mathrm{r} / \mathrm{min}]$
	Alarm history function	\bigcirc	
	External forced stop disabled	\bigcirc	
	Transient transmit	\bigcirc	
	Hot line forced stop	\bigcirc	Not required when MR-JE-पBF is used.
Tandem drive	Tandem drive	\bigcirc	
Interface mode	Position control mode	\bigcirc	
	Speed control mode	\bigcirc	
	Torque control mode	\bigcirc	

Note. O : Supported \triangle : With restrictions \times : Unsupported

App. 5.10.1 Application functions

(1) Servo amplifier general I/O

For the specification of the servo amplifier general I/O, refer to the following table.
POINT

- The input of DI signals (LSP/LSN/DOG) from servo amplifier (MR-JE-ロB) is available with servo amplifiers with software version C5 or later, and manufactured from May, 2016 onwards. For servo amplifiers manufactured in China, the input of DI signals is available with servo amplifiers manufactured June, 2016 onwards.
(a) Compatible servo amplifier

Model	Remarks
Servo amplifier MR-JE- $\square B(F)$	Input: 3 points/axis Output: 1 point/axis

(b) Destination connector

1) General input

Signal Name	Destination connector pin No.	Symbol
LSP	CN3-2	DI1
LSN	CN3-12	DI2
DOG	CN3-19	DI3

2) General output

Signal Name	Destination connector pin No.	Symbol
DI_ $\square \square 0$	CN3-13	MBR
DI_ $\square \square 1$	-	-
DI_ $\square \square 2$	-	-

(c) Servo parameters

1) When using the servo amplifier general input function, set the input device selection parameters as follows.

Parameter No.	MR-JE-B(F) Parameter No.	Symbol	Name	Setting value
11 C 2	PD03	*DI1	Input device selection 1	0028 h
11 C 3	PD04	*DI2	Input device selection 2	0029 h
11 C 4	PD05	*DI3	Input device selection 3	002 Ah

2) When using the servo amplifier general output function, set the output device selection parameters as follows.

Parameter No.	MR-JE-B(F) Parameter No.	Symbol	Name	Setting value
11C6	PD07	*DO1	Output device selection 1	0021 h

App. 5.10.2 Auxiliary function

(1) Hot line forced stop function

Refer to Section 7.19 for the hot line forced stop function.

App. 5.11 Table map

For the table map, refer to the table map of when servo amplifier (MR-J4(Wロ)- $\square B$) is used.

App. 5.12 Parameters

Concerning the parameters for which the parameter name shows that it is set by manufacturer, do not use other than the default values. If erroneous values are set, unexpected operation can occur. For the specification items not described in this section, refer to the specifications of servo amplifier MR-J4(W \square)- $\square \mathrm{B}$.

Classification	Parameter No. (Note)	Remarks
System parameters	No. 0001 to 007F	
Servo parameters	No. 0100 to 01FF	Each axis
Control parameters	No. 0200 to 02FF	Each axis

Note. Parameter numbers are given in hexadecimal.

App. 5.12.1 System parameters

For system parameters, only the additions and changes are listed.

POINT

- The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function
0001	*SYSOP1	System option 1	0000h		$\begin{aligned} & 0000 \mathrm{~h} \\ & \text { to } 0102 \mathrm{~h} \end{aligned}$	0 0 Control cycle setting (Note 1) Set the control cycle. $0: 0.88 \mathrm{~ms}$ 1: 0.44 ms 2: 0.22 ms (Not use) SSCNET communication method (Note 2) Set the SSCNET communication method. 0: SSCNETIII/H 1: SSCNETIII (Not use) Note. SSCNET communication method is shared in lines 1 and 2. Note 1. Make sure to set a value other than " 2 : 0.22 ms ". 2. Make sure to set " $0:$ SSCNET II/H".

App. 5.12.2 Servo parameters

When using servo amplifier MR-JE- $\square B(F)$, initial values for the following parameters are different to MR$\mathrm{J} 4(\mathrm{~W} \square)-\square \mathrm{B}(\mathrm{F})$. Set the initial value to each parameter when using it. For details, refer to the Servo Amplifier Instruction Manual on your servo amplifier.

POINT

- The parameters with a * mark in front of the parameter symbol are validated according to the following conditions.
*: The setting value for the system startup or the SSCNET reconnection is valid. The parameter change after the system startup is invalid.
**: The setting value for the system startup or the SSCNET reconnection is valid. However, after the system startup, turn off the power supply of the servo amplifier once, and it is necessary to turn on it again. The parameter change after the system startup is invalid.

App. 5.12.3 Control parameters
For control parameters, only the additions and changes are listed.

Parameter No.	Symbol	Name	Initial value	Unit	Setting range	Function	When in tandem drive
021E	${ }^{*}$ CODE	Type code	1000 h		0000h to FFFFh	Set the type code. 1200h: MR-JE- $\square B(F)$	Same value

App. 5.13 Monitor
For the monitor, refer to the monitor list of when MR-J4(WD)-םB is used.

App. 5.14 System alarm

For the alarm No., only the additions and changes are listed.

App. 5.14.1 Servo alarm
The servo alarms of MR-JE- $\square B(F)$ are shown in the following table. For details, refer to the Servo Amplifier Instruction Manual.

Alarm

Alarm No.	Name
10	Undervoltage
12	Memory error 1 (RAM)
13	Clock error
14	Control process error
15	Memory error 2 (EEP-ROM)
16	Encoder initial communication error 1
17	Board error
19	Memory error 3 (FLASH-ROM)
1A	Servo motor combination error
1E	Encoder initial communication error 2
1F	Encoder initial communication error 3
20	Encoder normal communication error 1
21	Encoder normal communication error 2
24	Main circuit error
25	Absolute position erased
30	Regenerative error
31	Overspeed
32	Overcurrent
33	Overvoltage
34	SSCNET receive error 1
35	Command frequency error
36	SSCNET receive error 2
37	Parameter error
39	Program error
3E	Operation mode error
45	Main circuit device overheat
46	Servo motor overheat
47	Cooling fan error
50	Overload 1
51	Overload 2
52	Error excessive
54	Oscillation detection
56	Forced stop error
61	Operation error
8A	USB communication time-out/serial communication time-out error/Modbus-RTU communication timeout error
8E	USB communication error/serial communication error/Modbus-RTU communication error
$\begin{gathered} 888 / \\ 88888 \end{gathered}$	Watchdog

Warning

Alarm No.	Name
90	Home position return incomplete warning
91	Servo amplifier overheat warning
92	Battery cable disconnection warning
96	Home position setting warning
97	Program operation disabled/next station position warning
98	Software limit warning
99	Stroke limit warning
$9 B$	Error excessive warning
$9 F$	Battery warning
E0	Excessive regeneration warning
E1	Overload warning 1
E3	Absolute position counter warning
E4	Parameter warning
E6	Servo forced stop warning
E7	Controller forced stop warning
E8	Cooling fan speed reduction warning
E9	Main circuit off warning
EC	Overload warning 2
ED	Output watt excess warning
F0	Tough drive warning
F2	Drive recorder - Miswriting warning
F3	Oscillation detection warning
F5	Simple cam function - Cam data miswriting warning F6 Simple cam function - Cam control warning

Note. For the specific servo alarm numbers, refer to the specifications of MR-JE- $\square \mathrm{B}(\mathrm{F})$.

App. 6 Supplementary explanation for the use of SSCNETIII compatible servo amplifier (MR-J3(W)- \square B) MC200

The SSCNETIII/H compatible position board (MR-MC2 $\square \square$) can perform the positioning control with connecting our servo amplifier (MR-J3(W)-पB) when the SSCNET communication method is SSCNETII. In this section, the different point, comparing SSCNETII/H with the servo amplifier MR-J4(Wロ)-■B, are mainly described.

App. 6.1 Position board

There are no restrictions in the software versions of the position board that can be used with the SSCNETIII compatible servo amplifier (MR-J3(W)-■B).

App. 6.2 Position board utility software
There are no restrictions in the Position Board Utility2 versions supporting each position board listed above.

App. 6.3 Connectable units

The connectable units with the position board when the SSCNET communication method is SSCNETII are shown below.

Item		Remarks
SSCNETIII compatible unit	Servo amplifier MR-J3- $\square \mathrm{B}$ (S)	For how to use the unit, refer to this section.
	Linear servo amplifier MR-J3- \square B-RJ004	For how to use the units, refer to this section and App. 1 to 4. For servo parameters, refer to the Servo Amplifier Instruction Manual for your servo amplifier
	Fully closed control-compatible servo amplifier MR-J3-पB-RJ006	
	2-axis servo amplifier MR-J3W- \square B	
	Direct drive servo amplifier MR-J3-पB-RJ080W	
SSCNETIII(H) compatible unit	MR-J4(W■)-■B	Communication by SSCNETIII can only be used in J3 compatibility mode. This is supported in the MR-J4(W $\square)-\square$ B software version A5 or later. Also refer to the restrictions when using J3 compatibility mode. For how to use the unit, refer to the explanation of MR-J3 series.

App. 6.4 System setting
When the SSCNET communication method is SSCNETII, servo amplifiers of up to 32 axes can be controlled per SSCNET control channel (CH).

Model	Number of control axes	Remarks
MR-MC210	Up to 16 axes	Up to 16 axes can be controlled per SSCNET line.
MR-MC211	Up to 32 axes	
MR-MC220U3	Up to 16 axes	
MR-MC220U6	Up to 16 axes	
MR-MC240	Up to 16 axes	
MR-MC241	Up to 32 axes	

App. 6.5 System configuration

App. 6.5.1 System configuration diagram

Example: For PCI bus compatible position board MR-MC210 (when using SSCNETII)

App. 6.6 Axis No. setting

Axis No. is set by the axis selection rotary switch (Note). The axis No. and rotary switch No. are correlated as shown on the table below. Set the axis No. of the servo amplifier so that it will not duplicate in the same SSCNET line. If it is duplicated, the "An axis that has not been mounted exists" (system error E400) will occur at the time of system startup (system command code: 000Ah).

Note. The name and setting method of the axis selection rotary switch vary depending on the unit device to be used. For details, refer to the unit device specification for your unit.

App. 6.6.1 Servo amplifier setting

(1) MR-J3(W)- $\square B$

Axis No. of MR-J3(W)-■B is set by the axis selection rotary switch (SW1) on the servo amplifier. Servo amplifier axis No. and rotary switch setting are correlated as shown on the table below. Set the axis No. of the servo amplifier so that it will not duplicate in the same line. If it is duplicated, the "An axis that has not been mounted exists" (system error E400) will occur at the time of system startup (system command code: 000Ah).

Servo amplifier axis No.	Axis selection rotary switch	Servo amplifier display (3-digit, 7-segment indicator)
d 1	0	01
d 2	1	02
d 3	2	03
d 4	3	04
d5	4	05
d6	5	06
d7	6	07
d8	7	08
d9	8	09
d10	9	10
d11	A	11
d12	B	12
d13	C	13
d14	D	14
d15	E	15
d16	F	16

POINT

- For each switch setting, refer to the Servo Amplifier Instruction Manual for your servo amplifier.
- If the "An axis that has not been mounted exists" (system error E400) occurred, the axis with wrong axis No. set can be confirmed with "information concerning axis that is not mounted" (monitor No. 0480 to 0482).
- The servo amplifier axis No. and the axis No. to be managed on the position board are different. For details, refer to App. 6.9.

App. 6.7 Parameter setting

App. 6.7.1 System option 1 setting

SSCNET communication method and control cycle is set by System option 1 (parameter No.0001). SSCNET communication method is used for communication between a position board and connected units such as servo amplifiers and SSCNETII/H method and SSCNETIII method are available. When using MR-J3(W)- \square B series servo amplifiers, make sure to select the SSCNETIII method.
Control cycle is a cycle in which the position board controls command import, position control, status output, and communication with servo amplifier. To set this cycle, use the control cycle (parameter No.0001). The number of controllable axes differs depending on the control cycle.
(1) For MR-MC210/MR-MC220U3/MR-MC220U6/MR-MC240

Control cycle	Maximum No. of axes connected	Maximum No. of axes connected for each line	Controllable axis No.
0.88 ms	16 axes	16 axes	Axis 1 to 16
0.44 ms	8 axes	8 axes	Axis 1 to 8

Note. Do not connect more servo amplifiers than the maximum No. of axes connected. When more servo amplifiers are connected than the maximum No. of axes connected, system setting error (alarm No. 38, detail 01) will occur.
(2) For MR-MC211/MR-MC241

Control cycle	Maximum No. of axes connected	Maximum No. of axes connected for each line	Controllable axis No.
0.88 ms	32 axes	16 axes	Axis 1 to 32
0.44 ms	16 axes	8 axes	Axis 1 to 16

Note. Do not connect more servo amplifiers than the maximum No. of axes connected. When more servo amplifiers are connected than the maximum No. of axes connected, system setting error (alarm No. 38, detail 01) will occur.

Control cycle settings are imported during system startup (system command code: 000Ah), and cannot be changed during system running (system command code: 000Ah).
(a) System parameters

Parameter No.	Symbol	Name	Function
0001	*SYSOP1	System option 1	0 0 Control cycle setting (Note 1) Set the control cycle. 0: 0.88 ms 1: 0.44 ms SSCNET communication method (Note 2) Set the SSCNET communication method. 0: SSCNETIII/H (Not use) 1: SSCNETIII Note. SSCNET communication method is shared in lines 1 and 2. Note 1. When SSCNET communication method is "1: SSCNETM". 2. Make sure to set "1: SSCNETII".

(b) SSCNET communication method

Address	Name	Description
0008	SSCNET communication method	1: SSCNETIII
		$2:$ SSCNETIII/H
0009		

App. 6.8 Control option 1 setting

When controlling servo amplifier, set "1: control" for control axis of control option 1 (parameter No.0200). When the axis No. is set out of the controllable range, the corresponding axis will be system setting error (alarm No. 38) and cannot be controlled. If the servo amplifier set is in a state where communication cannot be made, such as not connected or control circuit power is off, the "An axis that has not been mounted exists" (system error E400) will occur at the time of system startup (system command code: 000Ah).

POINT

- If the "An axis that has not been mounted exists" (system error E400) occurred, the axis with wrong No. set can be confirmed with "information concerning axis that is not mounted" (monitor No.0402).

Control axis settings are imported during system startup (system command code: 000Ah), and cannot be changed during system running (system status code: 000Ah).
(1) Control parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range	Function
0200	*OPC1	Control option 1	0000h		$\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 2111 \mathrm{~h} \end{aligned}$	

POINT

- When the servo amplifier disconnect is valid, the position board simulates the operations of servo amplifier and operates as if it is connected. Operation can be checked without connecting the servo amplifier. When the setting is valid, the position board do not communicate with the servo amplifier.

App. 6.9 Axis No. assignment
With Axis No. assignment, the axis No. (on the position board) can be assigned by the axis No. on the servo amplifier.
When Axis No. assignment is invalid, correspondence between the axis No. on a position board and the axis No. on a servo amplifier is shown in the following table.
(1) When SSCNET communication method is SSCNETII/H

Servo amplifier axis No.		Line 1																			
		d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11	d12	d13	d14	d15	d16	d17	d18	d19	d20
Axis	0.88 ms	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	-	-	-	-
No.	0.44 ms	1	2	3	4	5	6	7	8	-	-	-	-	-	-	-	-	-	-	-	-

Servo amplifier axis No.		Line 2																			
		d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11	d12	d13	d14	d15	d16	d17	d18	d19	d20
Axis	0.88 ms	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	-	-	-	-
No.	0.44 ms	9	10	11	12	13	14	15	16	-	-	-	-	-	-	-	-	-	-	-	-

When Axis No. assignment is valid, the axis Nos. 1 to 32 (on the position board) can be assigned by the servo amplifier axis Nos. d 1 to d16 arbitrarily.
To assign the axis Nos., set the following parameters.

POINT

- To set servo amplifier axis Nos., use the axis No. assignment (parameter No.0203). Valid servo amplifier axis Nos. differ depending on the control cycle. Up to 16 axes can be set.

Control cycle	SSCNETIII
0.88 ms	1 to 16
0.44 ms	1 to 8

(a) System parameter

Parameter No.	Symbol	Name	Function	
0002	*SYSOP2	System option 2	$\begin{array}{l\|l\|l} \hline \hline 0 & 0 & 0 \\ \hline \end{array}$	L_Axis No. assignmen Set 1 when validating axis No. assignment When axis No. assignment is invalid, axis No. is automatically assigned. 0: Invalid 1: Valid

(b) Control parameter

Parameter No.	Symbol	Name	Initial value	Units	Setting range		Function
0203	*AXALC	Axis No. assignment	0000h		$\begin{aligned} & 0000 \mathrm{~h} \\ & \text { to } \\ & 011 \mathrm{Fh} \end{aligned}$	0	Servo amplifier axis No. Set the servo amplifier axis No. to be assigned to the axis Nos. on the position board. (Note 1, 2 and 3) 00h: No axis No. assignment 01h to 14h: Axis No. Example: 0Ah: Axis No. 10 -Servo amplifier line No. Set the servo amplifier line No. to be assigned to the axis Nos. on the position board. 0 to 1: Line No.-1

Note 1. An axis No. out of the valid range causes the system setting error (alarm No. 38, detail 03).
2. Regardless of the control axis setting (parameter No.0200), set the axis No. so that the axis No. assignment is not duplicated. (Except for 00: No axis No. assignment) Duplicated axis Nos. cause the system setting error (alarm No. 38, detail 04).
3. When Control is set in the control axis setting (parameter No.0200), always set the axis Nos. (1 to 16). When 0 is set, system setting error (alarm No. 38, detail 02) will occur.

App. 6.10 Sensor input option setting
External signal (sensor) is connected by setting sensor input options (parameter No.0219). The following is for when 1 (driver input) is set in sensor input system. Refer to Section 4.5 .7 for details on other sensor input option settings.
(1) When selecting the driver input

When 1 (driver input) is selected as the sensor destination, the sensor (LSP, LSN, DOG) status connected to the driver is imported via SSCNET.
(a) MR-J3-DB is used as a servo amplifier

Signal name	Destination connector pin No.	Symbol
LSP	CN3-2	D11
LSN	CN3-12	D12
DOG	CN3-19	D13

(b) MR-J3W-ロB is used as a servo amplifier

Signal name	Destination connector pin No.		Symbol ($\square:$ A, B)
	A-axis	B-axis	
LSP	CN3-7	CN3-20	DI2- \square
LSN	CN3-8	CN3-21	DI3- \square

POINT

- For sensor connection to the driver, refer to the instruction manual of the driver.
- If communication error (system error E401 to E407) occurs, sensor (LSP, LSN, DOG) input status turns off.
- If communication error (system error 400) occurs, the input status of the corresponding axis turns off.

App. 6.11 Vendor ID and type code setting

Available functions, parameter settings and ranges will vary by servo amplifier type. At the time the communication with the servo amplifier has started, the position board will perform consistency check between type code of the servo amplifier connected and the parameter set. If a consistency check error occurs, driver type code error (system error E405) will be output, therefore set correct type code.

POINT

- If driver type code error (system error E405) occurred, the axis that has set an incorrect type code can be confirmed with "type code erroneous axis information" (monitor No. 0484 to 0486).
- When the communication method is SSCNETII, driver type code error (system error E405) due to the inconsistency of vendor IDs.
(a) Control parameters

Parameter No.	Symbol	Name	Function
021D	*VEND	Vendor ID	Set the vendor ID. 0000: Mitsubishi Electric Note. Not used in SSCNETIII communication.
021E	*CODE	Type code	Set the type code. 0100: MR-J3-B, MR-J3W-B (for rotary servo motor) 0101: MR-J3-BS, MR-J3-B-RJ006 0102: MR-J3-B-RJ004, MR-J3W-B (for linear servo motor) 0107: MR-J3-B-RJ080W $0180: ~ M R-J 3 W-0303 B N 6 ~$

App. 6.12 System startup processing
The parameter settings and the system startup processing is the same as those of when the SSCNET communication method is SSCNETII/H.

App．6．13 Restrictions when using J3 compatibility mode
The restrictions when connecting SSCNETIII for position board and servo amplifier MR－J4（Wロ）－םB are shown in the following table．

Position board SSCNET communication method	$\text { MR-J4(W } \square)-\square B$ mode	Controller reset necessity（Note）	Details
SSCNETIII	Factory default	Necessary	The servo amplifier LED displays＂rST＂． The system status code is not system running（000Ah）． After system start up，if the system status code is not system running（000Ah）after 10 seconds，or a system error occurs，perform system startup procedure again after controller reset．
	J3 compatibility \qquad mode	Not necessary	The system status code becomes system running（000Ah）when all axes are connected normally．
	J4 mode	－（Cannot connect）	The system status code is not system running（000Ah）． Review the settings of the servo amplifier or position board．
SSCNETII／H	Factory default	Not necessary	The system status code becomes system running（000Ah）when all axes are connected normally．
	J3 compatibility mode	－（Cannot connect）	The system status code is not system running（000Ah）． Review the settings of the servo amplifier or position board．
	J4 mode	Not necessary	The system status code becomes system running（000Ah）when all axes are connected normally．

Note．To perform a controller reset，execute a software reboot of the position board，or turn the power supply of the position board OFF and ON again．

When position board SSCNET communication method is SSCNETII and a factory default MR－J4（Wロ）－पB servo amplifier is connected by SSCNET，the servo amplifier switches to J 3 compatibility mode and the LED displays＂rST＂．In this state，executing a controller reset（software reboot，or turning the power supply of position board OFF and ON again）and performing system startup procedure again enables all axes to be connected．
When connecting by SSCNETIII from the next time onwards，a controller reset is not necessary．When a controller reset cannot be executed，use the＂MR－J4（W）－B mode selection＂attached to MR Configurator2 to manually switch the servo amplifier to J 3 compatibility mode in advance．
For details on J 3 compatibility mode，also refer to the MR－J4（Wロ）－पB Instruction Manual．

POINT
－Do not connect a factory default MR－J4（WD）－DB servo amplifier by SSCNET reconnect afterwards．If SSCNET is disconnected once，system error E4ㅁㅁ occurs and all axes go into a forced stop state．
(1) When connecting factory default MR-J4(WD)- $\square \mathrm{B}$ servo amplifier from the position board.
(a) Connecting the first time

(b) After performing system startup procedure again after controller reset.

App. 6.14 Supported functions

Some functions and operation of the servo amplifier MR-J3(W)-पB differ from those of the servo amplifier MR-J4(WD)-DB. This section mainly describes functions and operations different from those of the servo amplifier MR-J4(WD)- $\square B$. For the specification items not described in this manual, refer to the specifications of servo amplifier MR-J4(Wロ)-ロB.
(1) Supported function list

Function type		Function	Supported	Remarks
Operational functions	JOG operation		\bigcirc	
	Incremental feed		\bigcirc	
	Automatic operation		\bigcirc	
	Linear interpolation		\bigcirc	
	Home position return		\bigcirc	
	Home position reset function (data set function)		\bigcirc	
Application functions	Command units	Electronic gear	\bigcirc	
	Speed units	Speed units	\bigcirc	
		Speed units multiplication factor	\bigcirc	
		Speed limit	\bigcirc	
	Acceleration/ deceleration	Linear acceleration/deceleration	\bigcirc	
		Smoothing filter	\bigcirc	
		Start up speed enable	\bigcirc	
		S-pattern acceleration/deceleration (Sine acceleration/deceleration)	\bigcirc	
	Servo off		\bigcirc	
	Forced stop		\bigcirc	
	Stop operation		\bigcirc	
	Rapid stop		\bigcirc	
	Limit switch (stroke end)		\bigcirc	
	Software limit		\bigcirc	
	Interlock		\bigcirc	
	Rough match output		\bigcirc	
	Torque limit		\bigcirc	
	Command change	Speed change	\bigcirc	
		Change of time constants	\bigcirc	
		Position change	\bigcirc	
	Backlash		\bigcirc	
	Position switch		\bigcirc	
	Completion of operation signal		\bigcirc	
	Interference check function		\bigcirc	
	Home position search limit		\bigcirc	
	Gain changing		\bigcirc	The parameter No. to be used differs from those of MR-J4-B. For details, refer to App. 6.14.1(1).
	PI-PID switching		\bigcirc	The parameter No. to be used differs from those of MR-J4-B. For details, refer to App. 6.14.1(2).
	Absolute position detection system		\bigcirc	The parameter No. to be used differs from those of MR-J4-B. For details, refer to App. 6.14.1(3).
	Home position return request		\bigcirc	
	Other axes start		\bigcirc	
	High response I/F		\bigcirc	
	In-position signal		\bigcirc	
	Digital I/O		\bigcirc	
	1/O device		\bigcirc	
	Servo amplifier general I/O		\bigcirc	
	Dual port memory exclusive control		\bigcirc	

Function type	Function	Supported	Remarks
Application functions	Pass position interrupt	\bigcirc	
	Mark detection	\times	
	Continuous operation to torque control	\bigcirc	For the servo amplifier, use a software version that supports continuous operation to torque control. - MR-J3-पB: C7 or later - MR-J3-■BS: C7 or later Note. MR-J3W- \square B is not supported.
	SSCNETII/H head module connection	\times	
	Sensing module connection	\times	
Auxiliary function	Reading/writing parameters	\bigcirc	Parameters No. 0100 to 01FF are used as servo parameters.
	Changing parameters at the servo	\bigcirc	Parameters No. 0100 to 01FF are used as servo parameters.
	Alarm and system error	\triangle	The specific servo alarm number is always 0 .
	Monitor function	\triangle	For MR-J3(W)-पB, some data cannot be monitored. For details, refer to App. 6.17.
	High speed monitor function	\bigcirc	
	Interrupt	\bigcirc	
	Interrupt output cycle	\triangle	Can only be used during interface mode.
	Command data update cycle	\triangle	Can only be used during interface mode.
	User watchdog function	\bigcirc	
	Software reboot function	\bigcirc	
	Parameter backup	\bigcirc	
	Test mode	\bigcirc	Even when SSCNETIII is used, servo amplifier can be adjusted using test operation function (JOG, test positioning, machine analyzer etc.) of the MR Configurator2 attached to the position board using a USB connection.
	Reconnect/disconnect function	\bigcirc	When using the SSCNET disconnect function for the axes of a multiple-axis unit, make sure that all the axes in the unit are simultaneously disconnected. When the disconnection command is sent to the second axis or later in the same unit, "An axis that has not been mounted exists" (system error E400) occurs.
	Sampling	\bigcirc	
	Log	\bigcirc	
	Operation cycle monitor function	\bigcirc	For software version A4 or later, when operation cycle alarm signal (OCME) is turned ON, an operation cycle alarm (system alarm 35, detail No.01) occurs.
	Servo amplifier disconnect	\bigcirc	Operates in the following motor specifications. Number of encoder pulses per revolution: 262144[pulse] Maximum motor speed: 6000[r/min]
	Alarm history function	\bigcirc	Supported by software version A3 or later
	External forced stop disabled	\bigcirc	Supported by software version A5 or later
	Transient transmit	\bigcirc	
Tandem drive	Tandem drive	\bigcirc	Set the same values for the servo parameters of the tandem drive axes. However, the rotation direction selection (servo parameter No.010D) can be different values depending on mechanical specifications.
Interface mode	Position control mode	\bigcirc	Supported by software version A3 or later
	Speed control mode	\bigcirc	Supported by software version A4 or later
	Torque control mode	\bigcirc	Supported by software version A4 or later

Note. O : Supported \triangle : With restrictions \times : Unsupported

App. 6.14.1 Application functions

(1) Gain changing

For the usage of gain changing, which is the same as that of the servo amplifier MR-J4(W■)- $\square \mathrm{B}$, refer to Section 6.19. However, for the servo parameters to be used, refer to the following table.
(a) Servo parameters (MR-J3(W)-■B)

Parameter No.	MR-J3(W)-B Parameter No.	Symbol	Same	Setting
0139	PB26	*CDP	Gain changing selection	0001 (valid when command received from controller and when the input signal (CDP) is on)
013A	PB27	CDL	Gain changing condition	0
013B	PB28	CDT	Gain changing time constant	Arbitrary within setting range
$013 C$	PB29	GD2B	Gain changing ratio of load inertia moment to servo motor inertia moment	Arbitrary within setting range
$013 D$	PB30	PG2B	Gain changing position loop gain	Arbitrary within setting range
013 E	PB31	VG2B	Gain changing speed loop gain	Arbitrary within setting range
$013 F$	PB32	VICB	Gain changing speed integral compensation	Arbitrary within setting range
0140	PB33	VRF1B	Gain changing vibration suppression control vibration frequency setting	Arbitrary within setting range
0141	PB34	VRF2B	Gain changing vibration suppression control resonance frequency setting	Arbitrary within setting range

POINT

- Refer to the Servo Amplifier Instruction Manual on your servo amplifier concerning details for the servo parameters.
- To use the gain switching function, first set the gain adjustment mode to a manual mode by changing an auto-tuning mode (parameter No.0107) to 3 (manual mode). If the gain adjustment mode is in an auto-tuning mode, the gain changing function cannot be used.
(2) PI-PID switching

For the usage of PI-PID switching, which is the same as that of the servo amplifier MR-J4(Wロ)-पB, refer to Section 6.20. However, for the servo parameters to be used, refer to the following table.
(a) Servo parameter (MR-J3(W)- $\square \mathrm{B}$)

Parameter No.	MR-J3(W)-B Parameter No.	Symbol	Name	Setting value
0137	PB24	*MVS	Slight vibration suppression control selection	$\square \square 0 \square$ (PI control is valid (can be switched to PID control by the command from the controller).)

POINT

- Refer to the Servo Amplifier Instruction Manual on your servo amplifier concerning details for the servo parameters.
- To use the PI-PID switching function, first set the gain adjustment mode to a manual mode by changing an auto-tuning mode (parameter No.0107) to 3 (manual mode). If the gain adjustment mode is in an auto-tuning mode, the PIPID switching function cannot be used.
(3) Absolute position detection system

For the usage of the absolute position detection system, which is the same as that of the servo amplifier MR-J4(WD)-पB, refer to Section 6.21. However, for the servo parameters to be used, refer to the following table.
(a) Servo parameter (MR-J3(W)-पB)

Parameter No.	MR-J3(W)-B Parameter No.	Symbol	Name	Setting value
0102	PA03	*ABS	Absolute position detection system	$\square \square \square 1$ (Used in absolute position detection system)

POINT

- Refer to the Servo Amplifier Instruction Manual on your servo amplifier concerning details for the servo parameters.
- When the rotation direction selection (parameter No.010D) is changed, the absolute position disappearance signal (ABSE) is turned on and the absolute position data of the home position return option 2 (parameter No.0241) is changed to 0 (invalid).
(4) In-position signal

For the specification of the in-position signal, which is the same as that of the servo amplifier MR-J4(WD)- $\square \mathrm{B}$, refer to Section 6.25. However, for the servo parameters to be used, refer to the following table.
(a) Servo parameter (MR-J3(W)- $\square \mathrm{B}$)

Parameter No.	MR-J3(W)-B Parameter No.	Symbol	Name	Initial Value	Unit
0109	PA10	INP	In-position range	100	pulse

(5) Servo amplifier general I/O

For the specification of the servo amplifier general I/O, which is the same as that of the servo amplifier MR$J 4(\mathrm{~W} \square)$ - $\square \mathrm{B}$, refer to Section 6.28. However, for the compatible servo amplifiers, refer to the following table.
(a) Compatible servo amplifier

Model	Remarks
Servo amplifier MR-J3-■B	Input: 3 points/axis Output: 3 points/axis
Servo amplifier MR-J3W-■B	Input: 3 points/axis Output: 2 points/axis

(b) Destination connector

1) Servo amplifier MR-J3- $\square B$ is used

- General input

Signal name	Destination connector pin No.	Symbol
DI_■ $\square 0$	CN3-2	D11
DI_ $\square 1$	CN3-12	D12
DI_ $\square 2$	CN3-19	D13

- General output

Signal name	Destination connector pin No.	Symbol
DI_■ $\square 0$	CN3-13	MBR
DI_ $\square 1$	CN3-9	INP
DI_ $\square 2$	CN3-15	ALM

2) Servo amplifier MR-J3W-■B is used

- General input

Signal name	Destination connector pin No.		Symbol (\square : A, B)
	A-axis	B-axis	
DI_ $\square 0$	CN3-7	CN3-20	DI2- \square
DI_ $\square 1$	CN3-8	CN3-21	DI3- \square
DI_ $\square 2$	CN3-9	CN3-22	

- General output

Signal name	Destination connector pin No.		Symbol (\square : A, B)
	A-axis	B-axis	
DI_ $\square 1$	CN3-12	CN3-25	-
DI_ $\square 2$	-	-	CN3-11

(c) Servo parameters

1) Servo amplifier MR-J3- $\square B$ is used

Parameter No.	MR-J3-B Parameter No.	Symbol	Name	Setting value
0176	PD07	*DO1	Output device selection 1	0021 h
0177	PD08	*DO2	Output device selection 2	0022 h
0178	PD09	*DO3	Output device selection 3	0023 h

2) Servo amplifier MR-J3W-■B is used

Parameter No.	MR-J3W-B Parameter No.	Symbol	Name	Setting value
0176	PD07	*DO1	Output device selection 1	0021 h
0178	PD09	*DO3	Output device selection 3	0023 h

App．6．14．2 Auxiliary function

（1）Reading／writing parameters
For the usage of the parameter read／write，which is the same as that of the servo amplifier MR－J4（WD）－वB，refer to Section 7．1．
However，servo parameters No． 0100 to 01FF are used．
When the parameter error（servo alarm 37）has occurred at system startup，check the parameter No．on which the error has occurred in the servo parameter error number（monitor No． 0500 to 0510）．Then reboot software，set correct parameters，and restart the system．

POINT

－When SSCNET communication method is SSCNETII，servo parameters No． 1100 to 1380 of MR－J4（Wロ）－$\square B$ cannot be written while system is running． Parameter number error（PWENn（ $\mathrm{n}=1$ to 2 ））turns on．
－When SSCNET communication method is SSCNET III／H，servo parameters No． 0100 to 01FF of MR－J3（W）－םB cannot be written while system is running． Parameter number error（PWENn（ $\mathrm{n}=1$ to 2 ））turns on．
－When SSCNET communication method is SSCNETII，servo parameters No． 1100 to 1380 of MR－J4（Wロ）－$\square B$ cannot be read while system is running． Parameter number error PRENn（ $\mathrm{n}=1$ to 2 ））turns on．
－When SSCNET communication method is SSCNETII／H，servo parameters No． 0100 to 01FF of MR－J3（W）－■B cannot be read while system is running． Parameter number error PRENn（ $\mathrm{n}=1$ to 2 ））turns on．
（2）Changing parameters at the servo
For how to check parameter changes at the servo，which is the same as that of the servo amplifier MR－J4（Wロ）－口B，refer to Section 7．2．
However，to check changed servo parameter numbers，use servo parameter change number（monitor No． 0580 to 058F）corresponding to the servo parameter change number 01 （PSN01）of the servo parameter change number table．

POINT

－The reasons that parameters are re－written on the servo amplifier are as follows．
－When parameters are changed using MR Configurator2（This includes execution of the machine analyzer and the gain search function．）
－The parameter was automatically changed such as by the real time auto tuning function．
－Refer to the Servo Amplifier Instruction Manual on your servo amplifier concerning servo parameters that are automatically changed．
(3) Transient transmit

The interface is the same as that of the servo amplifier MR-J4(Wロ)- $\square \mathrm{B}$, refer to Section 7.18 .

Compatible transient command list

Data type	Transient command	Unit	Number of valid words (Note 1)	Remarks
Servo motor ID (SSCNETII)/ Encoder ID	0304	-	3	(Note 2)
Encoder resolution	0305	[pulse]	2	
Servo amplifier recognition information (First 8 characters)	0310	[characters]	4	
Servo amplifier recognition information (Last 8 characters)	0311	[characters]	4	
Servo amplifier software number (First 8 characters)	0312	[characters]	4	
Servo amplifier software number (Last 8 characters)	0313	[characters]	4	
Power ON cumulative time	0319	[h]	2	
Inrush relay ON/OFF number	031A	[times]	2	Returns the contactor ON count.
Read alarm history number	0323	[items]	1	
Alarm history/Detail \#1, \#2	0324	-	4	(Note 2)
Alarm history/Detail \#3, \#4	0325	-	4	
Alarm history/Detail \#5, \#6	0326	-	4	
Alarm history/Detai//Occurrence time	0328	-/[h]	4	(Note 2)
Alarm occurrence time \#1, \#2	0329	[h]	4	
Alarm occurrence time \#3, \#4	032A	[h]	4	
Alarm occurrence time \#5 \#6	032B	[h]	4	
Alarm history clear command	0382	-	0	(Note 2)
Home position [command unit]	0408	[pulse]/[rev]	3	(Note 2)
Main circuit bus voltage	040A	[V]	1	
Regenerative load ratio	040B	[\%]	1	
Effective load ratio	040C	[\%]	1	
Peak load ratio	040D	[\%]	1	
Estimate inertia moment ratio	040E	[$\times 0.1$]	1	
Model loop gain	040F	[rad/s]	1	
LED display	0410	[characters]	2	(Note 2)
Load-side encoder information 1	0416	[pulse]	2	Fully closed control or synchronous
Load-side encoder information 2	0417	[pulse]	2	encoder via servo amplifier use
Speed feedback	0418	[$0.01 \mathrm{~mm} / \mathrm{s}$]	2	Linear servo use
Servo motor thermistor temperature	0419	[${ }^{\circ} \mathrm{C}$]	1	Linear servo use
Optional transient command	-	-	4	Used when using an optional transient command.

Note 1. Number of valid words for response data 1 to 4.
2. Refer to Section 7.18.3 for details.

App. 6.15 Table map

For the table map, only the additions and changes are listed. For items not described in this section, refer to Chapter 10.

App. 6.15.1 Table list

POINT

- Do not write to reserved areas.
- The first number in the point table for each axis can be designated using point number offset.

	Dual port memory
B100h	Reserved
	(2864 bytes)
BC30h	Alarm history data table (256 bytes)
BD30h	Reserved (112 bytes)
BDAOh	Sampling data table (96 bytes)
BE00h	Sampling data read table (4224 bytes)
CE80h	$\begin{aligned} & \text { Reserved } \\ & \text { (1408 bytes) } \end{aligned}$
D400h	Transient transmit command/status table (1792 bytes)
DB00h	I/O device table (1024 bytes)
DF00h	Log data table (256 bytes)
E000h	Reserved (64 bytes)
E040h	Interpolation group No. being executed table (64 bytes)
E080h	Other axes start command/status table (128 bytes)
E100h	Other axes start data table (3328 bytes)
EE00h	Reserved (384 bytes)
EF80h	Exclusive control table (16 bytes)
$\begin{aligned} & \text { EF90h } \\ & \text { EFFFh } \end{aligned}$	$\begin{gathered} \text { Reserved } \\ \text { (4208 bytes) } \\ \hline \end{gathered}$

20000h
2000Fh $\begin{gathered}\text { Board information (Note) } \\ \text { (16 bytes) }\end{gathered} \quad$ Note. Refer to Section 1.5 .3 for the board information.

App. 6.15.2 System information

Address	Content
0030	
0031	
0032	
0033	
0034	
0035	
0036	
0037	System program
0038	Software version
0039	
003A	
003B	
003C	
003D	
003E	
003F	
0040	
0041	
0042	
0043	
0044	
0045	
0046	
0047	
0048	
0049	
004A	
004B	
004C	
004D	
004E	
004F	
0050	Reserved
0051	
0052	
0053	
0054	
0055	
0056	
0057	
0058	
0059	
005A	
005B	
005C	
005D	
005E	
005F	

App．6．15．3 Servo parameter change number

When parameter settings within the servo amplifier are changed using the auto tuning function or parameter changes using MR Configurator2（set up software），the bit corresponding to the servo parameter number that was changed is turned on to notify concerning which parameter number was changed（in units of 16）．To identify the changed parameter，check the servo parameter change number（monitor No． 0580 to 058 F ） corresponding to the bit which is turned on．To identify the changed parameter，check the servo parameter change number（monitor No． 0590 to 05B7）corresponding to the bit which is turned on．Refer to Section 7.2 for more information．
（1）Servo parameter change number（SSCNETII）

Address	Content
3800	Servo parameter change number 01ロロ Axis 1
3801	
3802	Servo parameter change number 01ㅁㅁ Axis 2
3803	
3804	Servo parameter change number 01ロロ Axis 3
3805	
3806	Servo parameter change number 01ロロ Axis 4
3807	
3808	Servo parameter change number 01ロロ Axis 5
3809	
380A	Servo parameter change number 01ロロ Axis 6
380B	
380C	Servo parameter change number 01ロロ Axis 7
380D	
380E	Servo parameter change number 01ロロ Axis 8
380F	
3810	Servo parameter change number 01ロロ Axis 9
3811	
3812	Servo parameter change number 01ロロ Axis 10
3813	
3814	Servo parameter change number 01 $\square \square$ Axis 11
3815	
3816	Servo parameter change number 01ロロAxis 12
3817	

Address	Content
3818	Servo parameter change number 01ロロ Axis 13
3919	
381A	Servo parameter change number 01ロロ Axis 14
381B	
381C	Servo parameter change number 01ロロ Axis 15
381D	
381E	Servo parameter change number 01ロロ Axis 16
381F	
3820	Servo parameter change number 01ロロ Axis 17
3821	
3822	Servo parameter change number 01ロロ Axis 18
3823	
3824	Servo parameter change number 01ロロ Axis 19
3825	
：	：
383E	Servo parameter change number 01 $\square \square$ Axis 32
383F	
3840	Reserved
3841	
：	
385E	
385F	

（2）Details on servo amplifier change number on axis n（SSCNETII）

Address	Name	Symbol	Remarks
3800	Servo parameter change number 01ロロ	PSN01	bit0：Parameter No．0100 to 010F to bit15：Parameter No．01F0 to 01FF
3801			

Note．The addresses in the table are the addresses for the first axis．For the second axis and after，increase in units of 2 h for each axis．

App. 6.16 Parameters

Concerning the parameters for which the parameter name shows that it is set by manufacturer, do not use other than the default values. If erroneous values are set, unexpected movement can occur.
The parameters are classified as is shown below.
When using the servo amplifier MR-J3(W)- $\square \mathrm{B}$, use parameter Nos. 0100 to 01FF as servo parameters.
For control parameters, refer to the parameter list of when the servo amplifier MR-J4(WD)- $\square B$ is used.

Classification	Parameter No. (Note)	Remarks
System parameters	No. 0001 to 007F	
Servo parameters	No. 0100 to 01FF	Each axis
Control parameters	No. 0200 to 02FF	Each axis

Note. Parameter numbers are given in hexadecimal.

App. 6.16.1 System parameters

For system parameters, only the additions and changes are listed.

> POINT
> - The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.

Parameter No.	Symbol	Name	Initial Value	Units	Setting range	Function
0001	*SYSOP1	System option 1	0000h		$\begin{aligned} & \text { 0000h } \\ & \text { to } 0102 \mathrm{~h} \end{aligned}$	Note 1. When SSCNET communication method is "1: SSCNETII". 2. Make sure to set "1: SSCNETII".

App. 6.16.2 Servo parameters

The parameters described in this section are for using the servo amplifier MR-J3-■B. For details, refer to the Servo Amplifier Instruction Manual on your servo amplifier.

POINT

- The parameters with a * mark in front of the parameter symbol are validated according to the following conditions.
*: The setting value for the system startup or the SSCNET reconnection is valid. The parameter change after the system startup is invalid.
**: The setting value for the system startup or the SSCNET reconnection is valid. However, after the system startup, turn off the power supply of the servo amplifier once, and it is necessary to turn on it again. The parameter change after the system startup is invalid.
(1) Menu A) Basic settings

(2) Menu B) Gain filter

(3) Menu C) Expansion settings

Parameter No.	MR-J3-B Parameter No.	Symbol	Name	Initial Value	Units
0150	PC01	ERZ	Error excessive alarm level	3	rev
0151	PC02	MBR	Electromagnetic brake sequence output	0	ms
0152	PC03	*ENRS	Encoder output pulses selection	0000h	
0153	PC04	**COP1	Function selection C-1	0000h	
0154	PC05	**COP2	Function selection C-2	0000h	
0155	PC06	*COP3	Function selection C-3	0000h	
0156	PC07	ZSP	Zero speed	50	r/min
0157	PC08	SO^{-}	For manufacturer setting	0	
0158	PC09	MOD1	Analog monitor output 1	0000h	
0159	PC10	MOD2	Analog monitor output 2	0001h	
015A	PC11	MO1	Analog monitor 1 offset	0	mV
015B	PC12	MO2	Analog monitor 2 offset	0	mV
015C	PC13	MOSDL	Analog monitor feedback position output standard data (lower)	0	pulse
015D	PC14	MOSDH	Analog monitor feedback position output standard data (upper)	0	10000 pulse
015E	PC15		For manufacturer setting	0	
015F	PC16			0000h	
0160	PC17	${ }^{* *} \mathrm{COP4}$	Function selection C-4	0000h	
0161	PC18		For manufacturer setting	1000h	
0162	PC19			0000h	
0163	PC20	*COP7	Function selection C-7	0000h	
0164	PC21	*BPS	Alarm history clear	0000h	
0165	PC22		For manufacturer setting	0000h	
0166	PC23			0000h	
0167	PC24			0000h	
0168	PC25			0000h	
0169	PC26			0000h	
016A	PC27			0000h	
016B	PC28			0000h	
016C	PC29			0000h	
016D	PC30			0000h	
016E	PC31			0000h	
016F	PC32			0000h	

(4) Menu D) I/O settings

Parameter No.	MR-J3-B Parameter No.	Symbol	Name	Initial Value	Units
0170	PD01		For manufacturer setting	0000h	
0171	PD02			0000h	
0172	PD03			0000h	
0173	PD04			0000h	
0174	PD05			0000h	
0175	PD06			0000h	
0176	PD07	*DO1	Output signal device selection 1 (CN3-13)	0005h	
0177	PD08	*DO2	Output signal device selection 2 (CN3-9)	0004h	
0178	PD09	*DO3	Output signal device selection 3 (CN3-15)	0003h	
0179	PD10		For manufacturer setting	0000h	
017A	PD11			0004h	
017B	PD12			0000h	
017C	PD13			0000h	
017D	PD14	*DOP3	Function selection D-3	0000h	
017E	PD15	*IDCS	Driver communication setting	0000h	
017F	PD16	*MD1	Driver communication setting Master transmit data selection 1	0000h	
0180	PD17	*MD2	Driver communication setting Master transmit data selection 2	0000h	
0181	PD18		For manufacturer setting	0000h	
0182	PD19			0000h	
0183	PD20			0000h	
0184	PD21			0000h	
0185	PD22			0000h	
0186	PD23			0000h	
0187	PD24			0000h	
0188	PD25			0000h	
0189	PD26			0000h	
018A	PD27			0000h	
018B	PD28			0000h	
018C	PD29			0000h	
018D	PD30	TLC	Master/slave operation torque command factor on the slave	0000h	\%
018E	PD31	VLC	Master/slave operation speed limit factor on the slave	0000h	\%
018F	PD32	VLL	Master/slave operation speed limit factor adjustment value on the slave	0000h	r/min

(5) Menu E) Expansion control

Parameter No.	MR-J3-B Parameter No.	Symbol	Name	Initial Value	Units
0190	PE01		For manufacturer setting	0000h	
0191	PE02			0102h	
0192	PE03			0002h	
0193	PE04			1	
0194	PE05			1	
0195	PE06			400	
0196	PE07			100	
0197	PE08			10	
0198	PE09			0000h	
0199	PE10			0000h	
019A	PE11			0	
019B	PE12			40	
019C	PE13	,		FFFEh	
019D	PE14			0111h	
019E	PE15			20	
019F	PE16			0000h	
01A0	PE17			0000h	
01A1	PE18	IRC11	Filter factor 1-1	0000h	
01 A 2	PE19	IIRC12	Filter factor 1-2	0000h	-
01A3	PE20	IIRC13	Filter factor 1-3	0000h	
01A4	PE21	IIRC14	Filter factor 1-4	0000h	\bigcirc
01A5	PE22	IIRC15	Filter factor 1-5	0000h	-
01A6	PE23	IIRC16	Filter factor 1-6	0000h	\bigcirc
01A7	PE24	IRC17	Filter factor 1-7	0000h	-
01A8	PE25	IRC18	Filter factor 1-8	0000h	\bigcirc
01A9	PE26	IRC21	Filter factor 2-1	0000h	
01AA	PE27	IIRC22	Filter factor 2-2	0000h	-
01 AB	PE28	IRC23	Filter factor 2-3	0000h	S
01AC	PE29	IRC24	Filter factor 2-4	0000h	
01AD	PE30	IIRC25	Filter factor 2-5	0000h	-
01AE	PE31	IIRC26	Filter factor 2-6	0000h	\bigcirc
01AF	PE32	IIRC27	Filter factor 2-7	0000h	
0180	PE33	IRC28	Filter factor 2-8	0000h	,
01B1	PE34		For manufacturer setting	0000h	
01B2	PE35			0000h	
01B3	PE36			0000h	
0184	PE37			0000h	
01B5	PE38			0000h	
0186	PЕ39			0000h	
01B7	PE40			0000h	
01B8	PE41			0000h	
01B9	PE42			0000h	
01BA	PE43			0000h	
01BB	PE44			0000h	
01BC	PE45			0000h	
01BD	PE46			0000h	
01BE	PE47	,		0000h	
01BF	PE48			0000h	

(6) Menu S) Special settings

Parameter No.	MR-J3-B Parameter No.	Symbol	Name	Initial Value
01C0	PS01		For manufacturer setting	0000h
01C1	PS02			0000h
01C2	PS03			0000h
01C3	PS04			0000h
01C4	PS05			0000h
01C5	PS06			0000h
01C6	PS07			0000h
$01 \mathrm{C7}$	PS08			0000h
01C8	PS09			0000h
01C9	PS10			0000h
01CA	PS11			0000h
01CB	PS12			0000h
01CC	PS13			0000h
01CD	PS14			0000h
01CE	PS15			0000h
01CF	PS16			0000h
01D0	PS17			0000h
01D1	PS18			0000h
01D2	PS19			0000h
01D3	PS20			0000h
01D4	PS21			0000h
01D5	PS22			0000h
01D6	PS23			0000h
01 D 7	PS24			0000h
01D8	PS25			0000h
01D9	PS26			0000h
01DA	PS27			0000h
01DB	PS28			0000h
01DC	PS29			0000h
01DD	PS30			0000h
01DE	PS31			0000h
01DF	PS32			0000h

(7) Menu F) Other functions

Parameter No.	MR-J3-B Parameter No.	Symbol	Name	Initial Value	Units
01E0	PF01		For manufacturer setting	0000h	
01E1	PF02			0000h	
01E2	PF03			0000h	
01E3	PF04			0	
01E4	PF05			0000h	
01E5	PF06			0000h	
01E6	PF07			0000h	
01E7	PF08			0000h	
01E8	PF09			10000	
01E9	PF10			100	
01EA	PF11			100	
01EB	PF12			100	
01EC	PF13			0000h	
01ED	PF14			10	
01EE	PF15			0000h	
01EF	PF16			0000h	

(8) Menu O) Option setting

Parameter No.	MR-J3-B Parameter No.	Symbol	Name	Initial Value	Units
01F0	Po01		For manufacturer setting	0000h	
01F1	Po02			0000h	
01F2	Po03			0000h	
01F3	Po04			0000h	
01F4	Po05			0000h	
01F5	Po06			0000h	
01F6	Po07			0000h	
01F7	Po08			0000h	
01F8	Po09			0000h	
01F9	Po10			0000h	
01FA	Po11			0000h	
01FB	Po12			0000h	
01FC	Po13			0000h	
01FD	Po14			0000h	
01FE	Po15			0000h	
01FF	Po16			0000h	

App. 6.16.3 Control parameters
For control parameters, only the additions and changes are listed.

Parameter No.	Symbol	Name	Initial value	Unit	Setting range	When in 021E	*CODE

App. 6.17 Monitor

For the monitor, only the additions and changes are listed. For the monitoring of operation information and system information, refer to the monitor list of when MR-J4(W))- $\square \mathrm{B}$ is used.

App. 6.17.1 Servo information (1)

Monitor No.	Content	Units	Remarks
0100	Unit type name		Hexadecimal ASCII character string (2 Characters per monitor number.)
0101			
0102			
0103			
0104			
0105			
0106			
0107			
0108	Software number		Hexadecimal ASCII character string (2 Characters per monitor number.)
0109			
010A			
010B			
010C			
010D			
010E			
010F			
0110	Type code		```0100: MR-J3-B, MR-J3W-B (for rotary servo motor) 0101: MR-J3-BS, MR-J3-B-RJ006 0102: MR-J3-B-RJ004, MR-J3W-B (for linear servo motor) 0107: MR-J3-B-RJ080W 0180: MR-J3W-0303BN6```
0111		-	
0112	Motor rated revolution speed	r/min	
0113	Motor rated current	0.1\%	
0114	Motor maximum revolution speed	r/min	
0115	Motor maximum torque	0.1\%	
0116	Number of encoder pulses per revolution (lower)	pulse	
0117	Number of encoder pulses per revolution (upper)		
0118	Reserved		
0119	Initial within 1 revolution position (lower)	pulse	
011A	Initial within 1 revolution position (upper)		
011B	Initial multiple revolution data	rev	
011C	Reserved		
011D			
011E			
011F			
0120	Motor permissible pulse rate (lower)	kpps	Pulse rate of operation at the motor maximum revolution speed.
0121	Motor permissible pulse rate (upper)		
0122	Maximum output pulse rate (lower)	kpps	Maximum pulse rate that can be output by the position board
0123	Maximum output pulse rate (upper)		

Monitor No.	Content	Units	Remarks
0124	Reserved		
0125			
0126			
0127	Station No. in order of connection		
0128	Reserved		
0129			
012A			
012B			
012C			
012D			
012E			
012F			

App. 6.17.2 Servo information (2)

Monitor No.	Content	Units	Remarks
0200	Position feedback (lower)	pulse	
0201	Position feedback (upper)		
0202	Reserved		
0203			
0204	Position droop (lower)	pulse	
0205	Position droop (upper)		
0206	Reserved		
0207			
0208	Speed feedback (lower)	0.01r/min	
0209	Speed feedback (upper)		
020A	Current command	0.1\%	
020B	Electrical current feedback	0.1\%	
020C	Reserved		
020D			
020E	Detector within 1 revolution position (lower)	pulse	
020F	Detector within 1 revolution position (upper)		
0210	Home position within 1 revolution position (lower)	pulse	
0211	Home position within 1 revolution position (upper)		
0212	ZCT (lower)	pulse	
0213	ZCT (upper)		
0214	Multiple revolution counter	rev	
0215	Home position multiple revolution data	rev	
0216	Speed command (lower)		
0217	Speed command (upper)		
0218	Reserved		>
0219			-
021A			-
021B			
021C			
021D			-
021E			
021F			
0220			
023F			
0240	Selected droop pulse (lower)	pulse	Select in the parameter when using the fully closed loop control
0241	Selected droop pulse (upper)		(motor side/load side/motor side - load side)
0242	Reserved	\bigcirc	(meal
0243			
0244	Selected cumulative feed pulses (lower)	pulse	Select in the parameter when using the fully closed loop control (motor side/load side)
0245	Selected cumulative feed pulses (upper)		

Monitor No．	Content	Units	Remarks
0246	Load side encoder information data 1 （lower）		
0247	Load side encoder information data 1 （upper）	pulse	When using the linear servo／fully closed loop control
0248	Load side encoder information data 2 （lower）		When using the linear servo／fully closed loop control
0249	Load side encoder information data 2 （upper）	pulse	When using the linear servofully closed loop control
024A	Speed feedback（lower）	001mm	When using a linear servo
024B	Speed feedback（upper）	0.01 mm	W
024C	Voltage of generating line	V	
024D	Regenerative load factor	\％	
024E	Effective load factor	\％	
024F	Peak load factor	\％	
0250	Estimated load inertial ratio	0.1 times	
0251	Position gain（model position gain）	$\mathrm{rad} / \mathrm{s}$	
0252	Motor thermistor temperature	${ }^{\circ} \mathrm{C}$	When using a motor with thermistor attached．
0253			
0254			
0255			
0256		1	
0257		1	
0258		1	
0259	Re	1	
025A	Res	1	－
025B		1	
025C			
025D		\rangle	
025E		\rangle	
025F			
0260			
0261	Alarm／warning number	\bigcirc	
0262	Alarm detailed bits	－	
0263	Reserved	\bigcirc	
0264	Alarm status AL－1■		
0265	Alarm status AL－2口		
0266	Alarm status AL－3口		
0267	Alarm status AL－4■		\square is 0 （bit 0 ）to F （bit 15）
0268	Alarm status AL－5■		Bit corresponding to alarm number is turned on．
0269	Alarm status AL－6口		Review the alarms when multiple alarms occurs
026A	Alarm status AL－7 \square		simultaneously etc．
026B	Alarm status AL－8■		
026C	Alarm status AL－9■	\backslash	
026D	Alarm status AL－E \square		
026E	Reserved		
026F			
0270			
：			
02CF			

App. 6.17.3 Servo parameter information

Monitor No.	Content	Units	Remarks
0500	Servo parameter error number (Note) No. 0100 to 010F		Bit corresponding to parameter number is turned on. bit is No. 0100 (bit 0) to 010F (bit 15).
0501	Servo parameter error number (Note) No. 0110 to 011F		Bit corresponding to parameter number is turned on. bit is No. 0110 (bit 0) to 011F (bit 15).
0502	Servo parameter error number (Note) No. 0120 to 012F		Bit corresponding to parameter number is turned on. bit is No. 0120 (bit 0) to 012F (bit 15).
0503	Servo parameter error number (Note) No. 0130 to 013F		Bit corresponding to parameter number is turned on. bit is No. 0130 (bit 0) to 013F (bit 15).
0504	Servo parameter error number (Note) No. 0140 to 014F		Bit corresponding to parameter number is turned on. bit is No. 0140 (bit 0) to 014F (bit 15).
0505	Servo parameter error number (Note) No. 0150 to 015F		Bit corresponding to parameter number is turned on. bit is No. 0150 (bit 0) to 015F (bit 15).
0506	Servo parameter error number (Note) No. 0160 to 016F		Bit corresponding to parameter number is turned on. bit is No. 0160 (bit 0) to 016F (bit 15).
0507	Servo parameter error number (Note) No. 0170 to 017F		Bit corresponding to parameter number is turned on. bit is No. 0170 (bit 0) to 017F (bit 15).
0508	Servo parameter error number (Note) No. 0180 to 018F		Bit corresponding to parameter number is turned on. bit is No. 0180 (bit 0) to 018F (bit 15).
0509	Servo parameter error number (Note) No. 0190 to 019F		Bit corresponding to parameter number is turned on. bit is No. 0190 (bit 0) to 019F (bit 15).
050A	Servo parameter error number (Note) No. 01A0 to 01AF		Bit corresponding to parameter number is turned on. bit is No. 01A0 (bit 0) to 01AF (bit 15).
050B	Servo parameter error number (Note) No. 01B0 to 01BF		Bit corresponding to parameter number is turned on. bit is No. 01B0 (bit 0) to 01BF (bit 15).
050C	Servo parameter error number (Note) No. 01C0 to 01CF		Bit corresponding to parameter number is turned on. bit is No. 01C0 (bit 0) to 01CF (bit 15).
050D	Servo parameter error number (Note) No. 01D0 to 01DF		Bit corresponding to parameter number is turned on. bit is No. 01D0 (bit 0) to 01DF (bit 15).
050E	Servo parameter error number (Note) No. 01E0 to 01EF		Bit corresponding to parameter number is turned on. bit is No. 01E0 (bit 0) to 01EF (bit 15).
050F	Servo parameter error number (Note) No. 01F0 to 01FF		Bit corresponding to parameter number is turned on. bit is No. 01F0 (bit 0) to 01FF (bit 15).

Note. Information concerning parameter error (servo alarm 37) that has occurred at system startup can be monitored. If a parameter warning (servo alarm E4) occurs while system is running, it is not reflected in this information.

App. 6.18 System alarm

For the alarm No, only the additions and changes are listed.
App. 6.18.1 Servo alarm
The servo alarms of MR-J3(W)-■B are shown in the following table. For details, refer to the Servo Amplifier Instruction Manual for MR-J3(W)- $\square \mathrm{B}$.

Alarm

Alarm No.	Name
10	Undervoltage
12	Memory error 1 (RAM)
13	Clock error
15	Memory error 2 (EEP-ROM)
16	Encoder error 1 (At power on)
17	Board error
19	Memory error 3 (Flash-ROM)
1A	Motor combination error
20	Encoder error 2
24	Main circuit error
25	Absolute position disappearance
30	Regenerative error
31	Overspeed
32	Overcurrent
33	Overvoltage
34	Receive error 1
35	Command frequency alarm
36	Receive error 2
37	Parameter error
45	Main circuit device overheat
46	Servo motor overheat
47	Cooling fan alarm
50	Overload 1
51	Overload 2
52	Error excessive
8A	USB communication timeout
8E	USB communication error
888	Watchdog

Warning

Alarm No.	Name
92	Open battery cable warning
96	Home position setting error
$9 F$	Battery warning
E0	Excessive regeneration warning
E1	Overload warning 1
E3	Absolute position counter warning
E4	Parameter warning
E6	Servo forced stop warning
E7	Controller forced stop warning
E8	Cooling fan speed reduction warning
E9	Main circuit off warning
EC	Overload warning 2
ED	Output watt excess warning

App. 7 Cables

In this cable connection diagram, makers of connectors are omitted.
Refer to "App. 8.3 Connector" for makers of connectors.

App. 7.1 SSCNETIII cables

Generally use the SSCNETIII cables available as our products.
Refer to App. 7.3 for long distance cable up to 100(328.08)[m(ft.)] and ultra-long bending life cable.
(1) Model explanation

Numeral in the column of cable length on the table is a symbol put in the " \square " part of cable model. Cables of which symbol exists are available.

Cable model	Cable length [m(ft.)]											Flex life	Application/ remark
	$\begin{gathered} 0.15 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.3 \\ (0.98) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (1.64) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (3.28) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (9.84) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (16.40) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (32.81) \end{gathered}$	$\begin{gathered} \hline 20 \\ (65.62) \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ (98.43) \end{gathered}$	$\begin{array}{\|c\|} \hline 40 \\ (131.23) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 50 \\ (164.04) \end{array}$		
MR-J3BUSDM	015	03	05	1	3						7	Standard	Standard cord for inside panel
MR-J3BUSDM-A						5	10	20	\square			Standard	Standard cable for outside panel
MR-J3BUSDM-B (Note 1)		7	7	7				7	30	40	50	Long flex	Long distance cable

Note 1. For the cable of less than $30[\mathrm{~m}](98.43[\mathrm{ft}])$, contact your nearest Mitsubishi Electric sales representative.

(2) Specifications

		Description			
SSCNETIII cable model		MR-J3BUS $\square \mathrm{M}$		MR-J3BUS \square M-A	MR-J3BUS口M-B
SSCNETIII cable length [m(ft.)]		0.15 (0.49)	0.3 to 3 (0.98 to 9.84)	5 to 20 (16.40 to 65.62)	30 to 50 (98.43 to 164.04)
Optical cable (Cord)	Minimum bend radius [mm(inch)]	25(0.98)		Enforced covering cord: 50 (1.97) Cord: 25 (0.98)	Enforced covering cord: 50 (1.97) Cord: 30(1.18)
	Tension strength [N]	70	140	420 (Enforced covering cord)	980 (Enforced covering cord)
	Temperature range for use [$\left.{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)\right]$ (Note 1)	-40 to 80 (-40 to 176)			-20 to 70 (-4 to 158)
	Ambient	Indoors (no direct sunlight), No solvent or oil			
	External appearance [mm(inch)]				

Note 1. This temperature range for use is the value for optical cable (cord) only.
2. Dimension of connector fiber insert location. The distance of two cords is changed by how to bend it.

POINT

- If the end face of cord tip for the SSCNETIII cable is dirty, optical transmission is interrupted and it may cause malfunctions. If it becomes dirty, wipe with a bonded textile, etc. Do not use solvent such as alcohol.
- Do not add impossible power to the connector of the SSCNETIII cable.
- When incinerating the SSCNETIII cable (optical fiber), hydrogen fluoride gas or hydrogen chloride gas which is corrosive and harmful may be generated. For disposal of the SSCNETIII cable (optical fiber), request for specialized industrial waste disposal services who has incineration facility for disposing hydrogen fluoride gas or hydrogen chloride gas.
(a) MR-J3BUS $\square M$

1) Model explanation

Type: MR-J3BUS $\square \mathrm{M}-\boldsymbol{*}$

Tymbol	Cable type
None	Standard cord for inside panel
A	Standard cable for outside panel
B	Long distance cable

Symbol	Cable length [m(ft.)]
015	$0.15(0.49)$
03	$0.3(0.98)$
05	$0.5(1.64)$
1	$1(3.28)$
3	$3(9.84)$
5	$5(16.40)$
10	$10(32.81)$
20	$20(65.62)$
30	$30(98.43)$
40	$40(131.23)$
50	$50(164.04)$

2) Exterior dimensions

- MR-J3BUS015M
[Unit: mm(inch)]

- MR-J3BUS03M to MR-J3BUS3M

Refer to the table of this section (1) for cable length (L).
[Unit: mm(inch)]

Note. Dimension of connector part is the same as that of MR-J3BUS015M.

- MR-J3BUS5M-A to MR-J3BUS20M-A, MR-J3BUS30M-B to MR-J3BUS50M-B

Refer to the table of this section (1) for cable length (L).

SSCNETII cable	Variation [mm(inch)]	
	A	B
MR-J3BUS5M-A to MR-J3BUS20M-A	$100(3.94)$	$30(1.18)$
MR-J3BUS30M-B to MR-J3BUS50M-B	$150(5.91)$	$50(1.97)$

Note. Dimension of connector part is the same as that of MR-J3BUS015M.

POINT

- Keep the cap and the tube for protecting light cord end of SSCNETIII cable in a plastic bag with a zipper of SSCNETIII cable to prevent them from becoming dirty.

App. 7.2 Forced stop input cable

Fabricate the forced stop input cable on the customer side.
Make the forced stop input cable within $30 \mathrm{~m}(98.43 \mathrm{ft}$.).
(1) Forced stop input cable when using MR-MC2■ \square
(a) Connection diagram

(1) Forced stop input cable when using MR-MC3 $\square \square$
(a) Connection diagram

App. 7.3 SSCNETIII cables (SC-J3BUS \square M-C) manufactured by Mitsubishi Electric System \& Service

POINT

- For the details of the SSCNETIII cables, contact your local sales office.
- Do not look directly at the light generated from CN1A/CN1B connector of servo amplifier or the end of SSCNETIII cable. The light can be a discomfort when it enters the eye.

The cable is available per $1[\mathrm{~m}]$ up to $100[\mathrm{~m}]$. The number of the length (1 to 100) will be in the \square part in the cable model.

Cable model	Cable length $[\mathrm{m}(\mathrm{ft})]$.	Bending life	Application/remark
	1 to $100(3.28$ to 328.08$)$		
SC-J3BUS $\square M-C$	1 to 100	Ultra-long bending life	Long distance cable

App. 8 Exterior dimensions
App. 8.1 Position board MR-MC2 $\square \square$
(1) MR-MC210

The MR-MC210 is a PCI short card size.

(2) MR-MC211

The MR-MC211 is a PCI short card size.
[Unit: mm(inch)]

(3) MR-MC220U3

The MR-MC220U3 is compatible with the 3U size.

(4) MR-MC220U6

The MR-MC220U6 is compatible with the 6U size. The circuit board is a 3U card size.
[Unit: mm(inch)]

(5) MR-MC240

The MR-MC240 is a PCI Express short card size.

(6) MR-MC241

The MR-MC241 is a PCI Express short card size.
[Unit: mm(inch)]

App. 8.2 Position board MR-MC3 $\square \square$
(1) MR-MC341

The MR-MC341 is a PCI Express short card size.
[Unit: mm(inch)]

App. 8.3 Connectors
(1) SSCNETIII cable connector

(2) Forced stop connector
(a) Forced stop connector when using MR-MC2 $\square \square$ (Molex, LLC make)

Type Connector: 51103-0300
Terminal: 50351-8100

(b) Forced stop connector when using MR-MC3 $\square \square$ (PHOENIX CONTACT GmbH \& Co. KG make) Type Connector: FK-MC0,5/3-ST-2,5

App. 9 Open source software
The position board (MR-MC341) uses GPL software in parts of the internal system. The GPL software source program is provided upon purchase of the position board (MR-MC341). Contact our sales representative for the GPL software source program.
In accordance with GPL/LGPL, only the open source software in the programs and drivers that make up the position board (MR-MC341), excluding parts that were created independently, are distributed. The source code is distributed 'as is', and no guarantee is provided. We are also unable to provide support on the contents of the source code. We appreciate your understanding.

POINT

- GPL is a GNU project that advocates free software licenses. Free software licenses grants the user the right to use, duplicate, modify, and redistribute the GPL software freely. Also, when distributing and duplicating the source program, supplying the source code is a requirement.

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

We will repair any failure or defect hereinafter referred to as "failure" in our FA equipment hereinafter referred to as the "Product" arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit are repaired or replaced.

[Gratis Warranty Term]

The term of warranty for Product is thirty six (36) months after your purchase or delivery of the Product to a place designated by you or forty two (42) months from the date of manufacture whichever comes first "Warranty Period". Warranty period for repaired Product cannot exceed beyond the original warranty period before any repair work.

[Gratis Warranty Range]

(1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule. It can also be carried out by us or our service company upon your request and the actual cost will be charged. However, it will not be charged if we are responsible for the cause of the failure.
(2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
(3) Even during the term of warranty, the repair cost will be charged on you in the following cases;

1) A failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
2) A failure caused by any alteration, etc. to the Product made on your side without our approval
3) A failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
4) A failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
5) Any replacement of consumable parts (battery, relay, fuse, etc.)
6) A failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
7) A failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
8) Any other failures which we are not responsible for or which you acknowledge we are not responsible for
2. Onerous Repair Term after Discontinuation of Production
(1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued.
The announcement of the stop of production for each model can be seen in our Sales and Service, etc.
(2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.

3. Service in overseas countries

Our regional FA Center in overseas countries will accept the repair work of the Product; However, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details.

4. Exclusion of Loss in Opportunity and Secondary Loss from Warranty Liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.
6. Precautions for Choosing the Products
(1) For the use of our Position Board, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in Position Board, and a backup or fail-safe function should operate on an external system to Position Board when any failure or malfunction occurs.
(2) Our Position Board is designed and manufactured as a general purpose product for use at general industries. Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used.
In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used.
We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

[^15]
MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14, YADA-MINAMI 5-CHOME, HIGASHI-KU, NAGOYA, JAPAN

[^16]
[^0]: This manual confers no industrial property rights or any rights of any other kind，nor does it confer any patent licenses．Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual．

[^1]: Note. Has not been implemented, therefore, if read an indefinite value will be returned.

[^2]: Note. Has not been implemented, therefore, if read an indefinite value will be returned.

[^3]: Note 1. Reserved when using MR-MC3 $\square \square$.

[^4]: Note. This enables operation at the limits of the motor; however, there is the possibility of setting overload or over speed alarms.

[^5]: Note. The settings for the parameters with a * mark at the front of the symbol are validated when the system is started.

[^6]: API LIBRARY

 - Use the sscGetloStatusFast function to check if limit switch (LSP or LSN) is ON/OFF.

[^7]: Note. The offset is the bit units from the start of the input device table that assigned the input bit device.

[^8]: Note. When using MR-MC2 $\square \square, 04 C 4$ to 04C7, and 04C9 are "Reserved".

[^9]: Note. When using MR-MC2 $\square \square, 04 \mathrm{C} 4$ to 04C7, and 04C9 is "Reserved".

[^10]: Note. When using MR-MC2 $\square \square$, 0F60 to 0F9F is "Reserved".

[^11]: Note．The manual feed speed is the moving speed for manual operation（JOG operation as well as incremental feed）

[^12]: Note. The addresses in the table are the addresses for the first axis. For the second axis and after, increase by 20 h for each axis.

[^13]: Note. For the specific servo alarm numbers, refer to the Sensing Module Instruction Manual.

[^14]: Speed command $[0.01 \mathrm{r} / \mathrm{min}]=\frac{\text { Speed command }[\mathrm{m} / \mathrm{s}] \times 1000 \times 1000 \times 60 \times 100}{\text { Linear encoder resolution[} \mu \mathrm{m} / \text { pulse }] \times \text { Stop interval setting for home position return[pulse] }}$

 Linear encoder resolution $[\mu \mathrm{m} / \mathrm{pulse}]=\frac{\text { Linear encoder resolution setting Numerator (Parameter No.1301) }}{\text { Linear encoder resolution setting Denominator (Parameter No.1302) }}$

[^15]: Microsoft, Visual Basic, Visual C++, Visual C\#, Windows, Windows Vista, and Windows XP are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. PCI Express is a registered trademark of PCI-SIG.
 CompactPCI is a registered trademark of PCI Industrial Computer Manufacturers Group.
 The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.
 In some cases, trademark symbols such as 'TM' or '®' are not specified in this manual.

[^16]: When exported from Japan, this manual does not require application to the
 Ministry of Economy, Trade and Industry for service transaction permission

